3. **Memory Issues**: Adjust HNSW parameters. Use persistent storage instead of in-memory. Implement proper cleanup procedures.
2. **Performance Issues**
- Monitor collection size and query complexity
4. **Embedding Errors**: Verify LiteLLM configuration. Check API keys and quotas. Handle rate limiting properly.
- Consider collection partitioning
- Optimize metadata queries
3. **Memory Issues**
- Adjust HNSW parameters
- Use persistent storage instead of in-memory
- Implement proper cleanup procedures
4. **Embedding Errors**
- Verify LiteLLM configuration
- Check API keys and quotas
- Handle rate limiting properly
This comprehensive guide provides everything needed to integrate ChromaDB with Swarms agents for powerful RAG applications using the unified LiteLLM embeddings approach.
This comprehensive guide provides everything needed to integrate ChromaDB with Swarms agents for powerful RAG applications using the unified LiteLLM embeddings approach.
@ -256,24 +256,12 @@ index = faiss.IndexIVFPQ(quantizer, dimension, nlist, m, nbits)
### Common Issues
### Common Issues
1. **Memory Errors**
1. **Memory Errors**: Reduce batch sizes or use product quantization. Consider using memory mapping for large indices. Monitor system memory usage.
- Reduce batch sizes or use product quantization
- Consider using memory mapping for large indices
2. **Slow Search Performance**: Check if IVF index is properly trained. Adjust nprobe parameter (higher = slower but more accurate). Consider using GPU acceleration.
- Monitor system memory usage
3. **Low Search Accuracy**: Increase nlist for IVF indices. Adjust efSearch for HNSW indices. Verify embedding normalization.
2. **Slow Search Performance**
- Check if IVF index is properly trained
4. **Index Loading Issues**: Check file permissions and disk space. Verify FAISS version compatibility. Ensure consistent data types (float32).
- Adjust nprobe parameter (higher = slower but more accurate)
- Consider using GPU acceleration
3. **Low Search Accuracy**
- Increase nlist for IVF indices
- Adjust efSearch for HNSW indices
- Verify embedding normalization
4. **Index Loading Issues**
- Check file permissions and disk space
- Verify FAISS version compatibility
- Ensure consistent data types (float32)
This comprehensive guide provides everything needed to integrate FAISS with Swarms agents for high-performance RAG applications using the unified LiteLLM embeddings approach.
This comprehensive guide provides everything needed to integrate FAISS with Swarms agents for high-performance RAG applications using the unified LiteLLM embeddings approach.
1. **Connection Errors**: Verify MILVUS_CLOUD_URI and MILVUS_CLOUD_TOKEN. Check network connectivity and firewall settings. Confirm cloud region accessibility.
- Verify MILVUS_CLOUD_URI and MILVUS_CLOUD_TOKEN
- Check network connectivity and firewall settings
2. **Performance Issues**: Monitor collection size and index type appropriateness. Check query complexity and filter expressions. Review auto-scaling configuration.
- Confirm cloud region accessibility
3. **Search Accuracy Issues**: Verify embedding model consistency. Check vector normalization if using cosine similarity. Review index parameters and search parameters.
2. **Performance Issues**
- Monitor collection size and index type appropriateness
4. **Quota and Billing Issues**: Monitor usage against plan limits. Review auto-scaling settings. Check billing alerts and notifications.
- Check query complexity and filter expressions
- Review auto-scaling configuration
3. **Search Accuracy Issues**
- Verify embedding model consistency
- Check vector normalization if using cosine similarity
- Review index parameters and search parameters
4. **Quota and Billing Issues**
- Monitor usage against plan limits
- Review auto-scaling settings
- Check billing alerts and notifications
This comprehensive guide provides everything needed to integrate Milvus Cloud with Swarms agents for enterprise-scale RAG applications using the unified LiteLLM embeddings approach.
This comprehensive guide provides everything needed to integrate Milvus Cloud with Swarms agents for enterprise-scale RAG applications using the unified LiteLLM embeddings approach.
1. **Database File Errors**: Check file permissions and disk space. Ensure directory exists before creating database. Handle concurrent access properly.
- Check file permissions and disk space
- Ensure directory exists before creating database
2. **Performance Issues**: Monitor database size relative to available memory. Consider index type optimization for dataset size. Batch operations for better throughput.
- Handle concurrent access properly
3. **Memory Usage**: Use appropriate index parameters for available RAM. Monitor system memory usage. Consider data compression techniques.
2. **Performance Issues**
- Monitor database size relative to available memory
4. **Data Corruption**: Implement proper backup and recovery procedures. Handle application crashes gracefully. Use database validation tools.
- Consider index type optimization for dataset size
- Batch operations for better throughput
3. **Memory Usage**
- Use appropriate index parameters for available RAM
- Monitor system memory usage
- Consider data compression techniques
4. **Data Corruption**
- Implement proper backup and recovery procedures
- Handle application crashes gracefully
- Use database validation tools
This comprehensive guide provides everything needed to integrate Milvus Lite with Swarms agents for local, lightweight RAG applications using the unified LiteLLM embeddings approach.
This comprehensive guide provides everything needed to integrate Milvus Lite with Swarms agents for local, lightweight RAG applications using the unified LiteLLM embeddings approach.
@ -346,25 +346,13 @@ class MonitoredPineconeMemory(PineconeMemory):
### Common Issues
### Common Issues
1. **API Quota Exceeded**
1. **API Quota Exceeded**: Monitor API usage and implement rate limiting. Consider upgrading plan or optimizing query patterns. Use batch operations to reduce API calls.
- Monitor API usage and implement rate limiting
- Consider upgrading plan or optimizing query patterns
2. **High Latency**: Check pod type and consider upgrading. Verify regional configuration. Optimize query complexity and top_k values.
- Use batch operations to reduce API calls
3. **Index Capacity Issues**: Monitor index fullness metrics. Consider scaling up pod type or adding shards. Implement data archival strategies.
2. **High Latency**
- Check pod type and consider upgrading
4. **Connection Errors**: Verify API key and environment configuration. Check network connectivity and firewall settings. Implement retry logic with exponential backoff.
- Verify regional configuration
- Optimize query complexity and top_k values
3. **Index Capacity Issues**
- Monitor index fullness metrics
- Consider scaling up pod type or adding shards
- Implement data archival strategies
4. **Connection Errors**
- Verify API key and environment configuration
- Check network connectivity and firewall settings