Merge pull request #1 from kyegomez/master

Catching Up 20240312
pull/419/head
evelynmitchell 11 months ago committed by GitHub
commit 48da719e9d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -25,7 +25,7 @@ jobs:
- name: Build package
run: python -m build
- name: Publish package
uses: pypa/gh-action-pypi-publish@e53eb8b103ffcb59469888563dc324e3c8ba6f06
uses: pypa/gh-action-pypi-publish@81e9d935c883d0b210363ab89cf05f3894778450
with:
user: __token__
password: ${{ secrets.PYPI_API_TOKEN }}

1
.gitignore vendored

@ -13,6 +13,7 @@ runs
chroma
Unit Testing Agent_state.json
swarms/__pycache__
artifacts
venv
.DS_Store
Cargo.lock

@ -1,15 +0,0 @@
[package]
name = "swarms-runtime" # The name of your project
version = "0.1.0" # The current version, adhering to semantic versioning
edition = "2021" # Specifies which edition of Rust you're using, e.g., 2018 or 2021
authors = ["Your Name <your.email@example.com>"] # Optional: specify the package authors
license = "MIT" # Optional: the license for your project
description = "A brief description of my project" # Optional: a short description of your project
[dependencies]
cpython = "0.5"
rayon = "1.5"
[dependencies.pyo3]
version = "0.20.3"
features = ["extension-module", "auto-initialize"]

@ -154,6 +154,52 @@ print(out)
------
# `Agent` with Long Term Memory
`Agent` equipped with quasi-infinite long term memory. Great for long document understanding, analysis, and retrieval.
```python
from swarms import Agent, ChromaDB, OpenAIChat
# Making an instance of the ChromaDB class
memory = ChromaDB(
metric="cosine",
n_results=3,
output_dir="results",
docs_folder="docs",
)
# Initializing the agent with the Gemini instance and other parameters
agent = Agent(
agent_name="Covid-19-Chat",
agent_description=(
"This agent provides information about COVID-19 symptoms."
),
llm=OpenAIChat(),
max_loops="auto",
autosave=True,
verbose=True,
long_term_memory=memory,
stopping_condition="finish",
)
# Defining the task and image path
task = ("What are the symptoms of COVID-19?",)
# Running the agent with the specified task and image
out = agent.run(task)
print(out)
```
----
### `SequentialWorkflow`
Sequential Workflow enables you to sequentially execute tasks with `Agent` and then pass the output into the next agent and onwards until you have specified your max loops. `SequentialWorkflow` is wonderful for real-world business tasks like sending emails, summarizing documents, and analyzing data.

@ -0,0 +1,107 @@
# How to Create A Custom Language Model
When working with advanced language models, there might come a time when you need a custom solution tailored to your specific needs. Inheriting from an `AbstractLLM` in a Python framework allows developers to create custom language model classes with ease. This developer guide will take you through the process step by step.
### Prerequisites
Before you begin, ensure that you have:
- A working knowledge of Python programming.
- Basic understanding of object-oriented programming (OOP) in Python.
- Familiarity with language models and natural language processing (NLP).
- The appropriate Python framework installed, with access to `AbstractLLM`.
### Step-by-Step Guide
#### Step 1: Understand `AbstractLLM`
The `AbstractLLM` is an abstract base class that defines a set of methods and properties which your custom language model (LLM) should implement. Abstract classes in Python are not designed to be instantiated directly but are meant to be subclasses.
#### Step 2: Create a New Class
Start by defining a new class that inherits from `AbstractLLM`. This class will implement the required methods defined in the abstract base class.
```python
from swarms import AbstractLLM
class vLLMLM(AbstractLLM):
pass
```
#### Step 3: Initialize Your Class
Implement the `__init__` method to initialize your custom LLM. You'll want to initialize the base class as well and define any additional parameters for your model.
```python
class vLLMLM(AbstractLLM):
def __init__(self, model_name='default_model', tensor_parallel_size=1, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.tensor_parallel_size = tensor_parallel_size
# Add any additional initialization here
```
#### Step 4: Implement Required Methods
Implement the `run` method or any other abstract methods required by `AbstractLLM`. This is where you define how your model processes input and returns output.
```python
class vLLMLM(AbstractLLM):
# ... existing code ...
def run(self, task, *args, **kwargs):
# Logic for running your model goes here
return "Processed output"
```
#### Step 5: Test Your Model
Instantiate your custom LLM and test it to ensure that it works as expected.
```python
model = vLLMLM(model_name='my_custom_model', tensor_parallel_size=2)
output = model.run("What are the symptoms of COVID-19?")
print(output) # Outputs: "Processed output"
```
#### Step 6: Integrate Additional Components
Depending on the requirements, you might need to integrate additional components such as database connections, parallel computing resources, or custom processing pipelines.
#### Step 7: Documentation
Write comprehensive docstrings for your class and its methods. Good documentation is crucial for maintaining the code and for other developers who might use your model.
```python
class vLLMLM(AbstractLLM):
"""
A custom language model class that extends AbstractLLM.
... more detailed docstring ...
"""
# ... existing code ...
```
#### Step 8: Best Practices
Follow best practices such as error handling, input validation, and resource management to ensure your model is robust and reliable.
#### Step 9: Packaging Your Model
Package your custom LLM class into a module or package that can be easily distributed and imported into other projects.
#### Step 10: Version Control and Collaboration
Use a version control system like Git to track changes to your model. This makes collaboration easier and helps you keep a history of your work.
### Conclusion
By following this guide, you should now have a custom model that extends the `AbstractLLM`. Remember that the key to a successful custom LLM is understanding the base functionalities, implementing necessary changes, and testing thoroughly. Keep iterating and improving based on feedback and performance metrics.
### Further Reading
- Official Python documentation on abstract base classes.
- In-depth tutorials on object-oriented programming in Python.
- Advanced NLP techniques and optimization strategies for language models.
This guide provides the fundamental steps to create custom models using `AbstractLLM`. For detailed implementation and advanced customization, it's essential to dive deeper into the specific functionalities and capabilities of the language model framework you are using.

@ -9,6 +9,7 @@ agent = Agent(
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
interactive=True,
)
# Run the workflow on a task

@ -61,7 +61,7 @@ nav:
- Limitations of Individual Agents: "limits_of_individual_agents.md"
- Why Swarms: "why_swarms.md"
- The Swarms Bounty System: "swarms_bounty_system.md"
- Swarms Framework:
- Swarms Framework [PY]:
- Overview: "swarms/index.md"
- DIY Build Your Own Agent: "diy_your_own_agent.md"
- swarms.agents:
@ -71,6 +71,7 @@ nav:
- AbstractAgent: "swarms/agents/abstractagent.md"
- ToolAgent: "swarms/agents/toolagent.md"
- swarms.models:
- How to Create A Custom Language Model: "swarms/models/custom_model.md"
- Language:
- BaseLLM: "swarms/models/base_llm.md"
- Overview: "swarms/models/index.md"

@ -0,0 +1,9 @@
"""
Plan -> act in a loop until observation is met
# Tools
- Terminal
- Text Editor
- Browser
"""

@ -0,0 +1,59 @@
def test_create_graph():
"""
Tests that a graph can be created.
"""
graph = create_graph()
assert isinstance(graph, dict)
def test_weight_edges():
"""
Tests that the edges of a graph can be weighted.
"""
graph = create_graph()
weight_edges(graph)
for edge in graph.edges:
assert isinstance(edge.weight, int)
def test_create_user_list():
"""
Tests that a list of all the podcasts that the user has listened to can be created.
"""
user_list = create_user_list()
assert isinstance(user_list, list)
def test_find_most_similar_podcasts():
"""
Tests that the most similar podcasts to a given podcast can be found.
"""
graph = create_graph()
weight_edges(graph)
user_list = create_user_list()
most_similar_podcasts = find_most_similar_podcasts(
graph, user_list
)
assert isinstance(most_similar_podcasts, list)
def test_add_most_similar_podcasts():
"""
Tests that the most similar podcasts to a given podcast can be added to the user's list.
"""
graph = create_graph()
weight_edges(graph)
user_list = create_user_list()
add_most_similar_podcasts(graph, user_list)
assert len(user_list) > 0
def test_repeat_steps():
"""
Tests that steps 5-6 can be repeated until the user's list contains the desired number of podcasts.
"""
graph = create_graph()
weight_edges(graph)
user_list = create_user_list()
repeat_steps(graph, user_list)
assert len(user_list) == 10

@ -0,0 +1,46 @@
import pytest
def test_create_youtube_account():
# Arrange
# Act
# Assert
def test_install_video_editing_software():
# Arrange
# Act
# Assert
def test_write_script():
# Arrange
# Act
# Assert
def test_gather_footage():
# Arrange
# Act
# Assert
def test_edit_video():
# Arrange
# Act
# Assert
def test_export_video():
# Arrange
# Act
# Assert
def test_upload_video_to_youtube():
# Arrange
# Act
# Assert
def test_optimize_video_for_search():
# Arrange
# Act
# Assert
def test_share_video():
# Arrange
# Act
# Assert

@ -0,0 +1,253 @@
import concurrent
import csv
from swarms import Agent, OpenAIChat
from swarms.memory import ChromaDB
from dotenv import load_dotenv
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.file_processing import create_file
from swarms.utils.loguru_logger import logger
# Load ENV
load_dotenv()
# Gemini
gemini = OpenAIChat()
# memory
memory = ChromaDB(output_dir="swarm_hackathon")
def execute_concurrently(callable_functions: callable, max_workers=5):
"""
Executes callable functions concurrently using multithreading.
Parameters:
- callable_functions: A list of tuples, each containing the callable function and its arguments.
For example: [(function1, (arg1, arg2), {'kwarg1': val1}), (function2, (), {})]
- max_workers: The maximum number of threads to use.
Returns:
- results: A list of results returned by the callable functions. If an error occurs in any function,
the exception object will be placed at the corresponding index in the list.
"""
results = [None] * len(callable_functions)
def worker(fn, args, kwargs, index):
try:
result = fn(*args, **kwargs)
results[index] = result
except Exception as e:
results[index] = e
with concurrent.futures.ThreadPoolExecutor(
max_workers=max_workers
) as executor:
futures = []
for i, (fn, args, kwargs) in enumerate(callable_functions):
futures.append(
executor.submit(worker, fn, args, kwargs, i)
)
# Wait for all threads to complete
concurrent.futures.wait(futures)
return results
# Adjusting the function to extract specific column values
def extract_and_create_agents(
csv_file_path: str, target_columns: list
):
"""
Reads a CSV file, extracts "Project Name" and "Lightning Proposal" for each row,
creates an Agent for each, and adds it to the swarm network.
Parameters:
- csv_file_path: The path to the CSV file.
- target_columns: A list of column names to extract values from.
"""
try:
agents = []
with open(csv_file_path, mode="r", encoding="utf-8") as file:
reader = csv.DictReader(file)
for row in reader:
project_name = row[target_columns[0]]
lightning_proposal = row[target_columns[1]]
# Example of creating and adding an agent based on the project name and lightning proposal
agent_name = f"{project_name} agent"
print(agent_name) # For demonstration
# Create the agent
logger.info("Creating agent...")
# Design agent
logger.info("Creating design agent...")
design_agent = Agent(
llm=gemini,
agent_name="Design Agent",
max_loops=1,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Transform an app idea into step by step very"
" simple algorithmic psuedocode so it can be"
" implemented simply."
),
long_term_memory=memory,
)
# Log the agent
logger.info(
f"Code Agent created: {agent_name} with long term"
" memory"
)
agent = Agent(
llm=gemini,
agent_name=agent_name,
max_loops=1,
code_interpreter=True,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Transform an app idea into a very simple"
" python app in markdown. Return all the"
" python code in a single markdown file."
" Return only code and nothing else."
),
long_term_memory=memory,
)
# Testing agent
logger.info(f"Testing_agent agent: {agent_name}")
agent = Agent(
llm=gemini,
agent_name=agent_name + " testing",
max_loops=1,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Create unit tests using pytest based on the"
" code you see, only return unit test code in"
" python using markdown, only return the code"
" and nothing else."
),
long_term_memory=memory,
)
# Log the agent
logger.info(
f"Agent created: {agent_name} with long term"
" memory"
)
agents.append(agent)
# Design agent
design_agent_output = design_agent.run(
(
"Create the algorithmic psuedocode for the"
f" {lightning_proposal} in markdown and"
" return it"
),
None,
)
logger.info(
"Algorithmic psuedocode created:"
f" {design_agent_output}"
)
# Create the code for each project
output = agent.run(
(
"Create the code for the"
f" {lightning_proposal} in python using the"
" algorithmic psuedocode"
f" {design_agent_output} and wrap it in"
" markdown and return it"
),
None,
)
print(output)
# Parse the output
output = extract_code_from_markdown(output)
# Create the file
output = create_file(output, f"{project_name}.py")
# Testing agent
testing_agent_output = agent.run(
(
"Create the unit tests for the"
f" {lightning_proposal} in python using the"
f" code {output} and wrap it in markdown and"
" return it"
),
None,
)
print(testing_agent_output)
# Parse the output
testing_agent_output = extract_code_from_markdown(
testing_agent_output
)
# Create the file
testing_agent_output = create_file(
testing_agent_output, f"test_{project_name}.py"
)
# Log the project created
logger.info(
f"Project {project_name} created: {output} at"
f" file path {project_name}.py"
)
print(output)
# Log the unit tests created
logger.info(
f"Unit tests for {project_name} created:"
f" {testing_agent_output} at file path"
f" test_{project_name}.py"
)
print(
f"Agent {agent_name} created and added to the"
" swarm network"
)
return agents
except Exception as e:
logger.error(
"An error occurred while extracting and creating"
f" agents: {e}"
)
return None
# CSV
csv_file = "presentation.csv"
# Specific columns to extract
target_columns = ["Project Name", "Project Description"]
# Use the adjusted function
specific_column_values = extract_and_create_agents(
csv_file, target_columns
)
# Display the extracted column values
print(specific_column_values)
# Concurrently execute the function
logger.info(
"Concurrently executing the swarm for each hackathon project..."
)
output = execute_concurrently(
[
(extract_and_create_agents, (csv_file, target_columns), {}),
],
max_workers=5,
)
print(output)

@ -0,0 +1,86 @@
class MockApp:
def __init__(self):
self.running = True
self.session = None
self.slides = []
def main_menu(self):
return input("Choose option: 1. Start, 2. Load, 3. Exit ")
def start_new_talk(self, title):
self.session = title
self.slides = []
def add_slide(self, content):
self.slides.append(content)
def edit_slide(self, index, content):
self.slides[index] = content
def delete_slide(self, index):
del self.slides[index]
def reorder_slides(self, new_order):
self.slides = [self.slides[i] for i in new_order]
def get_number_of_slides(self):
return len(self.slides)
# Function to simulate user actions
def simulate_user_action(self, action):
# Placeholder function to simulate user interaction, not part of the actual app code
pass
# Testing starting a new talk
def test_start_new_talk():
app = MockApp()
app.start_new_talk("My New Talk")
assert app.session == "My New Talk"
assert app.slides == []
# Testing adding a slide
def test_add_slide():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
assert app.slides == ["Slide Content 1"]
# Testing editing a slide
def test_edit_slide():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.edit_slide(0, "Updated Slide Content 1")
assert app.slides == ["Updated Slide Content 1"]
# Testing deleting a slide
def test_delete_slide():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.add_slide("Slide Content 2")
app.delete_slide(0)
assert app.slides == ["Slide Content 2"]
# Testing reordering slides
def test_reorder_slides():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.add_slide("Slide Content 2")
app.reorder_slides([1, 0])
assert app.slides == ["Slide Content 2", "Slide Content 1"]
# Testing the number of slides
def test_slide_count():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.add_slide("Slide Content 2")
assert app.get_number_of_slides() == 2

@ -0,0 +1,15 @@
Project Name,Team Members,Project Description,Project Link / Code,Team Twitter Handles
presentation assistant,robert nowell,live visual aid for talks,loom,@robertnowell1
Vocal,"Jeremy Nixon, Amir Gamil, Eliott Hoffenberg, Trina Chatterjee, Ruby Yeh","Educational Video Generation, Prompt -> Youtube Video",,"@jvnixon, @amirbolous, @Eliotthoff, @trina_chatt"
Podgraph ,"DC, Leo, Anupam",Graph based podcast learning,https://github.com/dcsan/kbxt ; https://www.figma.com/file/sui06ZgDGXrHOVlrJDiOD7/Untitled?type=design&node-id=0%3A1&mode=design&t=LnQCl13XroVHVbxD-1,@anupambatra_ | @dcsan
"Listen, chat and learn!!!",James,Chat with a podcast to learn things,https://react.gitwit.dev/run/zfGVjrjsa6ZKaEU1PldW,@jamesmurdza
Recall,Liam & Caden,conversation information retrieval,https://recall-97b8b27a6a92.herokuapp.com/,
VoiceStudyBot,Konrad,Personal tutor to test your knowledge of a book,,@konrad_gnat
Short Form Upskill,"Margarita, Aditya, Johnny",TikTok Scrape and Transcribe ,margro2000/Learn (github.com),https://twitter.com/Marg_Groisman
Rohan,Rohan,Rohan,,
Envision: diagram dataset,Steve,An API to translate any technical concept into diagrams,https://github.com/stephenkfrey/diagrammatic,twitter.com/stevekfrey
Arxiv2Video,Lily Su,Converts an Arxiv web url to a short video,https://github.com/LilySu/Arxiv2Video,@excelsiorpred
Dir Chat,Andy Li,Combine to power of SQL and RAG to serach courses,,@xdotli
Empathy Coach,Ji Young Lim,A chatbot that coches people to make more empathetic conversations,,@jyl1030
Aimor,Brach Burdick,Platform for assessing and monitoring the psychological wellbeing of a body of students based on conversations with an AI therapist,https://aimor-git-staging-aimor.vercel.app/admin,https://twitter.com/__brach__
Structured TA bot Generation,Wenxi,Generate structured tutorial chatbot based on video transcript and potentially videos,https://github.com/wenxichen/video2ta ,
1 Project Name Team Members Project Description Project Link / Code Team Twitter Handles
2 presentation assistant robert nowell live visual aid for talks loom @robertnowell1
3 Vocal Jeremy Nixon, Amir Gamil, Eliott Hoffenberg, Trina Chatterjee, Ruby Yeh Educational Video Generation, Prompt -> Youtube Video @jvnixon, @amirbolous, @Eliotthoff, @trina_chatt
4 Podgraph DC, Leo, Anupam Graph based podcast learning https://github.com/dcsan/kbxt ; https://www.figma.com/file/sui06ZgDGXrHOVlrJDiOD7/Untitled?type=design&node-id=0%3A1&mode=design&t=LnQCl13XroVHVbxD-1 @anupambatra_ | @dcsan
5 Listen, chat and learn!!! James Chat with a podcast to learn things https://react.gitwit.dev/run/zfGVjrjsa6ZKaEU1PldW @jamesmurdza
6 Recall Liam & Caden conversation information retrieval https://recall-97b8b27a6a92.herokuapp.com/
7 VoiceStudyBot Konrad Personal tutor to test your knowledge of a book @konrad_gnat
8 Short Form Upskill Margarita, Aditya, Johnny TikTok Scrape and Transcribe margro2000/Learn (github.com) https://twitter.com/Marg_Groisman
9 Rohan Rohan Rohan
10 Envision: diagram dataset Steve An API to translate any technical concept into diagrams https://github.com/stephenkfrey/diagrammatic twitter.com/stevekfrey
11 Arxiv2Video Lily Su Converts an Arxiv web url to a short video https://github.com/LilySu/Arxiv2Video @excelsiorpred
12 Dir Chat Andy Li Combine to power of SQL and RAG to serach courses @xdotli
13 Empathy Coach Ji Young Lim A chatbot that coches people to make more empathetic conversations @jyl1030
14 Aimor Brach Burdick Platform for assessing and monitoring the psychological wellbeing of a body of students based on conversations with an AI therapist https://aimor-git-staging-aimor.vercel.app/admin https://twitter.com/__brach__
15 Structured TA bot Generation Wenxi Generate structured tutorial chatbot based on video transcript and potentially videos https://github.com/wenxichen/video2ta

@ -0,0 +1,38 @@
from ai_acceleerated_learning.Vocal import Vocal
vocal = Vocal()
def test_pass():
assert (
vocal.generate_video(
"I love to play basketball, and I am a very good player.",
"basketball",
)
== "Successfully generated a YouTube video for your prompt: I"
" love to play basketball, and I am a very good player."
)
def test_invalid_sports():
assert (
vocal.generate_video(
"I just ate some delicious tacos", "tacos"
)
== "Invalid sports entered!! Please enter a valid sport."
)
def test_invalid_prompt():
assert (
vocal.generate_video(987, "basketball")
== "Invalid prompt entered!! Please enter a valid prompt."
)
def test_not_string():
assert (
vocal.generate_video(789, 234)
== "Invalid prompt and sports entered!! Please enter valid"
" prompt and sport."
)

@ -0,0 +1,86 @@
# test_presentation_assistant.py
import pytest
from presentation_assistant import (
PresentationAssistant,
SlideNotFoundError,
)
@pytest.fixture
def assistant():
slides = [
"Welcome to our presentation!",
"Here is the agenda for today.",
"Let's dive into the first topic.",
"Thank you for attending.",
]
return PresentationAssistant(slides)
def test_init():
slides = ["Slide 1", "Slide 2"]
pa = PresentationAssistant(slides)
assert pa.slides == slides
assert pa.current_slide == 0
def test_next_slide(assistant):
assistant.next_slide()
assert assistant.current_slide == 1
assistant.next_slide()
assert assistant.current_slide == 2
def test_previous_slide(assistant):
assistant.current_slide = 2
assistant.previous_slide()
assert assistant.current_slide == 1
assistant.previous_slide()
assert assistant.current_slide == 0
def test_next_slide_at_end(assistant):
assistant.current_slide = len(assistant.slides) - 1
with pytest.raises(SlideNotFoundError):
assistant.next_slide()
def test_previous_slide_at_start(assistant):
with pytest.raises(SlideNotFoundError):
assistant.previous_slide()
def test_go_to_slide(assistant):
assistant.go_to_slide(2)
assert assistant.current_slide == 2
def test_go_to_slide_out_of_range(assistant):
with pytest.raises(SlideNotFoundError):
assistant.go_to_slide(len(assistant.slides))
def test_go_to_slide_negative(assistant):
with pytest.raises(SlideNotFoundError):
assistant.go_to_slide(-1)
def test_current_slide_content(assistant):
content = assistant.current_slide_content()
assert content == assistant.slides[0]
assistant.next_slide()
content = assistant.current_slide_content()
assert content == assistant.slides[1]
def test_show_slide(
assistant, capsys
): # capsys is a pytest fixture to capture stdout and stderr
assistant.show_slide()
captured = capsys.readouterr()
assert captured.out.strip() == assistant.slides[0]
assistant.next_slide()
assistant.show_slide()
captured = capsys.readouterr()
assert captured.out.strip() == assistant.slides[1]

@ -0,0 +1,26 @@
Project Name,Lightning Proposal ,Names of Teammates,Teammates' Contact Info,Discord Handle,Diagram,github
Beggar AI,Self-improving LLMs that we will use to get in-game gold from people in World of Warcraft,Alex Bauer / Hamudi Naana,alex@legionfarm.com,hollyflame_lf,Searching for an engineer who can create self-improving LLMs that we will use to get in-game gold from people in World of Warcraft,
ChatQ,Chat visualization screen aimed to facilitate a dialog and provide visual cues.,"Vlad, Daniel",dkh@cs.stanford.edu,"volkfox, redpowered",,
Ego,"Create 3D characters and prompt them to chat with one another, fully voiced, on any conversation topic","Vish, Peggy","v@ego.live, peggy@ego.live","sixtynine, pegasaurusrex",we need an unreal engine dev to help us :),
Bants,"Public group chats broadcasted to the world, with content created by the interaction between humans and generative agents",Eric Zhang,zhang.bozheng@u.nus.edu,zbz_lvlv,"React Native, Supabase",
Human voice,Leverage AI generated video to represent human voice and encourage authentic social activities. E.g. under represented opinions. Use AI agent to as an influencer and represent a vibe and attract like-minded people to create social tribe.,,Sunnychiuka@gmail.com,carocha_,Dev and anyone:) got a web app for text already and happy anyone who is interested in the topic to join https://dontbeevil.web.app/,
SEMA,Semantic search agent to research arxiv,Matthew Diakonov,matthew.ddy@gmail.com,matthew.ddy,,
OpenMind.bot,"OpenMind.bot streamlines social interactions between personalized bots, representing users, media, and influencers, ensuring meaningful exchanges. It eliminates misunderstandings by using context-aware conversations, followed by summaries or audio recaps of these interactions for efficient communication.",Xuejun(Sheldon) Xie,xuejun.tse@gmail.com,dreammagician,,
From galpha.ai to Video of financial chat,turn a text based QA financial bot from the startup's API at http://galpha.ai into video based QA multimodal bot that can look at real time market,Bill Sun,bill@galpha.ai,bill_sun,"AI Plot generation, AI long video cut tool, product design, front end coding, backend coding",
Feelboard,"Looking to create a chat interface which improves the input based on actual feelings of the user. Interface uses front cam to detect facial expressions and emotions, analyses text being written and formats the text based on the emotions (bold, red, font).",ishan ,marketishan@gmail.com,ishanp0314,,
AiPets,"Create your AiPet, with memory, thinking, reflection. Use gemini 1.5, HeyGen, Gemelo.ai, NextJs, Apple Vision Pro",Konrad,konradmgnat@gmail.com,,,
Dots,External memory for social interactions,Peter k,K11kirky@gmail.com,K11kirky,,
Context Cam,Real-time visual inference & agent actions based on real world context.,Conway Anderson,hello@conwayanderson.com,conway#0000,Related demo: https://twitter.com/ConwayAnderson/status/1756058632960237871,
Subtext,Chat that infers and visualizes message tone for accessibility ,Andrew Acomb,acombandrew@gmail.com,asdlsd,"High EQ product people who text a lot, or devs interested in the project. Text 4088285953 if interested ",https://github.com/AndrewAcomb/subtext
Highlight,Using Gemini to find highlight short clips from long videos,"Jing Xiong, Alex Fu",xiongjing100@gmail.com,milkteax777,,
Merse,"A new way of Storytelling — Democratising Comic Strip creation based on your personal life story, Text to Comic book!","Mark Rachapoom, Kumar Abhirup, Kinjal Nandy, Alex",hey@kumareth.com,,,
DateSmart,create dating simulator that reflects real world dating conversations.,Kai Hung Chang,kaihungc1993@gmail.com,kai kaihungc ,,
YourContact,create a software that help you manage your relationship and remember detail about other people. for example remember birthday to send them birthday congrats,Sam He,samhenan@gmail.com,supersam331,"UX to brainstore and find painpo this idea. FE eng. I""m a BE ",
Beyond,Unlocking cultural capital for the global workforce,Yun Huang,huangyun@sas.upenn.edu,huangyoon,Searching for an inquisitive developer with strong execution skills,
AutoCAD ,generate threejs code for an object given a video of it from multiple angles,Haden Wasserbaech ,hello@haden.io,,,
LogicMind,Addressing hallucinations using NS approaches,Sankeerth Rao,sankeerth1729@gmail.com,sankeerthrao,,
AI Reality TV,,Edgar Haond,,,,
Swarms,Orchestrate Agents to create swarms,"Kye, Nate",kye@apac.ai,eternalreclaimer,Searching for agent engineers,https://github.com/kyegomez/swarms
Simplychat,Chat interface for e-commerce website,Hao,Shenghaozhe@gmail.com,,,
Kindergarten,A place for Kids growing up in the age AI to learn & play with fellow AI agents that feel like good friends and encourage you to learn & get better,Ben,ben@holfeld.ai,benholfeld,Looking for multi-agent interadction engineers,https://twitter.com/benholfeld
Followup,personal networking assistant,Eleanor,eleanorqin@gmail.com,eleanor.q,,
1 Project Name Lightning Proposal Names of Teammates Teammates' Contact Info Discord Handle Diagram github
2 Beggar AI Self-improving LLMs that we will use to get in-game gold from people in World of Warcraft Alex Bauer / Hamudi Naana alex@legionfarm.com hollyflame_lf Searching for an engineer who can create self-improving LLMs that we will use to get in-game gold from people in World of Warcraft
3 ChatQ Chat visualization screen aimed to facilitate a dialog and provide visual cues. Vlad, Daniel dkh@cs.stanford.edu volkfox, redpowered
4 Ego Create 3D characters and prompt them to chat with one another, fully voiced, on any conversation topic Vish, Peggy v@ego.live, peggy@ego.live sixtynine, pegasaurusrex we need an unreal engine dev to help us :)
5 Bants Public group chats broadcasted to the world, with content created by the interaction between humans and generative agents Eric Zhang zhang.bozheng@u.nus.edu zbz_lvlv React Native, Supabase
6 Human voice Leverage AI generated video to represent human voice and encourage authentic social activities. E.g. under represented opinions. Use AI agent to as an influencer and represent a vibe and attract like-minded people to create social tribe. Sunnychiuka@gmail.com carocha_ Dev and anyone:) got a web app for text already and happy anyone who is interested in the topic to join https://dontbeevil.web.app/
7 SEMA Semantic search agent to research arxiv Matthew Diakonov matthew.ddy@gmail.com matthew.ddy
8 OpenMind.bot OpenMind.bot streamlines social interactions between personalized bots, representing users, media, and influencers, ensuring meaningful exchanges. It eliminates misunderstandings by using context-aware conversations, followed by summaries or audio recaps of these interactions for efficient communication. Xuejun(Sheldon) Xie xuejun.tse@gmail.com dreammagician
9 From galpha.ai to Video of financial chat turn a text based QA financial bot from the startup's API at http://galpha.ai into video based QA multimodal bot that can look at real time market Bill Sun bill@galpha.ai bill_sun AI Plot generation, AI long video cut tool, product design, front end coding, backend coding
10 Feelboard Looking to create a chat interface which improves the input based on actual feelings of the user. Interface uses front cam to detect facial expressions and emotions, analyses text being written and formats the text based on the emotions (bold, red, font). ishan marketishan@gmail.com ishanp0314
11 AiPets Create your AiPet, with memory, thinking, reflection. Use gemini 1.5, HeyGen, Gemelo.ai, NextJs, Apple Vision Pro Konrad konradmgnat@gmail.com
12 Dots External memory for social interactions Peter k K11kirky@gmail.com K11kirky
13 Context Cam Real-time visual inference & agent actions based on real world context. Conway Anderson hello@conwayanderson.com conway#0000 Related demo: https://twitter.com/ConwayAnderson/status/1756058632960237871
14 Subtext Chat that infers and visualizes message tone for accessibility Andrew Acomb acombandrew@gmail.com asdlsd High EQ product people who text a lot, or devs interested in the project. Text 4088285953 if interested https://github.com/AndrewAcomb/subtext
15 Highlight Using Gemini to find highlight short clips from long videos Jing Xiong, Alex Fu xiongjing100@gmail.com milkteax777
16 Merse A new way of Storytelling — Democratising Comic Strip creation based on your personal life story, Text to Comic book! Mark Rachapoom, Kumar Abhirup, Kinjal Nandy, Alex hey@kumareth.com
17 DateSmart create dating simulator that reflects real world dating conversations. Kai Hung Chang kaihungc1993@gmail.com kai kaihungc
18 YourContact create a software that help you manage your relationship and remember detail about other people. for example remember birthday to send them birthday congrats Sam He samhenan@gmail.com supersam331 UX to brainstore and find painpo this idea. FE eng. I"m a BE
19 Beyond Unlocking cultural capital for the global workforce Yun Huang huangyun@sas.upenn.edu huangyoon Searching for an inquisitive developer with strong execution skills
20 AutoCAD generate threejs code for an object given a video of it from multiple angles Haden Wasserbaech hello@haden.io
21 LogicMind Addressing hallucinations using NS approaches Sankeerth Rao sankeerth1729@gmail.com sankeerthrao
22 AI Reality TV Edgar Haond
23 Swarms Orchestrate Agents to create swarms Kye, Nate kye@apac.ai eternalreclaimer Searching for agent engineers https://github.com/kyegomez/swarms
24 Simplychat Chat interface for e-commerce website Hao Shenghaozhe@gmail.com
25 Kindergarten A place for Kids growing up in the age AI to learn & play with fellow AI agents that feel like good friends and encourage you to learn & get better Ben ben@holfeld.ai benholfeld Looking for multi-agent interadction engineers https://twitter.com/benholfeld
26 Followup personal networking assistant Eleanor eleanorqin@gmail.com eleanor.q

@ -1,7 +1,7 @@
import concurrent
import csv
import os
from swarms import Gemini, Agent, SwarmNetwork, ConcurrentWorkflow
from swarms import Gemini, Agent
from swarms.memory import ChromaDB
from dotenv import load_dotenv
from swarms.utils.parse_code import extract_code_from_markdown
@ -17,24 +17,11 @@ gemini = Gemini(
gemini_api_key=os.getenv("GEMINI_API_KEY"),
)
# SwarmNetwork
swarm_network = SwarmNetwork(
logging_enabled=True,
)
# ConcurrentWorkflow
workflow = ConcurrentWorkflow(
task_pool=None,
max_workers=10,
)
# memory
memory = ChromaDB(output_dir="swarm_hackathon")
def execute_concurrently(callable_functions, max_workers=5):
def execute_concurrently(callable_functions: callable, max_workers=5):
"""
Executes callable functions concurrently using multithreading.
@ -71,23 +58,6 @@ def execute_concurrently(callable_functions, max_workers=5):
return results
# # For each row in the dataframe, create an agent and add it to the swarm network
# for index, row in df.iterrows():
# agent_name = row["Project Name"] + "agent"
# system_prompt = row["Lightning Proposal"]
# agent = Agent(
# llm=gemini,
# max_loops="auto",
# stopping_token="<DONE>",
# system_prompt=system_prompt,
# agent_name=agent_name,
# long_term_memory=ChromaDB(output_dir="swarm_hackathon"),
# )
# swarm_network.add_agent(agent)
# out = swarm_network.list_agents()
# Adjusting the function to extract specific column values
def extract_and_create_agents(
csv_file_path: str, target_columns: list

@ -0,0 +1,89 @@
from vllm import LLM
from swarms import AbstractLLM, Agent, ChromaDB
# Making an instance of the VLLM class
class vLLMLM(AbstractLLM):
"""
This class represents a variant of the Language Model (LLM) called vLLMLM.
It extends the AbstractLLM class and provides additional functionality.
Args:
model_name (str): The name of the LLM model to use. Defaults to "acebook/opt-13b".
tensor_parallel_size (int): The size of the tensor parallelism. Defaults to 4.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
model_name (str): The name of the LLM model.
tensor_parallel_size (int): The size of the tensor parallelism.
llm (LLM): An instance of the LLM class.
Methods:
run(task: str, *args, **kwargs): Runs the LLM model to generate output for the given task.
"""
def __init__(
self,
model_name: str = "acebook/opt-13b",
tensor_parallel_size: int = 4,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.tensor_parallel_size = tensor_parallel_size
self.llm = LLM(
model_name=self.model_name,
tensor_parallel_size=self.tensor_parallel_size,
)
def run(self, task: str, *args, **kwargs):
"""
Runs the LLM model to generate output for the given task.
Args:
task (str): The task for which to generate output.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
str: The generated output for the given task.
"""
return self.llm.generate(task)
# Initializing the agent with the vLLMLM instance and other parameters
model = vLLMLM(
"facebook/opt-13b",
tensor_parallel_size=4,
)
# Defining the task
task = "What are the symptoms of COVID-19?"
# Running the agent with the specified task
out = model.run(task)
# Integrate Agent
agent = Agent(
agent_name="Doctor agent",
agent_description=(
"This agent provides information about COVID-19 symptoms."
),
llm=model,
max_loops="auto",
autosave=True,
verbose=True,
long_term_memory=ChromaDB(
metric="cosine",
n_results=3,
output_dir="results",
docs_folder="docs",
),
stopping_condition="finish",
)

@ -0,0 +1,29 @@
from swarms import Agent
from swarms.models.base_llm import AbstractLLM
class ExampleLLM(AbstractLLM):
def __init__():
pass
def run(self, task: str, *args, **kwargs):
pass
## Initialize the workflow
agent = Agent(
llm=ExampleLLM(),
max_loops="auto",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
interactive=True,
)
# Run the workflow on a task
agent(
"Generate a transcript for a youtube video on what swarms are!"
" Output a <DONE> token when done."
)

@ -0,0 +1,18 @@
import os
from swarms import OpenAIChat, Agent
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Create a chat instance
llm = OpenAIChat(
api_key=os.getenv("OPENAI_API_KEY"),
)
# Create an agent
agent = Agent(
agent_name="GPT-3",
llm=llm,
)

@ -5,8 +5,11 @@ llm = Anthropic()
# Agents
agent1 = Agent(
llm = llm,
system_prompt="You are the leader of the Progressive Party. What is your stance on healthcare?",
llm=llm,
system_prompt=(
"You are the leader of the Progressive Party. What is your"
" stance on healthcare?"
),
agent_name="Progressive Leader",
agent_description="Leader of the Progressive Party",
long_term_memory=ChromaDB(),

@ -5,7 +5,12 @@ from swarms.memory.chroma_db import ChromaDB
# Agents
agent1 = Agent(
llm=OpenAIChat(system_prompt="You are a Minecraft player. What's your favorite building style?"),
llm=OpenAIChat(
system_prompt=(
"You are a Minecraft player. What's your favorite"
" building style?"
)
),
agent_name="Steve",
agent_description="A Minecraft player agent",
long_term_memory=ChromaDB(),
@ -13,7 +18,12 @@ agent1 = Agent(
)
agent2 = Agent(
llm=OpenAIChat(system_prompt="You are a Minecraft builder. What's your most impressive creation?"),
llm=OpenAIChat(
system_prompt=(
"You are a Minecraft builder. What's your most impressive"
" creation?"
)
),
agent_name="Bob",
agent_description="A Minecraft builder agent",
long_term_memory=ChromaDB(),
@ -21,7 +31,12 @@ agent2 = Agent(
)
agent3 = Agent(
llm=OpenAIChat(system_prompt="You are a Minecraft explorer. What's the most interesting place you've discovered?"),
llm=OpenAIChat(
system_prompt=(
"You are a Minecraft explorer. What's the most"
" interesting place you've discovered?"
)
),
agent_name="Alex",
agent_description="A Minecraft explorer agent",
long_term_memory=ChromaDB(),
@ -29,7 +44,12 @@ agent3 = Agent(
)
agent4 = Agent(
llm=OpenAIChat(system_prompt="You are a Minecraft adventurer. What's the most dangerous situation you've been in?"),
llm=OpenAIChat(
system_prompt=(
"You are a Minecraft adventurer. What's the most"
" dangerous situation you've been in?"
)
),
agent_name="Ender",
agent_description="A Minecraft adventurer agent",
long_term_memory=ChromaDB(),
@ -37,7 +57,12 @@ agent4 = Agent(
)
moderator = Agent(
llm=OpenAIChat(system_prompt="You are a Minecraft moderator. How do you handle conflicts between players?"),
llm=OpenAIChat(
system_prompt=(
"You are a Minecraft moderator. How do you handle"
" conflicts between players?"
)
),
agent_name="Admin",
agent_description="A Minecraft moderator agent",
long_term_memory=ChromaDB(),

@ -0,0 +1,61 @@
import os
from swarms import Gemini, Agent
from swarms.structs.multi_process_workflow import MultiProcessWorkflow
from dotenv import load_dotenv
# Load the environment variables
load_dotenv()
# Gemini API key
api_key = os.getenv("GEMINI_API_KEY")
# Initialize LLM
llm = Gemini(
model_name="gemini-pro",
api_key=api_key,
)
# Initialize the agents
finance_agent = Agent(
agent_name="Finance Agent",
llm=llm,
max_loops=1,
system_prompt="Finance",
)
marketing_agent = Agent(
agent_name="Marketing Agent",
llm=llm,
max_loops=1,
system_prompt="Marketing",
)
product_agent = Agent(
agent_name="Product Agent",
llm=llm,
max_loops=1,
system_prompt="Product",
)
other_agent = Agent(
agent_name="Other Agent",
llm=llm,
max_loops=1,
system_prompt="Other",
)
# Swarm
workflow = MultiProcessWorkflow(
agents=[
finance_agent,
marketing_agent,
product_agent,
other_agent,
],
max_workers=5,
autosave=True,
)
# Run the workflow
results = workflow.run("What")

@ -1,6 +1,4 @@
# Import necessary libraries
from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms import ToolAgent
# Load the pre-trained model and tokenizer

@ -0,0 +1,183 @@
import inspect
import os
import threading
from typing import Callable, List
from swarms.prompts.documentation import DOCUMENTATION_WRITER_SOP
from swarms import Agent, OpenAIChat
from swarms.utils.loguru_logger import logger
import concurrent
#########
from swarms.utils.file_processing import (
load_json,
sanitize_file_path,
zip_workspace,
create_file_in_folder,
zip_folders,
)
class PythonDocumentationSwarm:
"""
A class for automating the documentation process for Python classes.
Args:
agents (List[Agent]): A list of agents used for processing the documentation.
max_loops (int, optional): The maximum number of loops to run. Defaults to 4.
docs_module_name (str, optional): The name of the module where the documentation will be saved. Defaults to "swarms.structs".
docs_directory (str, optional): The directory where the documentation will be saved. Defaults to "docs/swarms/tokenizers".
Attributes:
agents (List[Agent]): A list of agents used for processing the documentation.
max_loops (int): The maximum number of loops to run.
docs_module_name (str): The name of the module where the documentation will be saved.
docs_directory (str): The directory where the documentation will be saved.
"""
def __init__(
self,
agents: List[Agent],
max_loops: int = 4,
docs_module_name: str = "swarms.utils",
docs_directory: str = "docs/swarms/utils",
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.agents = agents
self.max_loops = max_loops
self.docs_module_name = docs_module_name
self.docs_directory = docs_directory
# Initialize agent name logging
logger.info(
"Agents used for documentation:"
f" {', '.join([agent.name for agent in agents])}"
)
# Create the directory if it doesn't exist
dir_path = self.docs_directory
os.makedirs(dir_path, exist_ok=True)
logger.info(f"Documentation directory created at {dir_path}.")
def process_documentation(self, item):
"""
Process the documentation for a given class using OpenAI model and save it in a Markdown file.
Args:
item: The class or function for which the documentation needs to be processed.
"""
try:
doc = inspect.getdoc(item)
source = inspect.getsource(item)
is_class = inspect.isclass(item)
item_type = "Class Name" if is_class else "Name"
input_content = (
f"{item_type}:"
f" {item.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
for agent in self.agents:
processed_content = agent(
DOCUMENTATION_WRITER_SOP(
input_content, self.docs_module_name
)
)
doc_content = f"{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = self.docs_directory
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Markdown file
file_path = os.path.join(
dir_path, f"{item.__name__.lower()}.md"
)
with open(file_path, "w") as file:
file.write(doc_content)
logger.info(
f"Documentation generated for {item.__name__}."
)
except Exception as e:
logger.error(
f"Error processing documentation for {item.__name__}."
)
logger.error(e)
def run(self, python_items: List[Callable]):
"""
Run the documentation process for a list of Python items.
Args:
python_items (List[Callable]): A list of Python classes or functions for which the documentation needs to be generated.
"""
try:
threads = []
for item in python_items:
thread = threading.Thread(
target=self.process_documentation, args=(item,)
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
logger.info(
"Documentation generated in 'swarms.structs'"
" directory."
)
except Exception as e:
logger.error("Error running documentation process.")
logger.error(e)
def run_concurrently(self, python_items: List[Callable]):
try:
with concurrent.futures.ThreadPoolExecutor() as executor:
executor.map(self.process_documentation, python_items)
logger.info(
"Documentation generated in 'swarms.structs'"
" directory."
)
except Exception as e:
logger.error("Error running documentation process.")
logger.error(e)
# Example usage
# Initialize the agents
agent = Agent(
llm=OpenAIChat(max_tokens=3000),
agent_name="Documentation Agent",
system_prompt=(
"You write documentation for Python items functions and"
" classes, return in markdown"
),
max_loops=1,
)
# Initialize the documentation swarm
doc_swarm = PythonDocumentationSwarm(
agents=[agent],
max_loops=1,
docs_module_name="swarms.structs",
docs_directory="docs/swarms/tokenizers",
)
# Run the documentation process
doc_swarm.run(
[
load_json,
sanitize_file_path,
zip_workspace,
create_file_in_folder,
zip_folders,
]
)

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "4.2.8"
version = "4.2.9"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -49,7 +49,7 @@ tiktoken = "0.4.0"
ratelimit = "2.2.1"
loguru = "0.7.2"
huggingface-hub = "*"
pydantic = "1.10.12"
pydantic = "*"
tenacity = "8.2.2"
Pillow = "9.4.0"
chromadb = "*"
@ -59,6 +59,7 @@ rich = "13.5.2"
sqlalchemy = "*"
bitsandbytes = "*"
pgvector = "*"
cohere = "*"
sentence-transformers = "*"
peft = "*"
psutil = "*"

@ -1,6 +1,6 @@
torch==2.1.1
transformers
pandas==1.5.3
pandas==2.2.1
langchain==0.0.333
langchain-experimental==0.0.10
httpx==0.24.1
@ -33,7 +33,7 @@ numpy
openai==0.28.0
opencv-python==4.9.0.80
timm
cohere==4.24
cohere==4.53
torchvision==0.16.1
rich==13.5.2
mkdocs

@ -0,0 +1,21 @@
import os
import shutil
# Create a new directory for the log files if it doesn't exist
if not os.path.exists("artifacts"):
os.makedirs("artifacts")
# Walk through the current directory
for dirpath, dirnames, filenames in os.walk("."):
for filename in filenames:
# If the file is a log file
if filename.endswith(".log"):
# Construct the full file path
file_path = os.path.join(dirpath, filename)
# Move the log file to the 'artifacts' directory
shutil.move(file_path, "artifacts")
print(
"Moved all log files into the 'artifacts' directory and deleted"
" their original location."
)

@ -1,6 +1,7 @@
# from swarms.telemetry.main import Telemetry # noqa: E402, F403
from swarms.telemetry.bootup import bootup # noqa: E402, F403
import os
os.environ["WANDB_SILENT"] = "true"
bootup()

@ -13,7 +13,7 @@ from cachetools import TTLCache
from dotenv import load_dotenv
from openai import OpenAI
from PIL import Image
from pydantic import validator
from pydantic import field_validator
from termcolor import colored
load_dotenv()
@ -90,7 +90,8 @@ class Dalle3:
arbitrary_types_allowed = True
@validator("max_retries", "time_seconds")
@field_validator("max_retries", "time_seconds")
@classmethod
def must_be_positive(cls, value):
if value <= 0:
raise ValueError("Must be positive")

@ -3,7 +3,7 @@ from enum import Enum
from typing import Any, Dict, Union
from langchain.utils import get_from_dict_or_env
from pydantic import root_validator
from pydantic import model_validator
from swarms.tools.tool import BaseTool
@ -59,7 +59,8 @@ class ElevenLabsText2SpeechTool(BaseTool):
" Italian, French, Portuguese, and Hindi. "
)
@root_validator(pre=True)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
_ = get_from_dict_or_env(

@ -36,7 +36,6 @@ def get_gemini_api_key_env():
return str(key)
# Main class
class Gemini(BaseMultiModalModel):
"""Gemini model

@ -9,21 +9,21 @@ class TextModality(BaseModel):
class ImageModality(BaseModel):
url: str
alt_text: Optional[str]
alt_text: Optional[str] = None
class AudioModality(BaseModel):
url: str
transcript: Optional[str]
transcript: Optional[str] = None
class VideoModality(BaseModel):
url: str
transcript: Optional[str]
transcript: Optional[str] = None
class MultimodalData(BaseModel):
text: Optional[List[TextModality]]
images: Optional[List[ImageModality]]
audio: Optional[List[AudioModality]]
video: Optional[List[VideoModality]]
text: Optional[List[TextModality]] = None
images: Optional[List[ImageModality]] = None
audio: Optional[List[AudioModality]] = None
video: Optional[List[VideoModality]] = None

@ -19,7 +19,7 @@ from swarms.structs.message import Message
from swarms.structs.model_parallizer import ModelParallelizer
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
from swarms.structs.multi_process_workflow import (
MultiProcessingWorkflow,
MultiProcessWorkflow,
)
from swarms.structs.multi_threaded_workflow import (
MultiThreadedWorkflow,
@ -136,7 +136,7 @@ __all__ = [
"MajorityVoting",
"synchronized_queue",
"TaskQueueBase",
"MultiProcessingWorkflow",
"MultiProcessWorkflow",
"MultiThreadedWorkflow",
"AgentJob",
]

@ -28,6 +28,7 @@ from swarms.utils.data_to_text import data_to_text
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.token_count_tiktoken import limit_tokens_from_string
from swarms.utils.execution_sandbox import execute_code_in_sandbox
# Utils
@ -625,6 +626,20 @@ class Agent:
response
)
# Code interpreter
if self.code_interpreter:
response = extract_code_from_markdown(
response
)
# Execute the code in the sandbox
response = execute_code_in_sandbox(
response
)
response = task + response
response = self.llm(
response, *args, **kwargs
)
# Add the response to the history
history.append(response)
@ -641,7 +656,6 @@ class Agent:
evaluated_response = self.evaluator(
response
)
out = (
f"Response: {response}\nEvaluated"
f" Response: {evaluated_response}"
@ -674,10 +688,6 @@ class Agent:
if self.parser:
response = self.parser(response)
# If code interpreter is enabled then run the code
if self.code_interpreter:
self.run_code(response)
# If tools are enabled then execute the tools
if self.tools:
execute_tool_by_name(

@ -114,7 +114,6 @@ def majority_voting(answers: List[str]):
"""
counter = Counter(answers)
if counter:
answer = counter.most_common(1)[0][0]
else:
answer = "I don't know"
@ -166,7 +165,9 @@ class MajorityVoting:
# If autosave is enabled, save the conversation to a file
if self.autosave:
create_file(str(self.conversation), "majority_voting.json")
create_file(
str(self.conversation), "majority_voting.json"
)
# Log the agents
logger.info("Initializing majority voting system")
@ -205,9 +206,14 @@ class MajorityVoting:
# Add responses to conversation and log them
for agent, response in zip(self.agents, results):
response = response if isinstance(response, list) else [response]
response = (
response if isinstance(response, list) else [response]
)
self.conversation.add(agent.agent_name, response)
logger.info(f"[Agent][Name: {agent.agent_name}][Response: {response}]")
logger.info(
f"[Agent][Name: {agent.agent_name}][Response:"
f" {response}]"
)
# Perform majority voting on the conversation
responses = [
@ -218,10 +224,11 @@ class MajorityVoting:
# If an output parser is provided, parse the responses
if self.output_parser is not None:
majority_vote = self.output_parser(responses, *args, **kwargs)
majority_vote = self.output_parser(
responses, *args, **kwargs
)
else:
majority_vote = majority_voting(responses)
# Return the majority vote
return majority_vote

@ -1,17 +1,11 @@
import logging
from functools import wraps
from multiprocessing import Manager, Pool, cpu_count
from time import sleep
from typing import List
from typing import Sequence
from swarms.structs.agent import Agent
from swarms.structs.base_workflow import BaseWorkflow
from swarms.structs.task import Task
# Configure logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
from swarms.utils.loguru_logger import logger
# Retry on failure
@ -35,7 +29,7 @@ def retry_on_failure(max_retries: int = 3, delay: int = 5):
try:
return func(*args, **kwargs)
except Exception as error:
logging.error(
logger.error(
f"Error: {str(error)}, retrying in"
f" {delay} seconds..."
)
@ -47,7 +41,7 @@ def retry_on_failure(max_retries: int = 3, delay: int = 5):
return decorator
class MultiProcessingWorkflow(BaseWorkflow):
class MultiProcessWorkflow(BaseWorkflow):
"""
Initialize a MultiProcessWorkflow object.
@ -90,25 +84,32 @@ class MultiProcessingWorkflow(BaseWorkflow):
self,
max_workers: int = 5,
autosave: bool = True,
tasks: List[Task] = None,
agents: Sequence[Agent] = None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.max_workers = max_workers
self.autosave = autosave
self.tasks = sorted(
tasks or [], key=lambda task: task.priority, reverse=True
)
self.agents = agents
self.max_workers or cpu_count()
if tasks is None:
tasks = []
# Log
logger.info(
(
"Initialized MultiProcessWorkflow with"
f" {self.max_workers} max workers and autosave set to"
f" {self.autosave}"
),
)
self.tasks = tasks
# Log the agents
if self.agents is not None:
for agent in self.agents:
logger.info(f"Agent: {agent.agent_name}")
def execute_task(self, task: Task, *args, **kwargs):
def execute_task(self, task: str, *args, **kwargs):
"""Execute a task and handle exceptions.
Args:
@ -121,27 +122,23 @@ class MultiProcessingWorkflow(BaseWorkflow):
"""
try:
result = task.execute(*args, **kwargs)
logging.info(
f"Task {task} completed successfully with result"
f" {result}"
)
if self.agents is not None:
# Execute the task
for agent in self.agents:
result = agent.run(task, *args, **kwargs)
if self.autosave:
self._autosave_task_result(task, result)
return result
except Exception as e:
logging.error(
logger.error(
(
"An error occurred during execution of task"
f" {task}: {str(e)}"
),
exc_info=True,
)
return None
def run(self, task: Task, *args, **kwargs):
def run(self, task: str, *args, **kwargs):
"""Run the workflow.
Args:
@ -163,14 +160,14 @@ class MultiProcessingWorkflow(BaseWorkflow):
results_list = manager.list()
jobs = [
pool.apply_async(
self.execute_task,
(task,),
self.execute_task, # Pass the function, not the function call
args=(task,)
+ args, # Pass the arguments as a tuple
kwds=kwargs, # Pass the keyword arguments as a dictionary
callback=results_list.append,
timeout=task.timeout,
*args,
**kwargs,
)
for task in self.tasks
for agent in self.agent
]
# Wait for all jobs to complete
@ -181,17 +178,5 @@ class MultiProcessingWorkflow(BaseWorkflow):
return results
except Exception as error:
logging.error(f"Error in run: {error}")
logger.error(f"Error in run: {error}")
return None
def _autosave_task_result(self, task: Task, result):
"""Autosave task result. This should be adapted based on how autosaving is implemented.
Args:
task (Task): The task for which to autosave the result.
result (Any): The result of the task execution.
"""
# Note: This method might need to be adapted to ensure it's process-safe, depending on how autosaving is implemented.
logging.info(f"Autosaving result for task {task}: {result}")
# Actual autosave logic here

@ -12,7 +12,7 @@ class TaskInput(BaseModel):
description=(
"The input parameters for the task. Any value is allowed."
),
example='{\n"debug": false,\n"mode": "benchmarks"\n}',
examples=['{\n"debug": false,\n"mode": "benchmarks"\n}'],
)
@ -29,17 +29,19 @@ class Artifact(BaseModel):
artifact_id: str = Field(
...,
description="Id of the artifact",
example="b225e278-8b4c-4f99-a696-8facf19f0e56",
examples=["b225e278-8b4c-4f99-a696-8facf19f0e56"],
)
file_name: str = Field(
..., description="Filename of the artifact", example="main.py"
...,
description="Filename of the artifact",
examples=["main.py"],
)
relative_path: str | None = Field(
None,
description=(
"Relative path of the artifact in the agent's workspace"
),
example="python/code/",
examples=["python/code/"],
)
@ -50,7 +52,7 @@ class ArtifactUpload(BaseModel):
description=(
"Relative path of the artifact in the agent's workspace"
),
example="python/code/",
examples=["python/code/"],
)
@ -61,7 +63,7 @@ class StepInput(BaseModel):
"Input parameters for the task step. Any value is"
" allowed."
),
example='{\n"file_to_refactor": "models.py"\n}',
examples=['{\n"file_to_refactor": "models.py"\n}'],
)
@ -72,7 +74,7 @@ class StepOutput(BaseModel):
"Output that the task step has produced. Any value is"
" allowed."
),
example='{\n"tokens": 7894,\n"estimated_cost": "0,24$"\n}',
examples=['{\n"tokens": 7894,\n"estimated_cost": "0,24$"\n}'],
)
@ -80,9 +82,9 @@ class TaskRequestBody(BaseModel):
input: str | None = Field(
None,
description="Input prompt for the task.",
example=(
examples=[
"Write the words you receive to the file 'output.txt'."
),
],
)
additional_input: TaskInput | None = None
@ -91,14 +93,16 @@ class Task(TaskRequestBody):
task_id: str = Field(
...,
description="The ID of the task.",
example="50da533e-3904-4401-8a07-c49adf88b5eb",
examples=["50da533e-3904-4401-8a07-c49adf88b5eb"],
)
artifacts: list[Artifact] = Field(
[],
description="A list of artifacts that the task has produced.",
example=[
examples=[
[
"7a49f31c-f9c6-4346-a22c-e32bc5af4d8e",
"ab7b4091-2560-4692-a4fe-d831ea3ca7d6",
]
],
)
@ -107,7 +111,7 @@ class StepRequestBody(BaseModel):
input: str | None = Field(
None,
description="Input prompt for the step.",
example="Washington",
examples=["Washington"],
)
additional_input: StepInput | None = None
@ -122,17 +126,17 @@ class Step(StepRequestBody):
task_id: str = Field(
...,
description="The ID of the task this step belongs to.",
example="50da533e-3904-4401-8a07-c49adf88b5eb",
examples=["50da533e-3904-4401-8a07-c49adf88b5eb"],
)
step_id: str = Field(
...,
description="The ID of the task step.",
example="6bb1801a-fd80-45e8-899a-4dd723cc602e",
examples=["6bb1801a-fd80-45e8-899a-4dd723cc602e"],
)
name: str | None = Field(
None,
description="The name of the task step.",
example="Write to file",
examples=["Write to file"],
)
status: Status = Field(
..., description="The status of the task step."
@ -140,11 +144,11 @@ class Step(StepRequestBody):
output: str | None = Field(
None,
description="Output of the task step.",
example=(
examples=[
"I am going to use the write_to_file command and write"
" Washington to a file called output.txt"
" <write_to_file('output.txt', 'Washington')"
),
],
)
additional_output: StepOutput | None = None
artifacts: list[Artifact] = Field(

@ -1,7 +1,7 @@
import json
from typing import List, Optional
from pydantic import BaseModel, Field, Json, root_validator
from pydantic import model_validator, BaseModel, Field, Json
from swarms.structs.agent import Agent
from swarms.structs.task import Task
@ -20,9 +20,11 @@ class Team(BaseModel):
config (Optional[Json]): Configuration of the Team. Default is None.
"""
tasks: Optional[List[Task]] = Field(description="List of tasks")
tasks: Optional[List[Task]] = Field(
None, description="List of tasks"
)
agents: Optional[List[Agent]] = Field(
description="List of agents in this Team."
None, description="List of agents in this Team."
)
architecture = Field(
description="architecture that the Team will follow.",
@ -36,7 +38,8 @@ class Team(BaseModel):
description="Configuration of the Team.", default=None
)
@root_validator(pre=True)
@model_validator(mode="before")
@classmethod
def check_config(_cls, values):
if not values.get("config") and (
not values.get("agents") and not values.get("tasks")

@ -7,12 +7,12 @@ from swarms.tools.exec_tool import (
preprocess_json_input,
)
from swarms.tools.tool import BaseTool, StructuredTool, Tool, tool
from swarms.tools.tool_func_doc_scraper import scrape_tool_func_docs
from swarms.tools.tool_utils import (
execute_tools,
extract_tool_commands,
parse_and_execute_tools,
tool_find_by_name,
scrape_tool_func_docs,
)
__all__ = [

@ -1,46 +0,0 @@
import inspect
from typing import Callable
from termcolor import colored
def scrape_tool_func_docs(fn: Callable) -> str:
"""
Scrape the docstrings and parameters of a function decorated with `tool` and return a formatted string.
Args:
fn (Callable): The function to scrape.
Returns:
str: A string containing the function's name, documentation string, and a list of its parameters. Each parameter is represented as a line containing the parameter's name, default value, and annotation.
"""
try:
# If the function is a tool, get the original function
if hasattr(fn, "func"):
fn = fn.func
signature = inspect.signature(fn)
parameters = []
for name, param in signature.parameters.items():
parameters.append(
f"Name: {name}, Type:"
f" {param.default if param.default is not param.empty else 'None'},"
" Annotation:"
f" {param.annotation if param.annotation is not param.empty else 'None'}"
)
parameters_str = "\n".join(parameters)
return (
f"Function: {fn.__name__}\nDocstring:"
f" {inspect.getdoc(fn)}\nParameters:\n{parameters_str}"
)
except Exception as error:
print(
colored(
(
f"Error scraping tool function docs {error} try"
" optimizing your inputs with different"
" variables and attempt once more."
),
"red",
)
)

@ -4,7 +4,52 @@ from typing import Any, List
from swarms.prompts.tools import SCENARIOS
from swarms.tools.tool import BaseTool
from swarms.tools.tool_func_doc_scraper import scrape_tool_func_docs
import inspect
from typing import Callable
from termcolor import colored
def scrape_tool_func_docs(fn: Callable) -> str:
"""
Scrape the docstrings and parameters of a function decorated with `tool` and return a formatted string.
Args:
fn (Callable): The function to scrape.
Returns:
str: A string containing the function's name, documentation string, and a list of its parameters. Each parameter is represented as a line containing the parameter's name, default value, and annotation.
"""
try:
# If the function is a tool, get the original function
if hasattr(fn, "func"):
fn = fn.func
signature = inspect.signature(fn)
parameters = []
for name, param in signature.parameters.items():
parameters.append(
f"Name: {name}, Type:"
f" {param.default if param.default is not param.empty else 'None'},"
" Annotation:"
f" {param.annotation if param.annotation is not param.empty else 'None'}"
)
parameters_str = "\n".join(parameters)
return (
f"Function: {fn.__name__}\nDocstring:"
f" {inspect.getdoc(fn)}\nParameters:\n{parameters_str}"
)
except Exception as error:
print(
colored(
(
f"Error scraping tool function docs {error} try"
" optimizing your inputs with different"
" variables and attempt once more."
),
"red",
)
)
def tool_find_by_name(tool_name: str, tools: List[Any]):

@ -1,5 +1,7 @@
import asyncio
import logging
import os
import subprocess
import tempfile
import traceback
from typing import Tuple
@ -51,21 +53,62 @@ async def execute_code_async(code: str) -> Tuple[str, str]:
return out, error_message
def execute_code_sandbox(
code: str, async_on: bool = False
) -> Tuple[str, str]:
def execute_code_in_sandbox(code: str, language: str = "python"):
"""
Executes the given code in a sandbox environment.
Execute code in a specified language using subprocess and return the results or errors.
Args:
code (str): The code to be executed.
async_on (bool, optional): Indicates whether to execute the code asynchronously.
Defaults to False.
language (str): The programming language of the code. Currently supports 'python' only.
Returns:
Tuple[str, str]: A tuple containing the stdout and stderr outputs of the code execution.
dict: A dictionary containing either the result or any errors.
"""
if async_on:
return asyncio.run(execute_code_async(code))
result = {"output": None, "errors": None}
try:
if language == "python":
# Write the code to a temporary file
with tempfile.NamedTemporaryFile(
delete=False, suffix=".py", mode="w"
) as tmp:
tmp.write(code)
tmp_path = tmp.name
# Execute the code in a separate process
process = subprocess.run(
["python", tmp_path],
capture_output=True,
text=True,
timeout=10,
)
# Capture the output and errors
result["output"] = process.stdout
result["errors"] = process.stderr
else:
return execute_code_async(code)
# Placeholder for other languages; each would need its own implementation
raise NotImplementedError(
f"Execution for {language} not implemented."
)
except subprocess.TimeoutExpired:
result["errors"] = "Execution timed out."
except Exception as e:
result["errors"] = str(e)
finally:
# Ensure the temporary file is removed after execution
if "tmp_path" in locals():
os.remove(tmp_path)
return result
# # Example usage
# code_to_execute = """
# print("Hello, world!")
# """
# execution_result = execute_code(code_to_execute)
# print(json.dumps(execution_result, indent=4))

@ -1,6 +1,5 @@
import json
from pydantic import BaseModel
@ -33,3 +32,19 @@ def extract_json_from_str(response: str):
json_start = response.index("{")
json_end = response.rfind("}")
return json.loads(response[json_start : json_end + 1])
def base_model_to_json(base_model_instance: BaseModel) -> str:
"""
Convert a Pydantic base model instance to a JSON string.
Args:
base_model_instance (BaseModel): Instance of the Pydantic base model.
Returns:
str: JSON string representation of the base model instance.
"""
model_dict = base_model_instance.dict()
json_string = json.dumps(model_dict)
return json_string

Loading…
Cancel
Save