commit
4dafc0430b
@ -0,0 +1,629 @@
|
|||||||
|
import os
|
||||||
|
from fastapi import (
|
||||||
|
FastAPI,
|
||||||
|
HTTPException,
|
||||||
|
status,
|
||||||
|
Query,
|
||||||
|
BackgroundTasks,
|
||||||
|
)
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from typing import Optional, Dict, Any, List
|
||||||
|
from loguru import logger
|
||||||
|
import uvicorn
|
||||||
|
from datetime import datetime, timedelta
|
||||||
|
from uuid import UUID, uuid4
|
||||||
|
from enum import Enum
|
||||||
|
from pathlib import Path
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
from swarms import Agent
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# Configure Loguru
|
||||||
|
logger.add(
|
||||||
|
"logs/api_{time}.log",
|
||||||
|
rotation="500 MB",
|
||||||
|
retention="10 days",
|
||||||
|
level="INFO",
|
||||||
|
format="{time} {level} {message}",
|
||||||
|
backtrace=True,
|
||||||
|
diagnose=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class AgentStatus(str, Enum):
|
||||||
|
"""Enum for agent status."""
|
||||||
|
|
||||||
|
IDLE = "idle"
|
||||||
|
PROCESSING = "processing"
|
||||||
|
ERROR = "error"
|
||||||
|
MAINTENANCE = "maintenance"
|
||||||
|
|
||||||
|
|
||||||
|
class AgentConfig(BaseModel):
|
||||||
|
"""Configuration model for creating a new agent."""
|
||||||
|
|
||||||
|
agent_name: str = Field(..., description="Name of the agent")
|
||||||
|
model_name: str = Field(
|
||||||
|
...,
|
||||||
|
description="Name of the llm you want to use provided by litellm",
|
||||||
|
)
|
||||||
|
description: str = Field(
|
||||||
|
default="", description="Description of the agent's purpose"
|
||||||
|
)
|
||||||
|
system_prompt: str = Field(
|
||||||
|
..., description="System prompt for the agent"
|
||||||
|
)
|
||||||
|
model_name: str = Field(
|
||||||
|
default="gpt-4", description="Model name to use"
|
||||||
|
)
|
||||||
|
temperature: float = Field(
|
||||||
|
default=0.1,
|
||||||
|
ge=0.0,
|
||||||
|
le=2.0,
|
||||||
|
description="Temperature for the model",
|
||||||
|
)
|
||||||
|
max_loops: int = Field(
|
||||||
|
default=1, ge=1, description="Maximum number of loops"
|
||||||
|
)
|
||||||
|
autosave: bool = Field(
|
||||||
|
default=True, description="Enable autosave"
|
||||||
|
)
|
||||||
|
dashboard: bool = Field(
|
||||||
|
default=False, description="Enable dashboard"
|
||||||
|
)
|
||||||
|
verbose: bool = Field(
|
||||||
|
default=True, description="Enable verbose output"
|
||||||
|
)
|
||||||
|
dynamic_temperature_enabled: bool = Field(
|
||||||
|
default=True, description="Enable dynamic temperature"
|
||||||
|
)
|
||||||
|
user_name: str = Field(
|
||||||
|
default="default_user", description="Username for the agent"
|
||||||
|
)
|
||||||
|
retry_attempts: int = Field(
|
||||||
|
default=1, ge=1, description="Number of retry attempts"
|
||||||
|
)
|
||||||
|
context_length: int = Field(
|
||||||
|
default=200000, ge=1000, description="Context length"
|
||||||
|
)
|
||||||
|
output_type: str = Field(
|
||||||
|
default="string", description="Output type (string or json)"
|
||||||
|
)
|
||||||
|
streaming_on: bool = Field(
|
||||||
|
default=False, description="Enable streaming"
|
||||||
|
)
|
||||||
|
tags: List[str] = Field(
|
||||||
|
default_factory=list,
|
||||||
|
description="Tags for categorizing the agent",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class AgentUpdate(BaseModel):
|
||||||
|
"""Model for updating agent configuration."""
|
||||||
|
|
||||||
|
description: Optional[str] = None
|
||||||
|
system_prompt: Optional[str] = None
|
||||||
|
temperature: Optional[float] = None
|
||||||
|
max_loops: Optional[int] = None
|
||||||
|
tags: Optional[List[str]] = None
|
||||||
|
status: Optional[AgentStatus] = None
|
||||||
|
|
||||||
|
|
||||||
|
class AgentSummary(BaseModel):
|
||||||
|
"""Summary model for agent listing."""
|
||||||
|
|
||||||
|
agent_id: UUID
|
||||||
|
agent_name: str
|
||||||
|
description: str
|
||||||
|
created_at: datetime
|
||||||
|
last_used: datetime
|
||||||
|
total_completions: int
|
||||||
|
tags: List[str]
|
||||||
|
status: AgentStatus
|
||||||
|
|
||||||
|
|
||||||
|
class AgentMetrics(BaseModel):
|
||||||
|
"""Model for agent performance metrics."""
|
||||||
|
|
||||||
|
total_completions: int
|
||||||
|
average_response_time: float
|
||||||
|
error_rate: float
|
||||||
|
last_24h_completions: int
|
||||||
|
total_tokens_used: int
|
||||||
|
uptime_percentage: float
|
||||||
|
success_rate: float
|
||||||
|
peak_tokens_per_minute: int
|
||||||
|
|
||||||
|
|
||||||
|
class CompletionRequest(BaseModel):
|
||||||
|
"""Model for completion requests."""
|
||||||
|
|
||||||
|
prompt: str = Field(..., description="The prompt to process")
|
||||||
|
agent_id: UUID = Field(..., description="ID of the agent to use")
|
||||||
|
max_tokens: Optional[int] = Field(
|
||||||
|
None, description="Maximum tokens to generate"
|
||||||
|
)
|
||||||
|
temperature_override: Optional[float] = None
|
||||||
|
stream: bool = Field(
|
||||||
|
default=False, description="Enable streaming response"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class CompletionResponse(BaseModel):
|
||||||
|
"""Model for completion responses."""
|
||||||
|
|
||||||
|
agent_id: UUID
|
||||||
|
response: str
|
||||||
|
metadata: Dict[str, Any]
|
||||||
|
timestamp: datetime
|
||||||
|
processing_time: float
|
||||||
|
token_usage: Dict[str, int]
|
||||||
|
|
||||||
|
|
||||||
|
class AgentStore:
|
||||||
|
"""Enhanced store for managing agents."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.agents: Dict[UUID, Agent] = {}
|
||||||
|
self.agent_metadata: Dict[UUID, Dict[str, Any]] = {}
|
||||||
|
self.executor = ThreadPoolExecutor(max_workers=4)
|
||||||
|
self._ensure_directories()
|
||||||
|
|
||||||
|
def _ensure_directories(self):
|
||||||
|
"""Ensure required directories exist."""
|
||||||
|
Path("logs").mkdir(exist_ok=True)
|
||||||
|
Path("states").mkdir(exist_ok=True)
|
||||||
|
|
||||||
|
async def create_agent(self, config: AgentConfig) -> UUID:
|
||||||
|
"""Create a new agent with the given configuration."""
|
||||||
|
try:
|
||||||
|
|
||||||
|
agent = Agent(
|
||||||
|
agent_name=config.agent_name,
|
||||||
|
system_prompt=config.system_prompt,
|
||||||
|
model_name=config.model_name,
|
||||||
|
max_loops=config.max_loops,
|
||||||
|
autosave=config.autosave,
|
||||||
|
dashboard=config.dashboard,
|
||||||
|
verbose=config.verbose,
|
||||||
|
dynamic_temperature_enabled=config.dynamic_temperature_enabled,
|
||||||
|
saved_state_path=f"states/{config.agent_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
|
||||||
|
user_name=config.user_name,
|
||||||
|
retry_attempts=config.retry_attempts,
|
||||||
|
context_length=config.context_length,
|
||||||
|
return_step_meta=True,
|
||||||
|
output_type="str",
|
||||||
|
streaming_on=config.streaming_on,
|
||||||
|
)
|
||||||
|
|
||||||
|
agent_id = uuid4()
|
||||||
|
self.agents[agent_id] = agent
|
||||||
|
self.agent_metadata[agent_id] = {
|
||||||
|
"description": config.description,
|
||||||
|
"created_at": datetime.utcnow(),
|
||||||
|
"last_used": datetime.utcnow(),
|
||||||
|
"total_completions": 0,
|
||||||
|
"tags": config.tags,
|
||||||
|
"total_tokens": 0,
|
||||||
|
"error_count": 0,
|
||||||
|
"response_times": [],
|
||||||
|
"status": AgentStatus.IDLE,
|
||||||
|
"start_time": datetime.utcnow(),
|
||||||
|
"downtime": timedelta(),
|
||||||
|
"successful_completions": 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
logger.info(f"Created agent with ID: {agent_id}")
|
||||||
|
return agent_id
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error creating agent: {str(e)}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||||
|
detail=f"Failed to create agent: {str(e)}",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def get_agent(self, agent_id: UUID) -> Agent:
|
||||||
|
"""Retrieve an agent by ID."""
|
||||||
|
agent = self.agents.get(agent_id)
|
||||||
|
if not agent:
|
||||||
|
logger.error(f"Agent not found: {agent_id}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_404_NOT_FOUND,
|
||||||
|
detail=f"Agent {agent_id} not found",
|
||||||
|
)
|
||||||
|
return agent
|
||||||
|
|
||||||
|
async def update_agent(
|
||||||
|
self, agent_id: UUID, update: AgentUpdate
|
||||||
|
) -> None:
|
||||||
|
"""Update agent configuration."""
|
||||||
|
agent = await self.get_agent(agent_id)
|
||||||
|
metadata = self.agent_metadata[agent_id]
|
||||||
|
|
||||||
|
if update.system_prompt:
|
||||||
|
agent.system_prompt = update.system_prompt
|
||||||
|
if update.temperature is not None:
|
||||||
|
agent.llm.temperature = update.temperature
|
||||||
|
if update.max_loops is not None:
|
||||||
|
agent.max_loops = update.max_loops
|
||||||
|
if update.tags is not None:
|
||||||
|
metadata["tags"] = update.tags
|
||||||
|
if update.description is not None:
|
||||||
|
metadata["description"] = update.description
|
||||||
|
if update.status is not None:
|
||||||
|
metadata["status"] = update.status
|
||||||
|
if update.status == AgentStatus.MAINTENANCE:
|
||||||
|
metadata["downtime"] += (
|
||||||
|
datetime.utcnow() - metadata["last_used"]
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.info(f"Updated agent {agent_id}")
|
||||||
|
|
||||||
|
async def list_agents(
|
||||||
|
self,
|
||||||
|
tags: Optional[List[str]] = None,
|
||||||
|
status: Optional[AgentStatus] = None,
|
||||||
|
) -> List[AgentSummary]:
|
||||||
|
"""List all agents, optionally filtered by tags and status."""
|
||||||
|
summaries = []
|
||||||
|
for agent_id, agent in self.agents.items():
|
||||||
|
metadata = self.agent_metadata[agent_id]
|
||||||
|
|
||||||
|
# Apply filters
|
||||||
|
if tags and not any(
|
||||||
|
tag in metadata["tags"] for tag in tags
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
if status and metadata["status"] != status:
|
||||||
|
continue
|
||||||
|
|
||||||
|
summaries.append(
|
||||||
|
AgentSummary(
|
||||||
|
agent_id=agent_id,
|
||||||
|
agent_name=agent.agent_name,
|
||||||
|
description=metadata["description"],
|
||||||
|
created_at=metadata["created_at"],
|
||||||
|
last_used=metadata["last_used"],
|
||||||
|
total_completions=metadata["total_completions"],
|
||||||
|
tags=metadata["tags"],
|
||||||
|
status=metadata["status"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
return summaries
|
||||||
|
|
||||||
|
async def get_agent_metrics(self, agent_id: UUID) -> AgentMetrics:
|
||||||
|
"""Get performance metrics for an agent."""
|
||||||
|
metadata = self.agent_metadata[agent_id]
|
||||||
|
response_times = metadata["response_times"]
|
||||||
|
|
||||||
|
# Calculate metrics
|
||||||
|
total_time = datetime.utcnow() - metadata["start_time"]
|
||||||
|
uptime = total_time - metadata["downtime"]
|
||||||
|
uptime_percentage = (
|
||||||
|
uptime.total_seconds() / total_time.total_seconds()
|
||||||
|
) * 100
|
||||||
|
|
||||||
|
success_rate = (
|
||||||
|
metadata["successful_completions"]
|
||||||
|
/ metadata["total_completions"]
|
||||||
|
* 100
|
||||||
|
if metadata["total_completions"] > 0
|
||||||
|
else 0
|
||||||
|
)
|
||||||
|
|
||||||
|
return AgentMetrics(
|
||||||
|
total_completions=metadata["total_completions"],
|
||||||
|
average_response_time=(
|
||||||
|
sum(response_times) / len(response_times)
|
||||||
|
if response_times
|
||||||
|
else 0
|
||||||
|
),
|
||||||
|
error_rate=(
|
||||||
|
metadata["error_count"]
|
||||||
|
/ metadata["total_completions"]
|
||||||
|
if metadata["total_completions"] > 0
|
||||||
|
else 0
|
||||||
|
),
|
||||||
|
last_24h_completions=sum(
|
||||||
|
1
|
||||||
|
for t in response_times
|
||||||
|
if (datetime.utcnow() - t).days < 1
|
||||||
|
),
|
||||||
|
total_tokens_used=metadata["total_tokens"],
|
||||||
|
uptime_percentage=uptime_percentage,
|
||||||
|
success_rate=success_rate,
|
||||||
|
peak_tokens_per_minute=max(
|
||||||
|
metadata.get("tokens_per_minute", [0])
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
async def clone_agent(
|
||||||
|
self, agent_id: UUID, new_name: str
|
||||||
|
) -> UUID:
|
||||||
|
"""Clone an existing agent with a new name."""
|
||||||
|
original_agent = await self.get_agent(agent_id)
|
||||||
|
original_metadata = self.agent_metadata[agent_id]
|
||||||
|
|
||||||
|
config = AgentConfig(
|
||||||
|
agent_name=new_name,
|
||||||
|
description=f"Clone of {original_agent.agent_name}",
|
||||||
|
system_prompt=original_agent.system_prompt,
|
||||||
|
model_name=original_agent.llm.model_name,
|
||||||
|
temperature=original_agent.llm.temperature,
|
||||||
|
max_loops=original_agent.max_loops,
|
||||||
|
tags=original_metadata["tags"],
|
||||||
|
)
|
||||||
|
|
||||||
|
return await self.create_agent(config)
|
||||||
|
|
||||||
|
async def delete_agent(self, agent_id: UUID) -> None:
|
||||||
|
"""Delete an agent."""
|
||||||
|
if agent_id not in self.agents:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_404_NOT_FOUND,
|
||||||
|
detail=f"Agent {agent_id} not found",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Clean up any resources
|
||||||
|
agent = self.agents[agent_id]
|
||||||
|
if agent.autosave and os.path.exists(agent.saved_state_path):
|
||||||
|
os.remove(agent.saved_state_path)
|
||||||
|
|
||||||
|
del self.agents[agent_id]
|
||||||
|
del self.agent_metadata[agent_id]
|
||||||
|
logger.info(f"Deleted agent {agent_id}")
|
||||||
|
|
||||||
|
async def process_completion(
|
||||||
|
self,
|
||||||
|
agent: Agent,
|
||||||
|
prompt: str,
|
||||||
|
agent_id: UUID,
|
||||||
|
max_tokens: Optional[int] = None,
|
||||||
|
temperature_override: Optional[float] = None,
|
||||||
|
) -> CompletionResponse:
|
||||||
|
"""Process a completion request using the specified agent."""
|
||||||
|
start_time = datetime.utcnow()
|
||||||
|
metadata = self.agent_metadata[agent_id]
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Update agent status
|
||||||
|
metadata["status"] = AgentStatus.PROCESSING
|
||||||
|
metadata["last_used"] = start_time
|
||||||
|
|
||||||
|
# Apply temporary overrides if specified
|
||||||
|
original_temp = agent.llm.temperature
|
||||||
|
if temperature_override is not None:
|
||||||
|
agent.llm.temperature = temperature_override
|
||||||
|
|
||||||
|
# Process the completion
|
||||||
|
response = agent.run(prompt)
|
||||||
|
|
||||||
|
# Reset overrides
|
||||||
|
if temperature_override is not None:
|
||||||
|
agent.llm.temperature = original_temp
|
||||||
|
|
||||||
|
# Update metrics
|
||||||
|
processing_time = (
|
||||||
|
datetime.utcnow() - start_time
|
||||||
|
).total_seconds()
|
||||||
|
metadata["response_times"].append(processing_time)
|
||||||
|
metadata["total_completions"] += 1
|
||||||
|
metadata["successful_completions"] += 1
|
||||||
|
|
||||||
|
# Estimate token usage (this is a rough estimate)
|
||||||
|
prompt_tokens = len(prompt.split()) * 1.3
|
||||||
|
completion_tokens = len(response.split()) * 1.3
|
||||||
|
total_tokens = int(prompt_tokens + completion_tokens)
|
||||||
|
metadata["total_tokens"] += total_tokens
|
||||||
|
|
||||||
|
# Update tokens per minute tracking
|
||||||
|
current_minute = datetime.utcnow().replace(
|
||||||
|
second=0, microsecond=0
|
||||||
|
)
|
||||||
|
if "tokens_per_minute" not in metadata:
|
||||||
|
metadata["tokens_per_minute"] = {}
|
||||||
|
metadata["tokens_per_minute"][current_minute] = (
|
||||||
|
metadata["tokens_per_minute"].get(current_minute, 0)
|
||||||
|
+ total_tokens
|
||||||
|
)
|
||||||
|
|
||||||
|
return CompletionResponse(
|
||||||
|
agent_id=agent_id,
|
||||||
|
response=response,
|
||||||
|
metadata={
|
||||||
|
"agent_name": agent.agent_name,
|
||||||
|
"model_name": agent.llm.model_name,
|
||||||
|
"temperature": agent.llm.temperature,
|
||||||
|
},
|
||||||
|
timestamp=datetime.utcnow(),
|
||||||
|
processing_time=processing_time,
|
||||||
|
token_usage={
|
||||||
|
"prompt_tokens": int(prompt_tokens),
|
||||||
|
"completion_tokens": int(completion_tokens),
|
||||||
|
"total_tokens": total_tokens,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
metadata["error_count"] += 1
|
||||||
|
metadata["status"] = AgentStatus.ERROR
|
||||||
|
logger.error(
|
||||||
|
f"Error in completion processing: {str(e)}\n{traceback.format_exc()}"
|
||||||
|
)
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||||
|
detail=f"Error processing completion: {str(e)}",
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
metadata["status"] = AgentStatus.IDLE
|
||||||
|
|
||||||
|
|
||||||
|
class SwarmsAPI:
|
||||||
|
"""Enhanced API class for Swarms agent integration."""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.app = FastAPI(
|
||||||
|
title="Swarms Agent API",
|
||||||
|
description="Production-grade API for Swarms agent interaction",
|
||||||
|
version="1.0.0",
|
||||||
|
docs_url="/v1/docs",
|
||||||
|
redoc_url="/v1/redoc",
|
||||||
|
)
|
||||||
|
self.store = AgentStore()
|
||||||
|
# Configure CORS
|
||||||
|
self.app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=[
|
||||||
|
"*"
|
||||||
|
], # Configure appropriately for production
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
self._setup_routes()
|
||||||
|
|
||||||
|
def _setup_routes(self):
|
||||||
|
"""Set up API routes."""
|
||||||
|
|
||||||
|
@self.app.post("/v1/agent", response_model=Dict[str, UUID])
|
||||||
|
async def create_agent(config: AgentConfig):
|
||||||
|
"""Create a new agent with the specified configuration."""
|
||||||
|
agent_id = await self.store.create_agent(config)
|
||||||
|
return {"agent_id": agent_id}
|
||||||
|
|
||||||
|
@self.app.get("/v1/agents", response_model=List[AgentSummary])
|
||||||
|
async def list_agents(
|
||||||
|
tags: Optional[List[str]] = Query(None),
|
||||||
|
status: Optional[AgentStatus] = None,
|
||||||
|
):
|
||||||
|
"""List all agents, optionally filtered by tags and status."""
|
||||||
|
return await self.store.list_agents(tags, status)
|
||||||
|
|
||||||
|
@self.app.patch(
|
||||||
|
"/v1/agent/{agent_id}", response_model=Dict[str, str]
|
||||||
|
)
|
||||||
|
async def update_agent(agent_id: UUID, update: AgentUpdate):
|
||||||
|
"""Update an existing agent's configuration."""
|
||||||
|
await self.store.update_agent(agent_id, update)
|
||||||
|
return {"status": "updated"}
|
||||||
|
|
||||||
|
@self.app.get(
|
||||||
|
"/v1/agent/{agent_id}/metrics",
|
||||||
|
response_model=AgentMetrics,
|
||||||
|
)
|
||||||
|
async def get_agent_metrics(agent_id: UUID):
|
||||||
|
"""Get performance metrics for a specific agent."""
|
||||||
|
return await self.store.get_agent_metrics(agent_id)
|
||||||
|
|
||||||
|
@self.app.post(
|
||||||
|
"/v1/agent/{agent_id}/clone",
|
||||||
|
response_model=Dict[str, UUID],
|
||||||
|
)
|
||||||
|
async def clone_agent(agent_id: UUID, new_name: str):
|
||||||
|
"""Clone an existing agent with a new name."""
|
||||||
|
new_id = await self.store.clone_agent(agent_id, new_name)
|
||||||
|
return {"agent_id": new_id}
|
||||||
|
|
||||||
|
@self.app.delete("/v1/agent/{agent_id}")
|
||||||
|
async def delete_agent(agent_id: UUID):
|
||||||
|
"""Delete an agent."""
|
||||||
|
await self.store.delete_agent(agent_id)
|
||||||
|
return {"status": "deleted"}
|
||||||
|
|
||||||
|
@self.app.post(
|
||||||
|
"/v1/agent/completions", response_model=CompletionResponse
|
||||||
|
)
|
||||||
|
async def create_completion(
|
||||||
|
request: CompletionRequest,
|
||||||
|
background_tasks: BackgroundTasks,
|
||||||
|
):
|
||||||
|
"""Process a completion request with the specified agent."""
|
||||||
|
try:
|
||||||
|
agent = await self.store.get_agent(request.agent_id)
|
||||||
|
|
||||||
|
# Process completion
|
||||||
|
response = await self.store.process_completion(
|
||||||
|
agent,
|
||||||
|
request.prompt,
|
||||||
|
request.agent_id,
|
||||||
|
request.max_tokens,
|
||||||
|
request.temperature_override,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Schedule background cleanup
|
||||||
|
background_tasks.add_task(
|
||||||
|
self._cleanup_old_metrics, request.agent_id
|
||||||
|
)
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing completion: {str(e)}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||||
|
detail=f"Error processing completion: {str(e)}",
|
||||||
|
)
|
||||||
|
|
||||||
|
@self.app.get("/v1/agent/{agent_id}/status")
|
||||||
|
async def get_agent_status(agent_id: UUID):
|
||||||
|
"""Get the current status of an agent."""
|
||||||
|
metadata = self.store.agent_metadata.get(agent_id)
|
||||||
|
if not metadata:
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=status.HTTP_404_NOT_FOUND,
|
||||||
|
detail=f"Agent {agent_id} not found",
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
"agent_id": agent_id,
|
||||||
|
"status": metadata["status"],
|
||||||
|
"last_used": metadata["last_used"],
|
||||||
|
"total_completions": metadata["total_completions"],
|
||||||
|
"error_count": metadata["error_count"],
|
||||||
|
}
|
||||||
|
|
||||||
|
async def _cleanup_old_metrics(self, agent_id: UUID):
|
||||||
|
"""Clean up old metrics data to prevent memory bloat."""
|
||||||
|
metadata = self.store.agent_metadata.get(agent_id)
|
||||||
|
if metadata:
|
||||||
|
# Keep only last 24 hours of response times
|
||||||
|
cutoff = datetime.utcnow() - timedelta(days=1)
|
||||||
|
metadata["response_times"] = [
|
||||||
|
t
|
||||||
|
for t in metadata["response_times"]
|
||||||
|
if isinstance(t, (int, float))
|
||||||
|
and t > cutoff.timestamp()
|
||||||
|
]
|
||||||
|
|
||||||
|
# Clean up old tokens per minute data
|
||||||
|
if "tokens_per_minute" in metadata:
|
||||||
|
metadata["tokens_per_minute"] = {
|
||||||
|
k: v
|
||||||
|
for k, v in metadata["tokens_per_minute"].items()
|
||||||
|
if k > cutoff
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def create_app() -> FastAPI:
|
||||||
|
"""Create and configure the FastAPI application."""
|
||||||
|
api = SwarmsAPI()
|
||||||
|
return api.app
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Configure uvicorn logging
|
||||||
|
logger.info("API Starting")
|
||||||
|
uvicorn.run(
|
||||||
|
"main:create_app",
|
||||||
|
host="0.0.0.0",
|
||||||
|
port=8000,
|
||||||
|
reload=True,
|
||||||
|
workers=4,
|
||||||
|
)
|
@ -0,0 +1,99 @@
|
|||||||
|
import requests
|
||||||
|
from loguru import logger
|
||||||
|
import time
|
||||||
|
|
||||||
|
# Configure loguru
|
||||||
|
logger.add(
|
||||||
|
"api_tests_{time}.log",
|
||||||
|
rotation="100 MB",
|
||||||
|
level="DEBUG",
|
||||||
|
format="{time} {level} {message}"
|
||||||
|
)
|
||||||
|
|
||||||
|
BASE_URL = "http://localhost:8000/v1"
|
||||||
|
|
||||||
|
def test_create_agent():
|
||||||
|
"""Test creating a new agent."""
|
||||||
|
logger.info("Testing agent creation")
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"agent_name": "Test Agent",
|
||||||
|
"system_prompt": "You are a helpful assistant",
|
||||||
|
"model_name": "gpt-4",
|
||||||
|
"description": "Test agent",
|
||||||
|
"tags": ["test"]
|
||||||
|
}
|
||||||
|
|
||||||
|
response = requests.post(f"{BASE_URL}/agent", json=payload)
|
||||||
|
logger.debug(f"Create response: {response.json()}")
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.success("Successfully created agent")
|
||||||
|
return response.json()["agent_id"]
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to create agent: {response.text}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def test_list_agents():
|
||||||
|
"""Test listing all agents."""
|
||||||
|
logger.info("Testing agent listing")
|
||||||
|
|
||||||
|
response = requests.get(f"{BASE_URL}/agents")
|
||||||
|
logger.debug(f"List response: {response.json()}")
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.success(f"Found {len(response.json())} agents")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to list agents: {response.text}")
|
||||||
|
|
||||||
|
def test_completion(agent_id):
|
||||||
|
"""Test running a completion."""
|
||||||
|
logger.info("Testing completion")
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"prompt": "What is the weather like today?",
|
||||||
|
"agent_id": agent_id
|
||||||
|
}
|
||||||
|
|
||||||
|
response = requests.post(f"{BASE_URL}/agent/completions", json=payload)
|
||||||
|
logger.debug(f"Completion response: {response.json()}")
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.success("Successfully got completion")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to get completion: {response.text}")
|
||||||
|
|
||||||
|
def test_delete_agent(agent_id):
|
||||||
|
"""Test deleting an agent."""
|
||||||
|
logger.info("Testing agent deletion")
|
||||||
|
|
||||||
|
response = requests.delete(f"{BASE_URL}/agent/{agent_id}")
|
||||||
|
logger.debug(f"Delete response: {response.json()}")
|
||||||
|
|
||||||
|
if response.status_code == 200:
|
||||||
|
logger.success("Successfully deleted agent")
|
||||||
|
else:
|
||||||
|
logger.error(f"Failed to delete agent: {response.text}")
|
||||||
|
|
||||||
|
def run_tests():
|
||||||
|
"""Run all tests in sequence."""
|
||||||
|
logger.info("Starting API tests")
|
||||||
|
|
||||||
|
# Create agent and get ID
|
||||||
|
agent_id = test_create_agent()
|
||||||
|
if not agent_id:
|
||||||
|
logger.error("Cannot continue tests without agent ID")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Wait a bit for agent to be ready
|
||||||
|
time.sleep(1)
|
||||||
|
|
||||||
|
# Run other tests
|
||||||
|
test_list_agents()
|
||||||
|
test_completion(agent_id)
|
||||||
|
test_delete_agent(agent_id)
|
||||||
|
|
||||||
|
logger.info("Tests completed")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
run_tests()
|
@ -1,105 +1,27 @@
|
|||||||
/* Root variables for primary colors */
|
/* * Further customization as needed */ */
|
||||||
:root {
|
|
||||||
--md-primary-bg-color: #0d0d0d; /* Black background */
|
|
||||||
--md-secondary-bg-color: #1a1a1a; /* Slightly lighter black */
|
|
||||||
--md-accent-color: #FF073A; /* Neon red */
|
|
||||||
--md-accent-color--hover: #FF2050; /* Bright neon red for hover */
|
|
||||||
--md-text-color: #ffffff; /* White text */
|
|
||||||
--md-code-bg-color: #121212; /* Darker background for code blocks */
|
|
||||||
--md-code-border-color: #FF073A; /* Neon red border for code blocks */
|
|
||||||
--md-link-color: var(--md-accent-color);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Apply background and text colors globally */
|
|
||||||
body {
|
|
||||||
background-color: var(--md-primary-bg-color);
|
|
||||||
color: var(--md-text-color);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Headings with neon glow */
|
|
||||||
h1, h2, h3, h4, h5, h6 {
|
|
||||||
color: var(--md-accent-color);
|
|
||||||
text-shadow: 0 0 5px var(--md-accent-color), 0 0 10px var(--md-accent-color);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Links with hover effects */
|
.md-typeset__table {
|
||||||
a {
|
min-width: 100%;
|
||||||
color: var(--md-link-color);
|
|
||||||
text-decoration: none;
|
|
||||||
}
|
|
||||||
a:hover {
|
|
||||||
color: var(--md-accent-color--hover);
|
|
||||||
text-shadow: 0 0 5px var(--md-accent-color--hover), 0 0 10px var(--md-accent-color--hover);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Sidebar styling */
|
|
||||||
.md-sidebar {
|
|
||||||
background-color: var(--md-secondary-bg-color);
|
|
||||||
border-right: 2px solid var(--md-accent-color);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Navigation links in sidebar */
|
.md-typeset table:not([class]) {
|
||||||
.md-sidebar .md-nav__link {
|
display: table;
|
||||||
color: var(--md-text-color);
|
|
||||||
}
|
|
||||||
.md-sidebar .md-nav__link:hover,
|
|
||||||
.md-sidebar .md-nav__link--active {
|
|
||||||
color: var(--md-accent-color);
|
|
||||||
background-color: var(--md-primary-bg-color);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Code blocks with neon red accents */
|
/* Dark mode
|
||||||
.md-typeset code {
|
[data-md-color-scheme="slate"] {
|
||||||
background-color: var(--md-code-bg-color);
|
--md-default-bg-color: black;
|
||||||
color: var(--md-text-color);
|
|
||||||
border: 1px solid var(--md-code-border-color);
|
|
||||||
border-radius: 4px;
|
|
||||||
padding: 2px 4px;
|
|
||||||
font-family: 'Fira Code', monospace;
|
|
||||||
text-shadow: 0 0 3px var(--md-code-border-color);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Tables */
|
.header__ellipsis {
|
||||||
.md-typeset__table {
|
color: black;
|
||||||
min-width: 100%;
|
|
||||||
border-collapse: collapse;
|
|
||||||
background-color: var(--md-secondary-bg-color);
|
|
||||||
color: var(--md-text-color);
|
|
||||||
}
|
|
||||||
.md-typeset__table th, .md-typeset__table td {
|
|
||||||
border: 1px solid var(--md-accent-color);
|
|
||||||
padding: 8px;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Buttons */
|
.md-copyright__highlight {
|
||||||
button {
|
color: black;
|
||||||
background-color: var(--md-accent-color);
|
|
||||||
color: var(--md-text-color);
|
|
||||||
border: none;
|
|
||||||
border-radius: 4px;
|
|
||||||
padding: 10px 15px;
|
|
||||||
cursor: pointer;
|
|
||||||
text-shadow: 0 0 5px var(--md-accent-color);
|
|
||||||
}
|
|
||||||
button:hover {
|
|
||||||
background-color: var(--md-accent-color--hover);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Additional styling for search bar */
|
|
||||||
.md-search__form {
|
|
||||||
background-color: var(--md-secondary-bg-color);
|
|
||||||
border: 1px solid var(--md-accent-color);
|
|
||||||
}
|
|
||||||
.md-search__input {
|
|
||||||
background-color: var(--md-primary-bg-color);
|
|
||||||
color: var(--md-text-color);
|
|
||||||
}
|
|
||||||
|
|
||||||
/* Further customization */
|
.md-header.md-header--shadow {
|
||||||
footer {
|
color: black;
|
||||||
background-color: var(--md-secondary-bg-color);
|
} */
|
||||||
color: var(--md-text-color);
|
|
||||||
text-align: center;
|
|
||||||
padding: 10px;
|
|
||||||
border-top: 2px solid var(--md-accent-color);
|
|
||||||
}
|
|
@ -0,0 +1,56 @@
|
|||||||
|
import os
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from swarm_models import OpenAIChat
|
||||||
|
|
||||||
|
from swarms import Agent
|
||||||
|
from swarms.prompts.finance_agent_sys_prompt import (
|
||||||
|
FINANCIAL_AGENT_SYS_PROMPT,
|
||||||
|
)
|
||||||
|
from new_features_examples.async_executor import HighSpeedExecutor
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# Get the OpenAI API key from the environment variable
|
||||||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
# Create an instance of the OpenAIChat class
|
||||||
|
model = OpenAIChat(
|
||||||
|
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initialize the agent
|
||||||
|
agent = Agent(
|
||||||
|
agent_name="Financial-Analysis-Agent",
|
||||||
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
||||||
|
llm=model,
|
||||||
|
max_loops=1,
|
||||||
|
# autosave=True,
|
||||||
|
# dashboard=False,
|
||||||
|
# verbose=True,
|
||||||
|
# dynamic_temperature_enabled=True,
|
||||||
|
# saved_state_path="finance_agent.json",
|
||||||
|
# user_name="swarms_corp",
|
||||||
|
# retry_attempts=1,
|
||||||
|
# context_length=200000,
|
||||||
|
# return_step_meta=True,
|
||||||
|
# output_type="json", # "json", "dict", "csv" OR "string" soon "yaml" and
|
||||||
|
# auto_generate_prompt=False, # Auto generate prompt for the agent based on name, description, and system prompt, task
|
||||||
|
# # artifacts_on=True,
|
||||||
|
# artifacts_output_path="roth_ira_report",
|
||||||
|
# artifacts_file_extension=".txt",
|
||||||
|
# max_tokens=8000,
|
||||||
|
# return_history=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def execute_agent(
|
||||||
|
task: str = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria. Create a report on this question.",
|
||||||
|
):
|
||||||
|
return agent.run(task)
|
||||||
|
|
||||||
|
|
||||||
|
executor = HighSpeedExecutor()
|
||||||
|
results = executor.run(execute_agent, 2)
|
||||||
|
|
||||||
|
print(results)
|
@ -0,0 +1,131 @@
|
|||||||
|
import asyncio
|
||||||
|
import multiprocessing as mp
|
||||||
|
import time
|
||||||
|
from functools import partial
|
||||||
|
from typing import Any, Dict, Union
|
||||||
|
|
||||||
|
|
||||||
|
class HighSpeedExecutor:
|
||||||
|
def __init__(self, num_processes: int = None):
|
||||||
|
"""
|
||||||
|
Initialize the executor with configurable number of processes.
|
||||||
|
If num_processes is None, it uses CPU count.
|
||||||
|
"""
|
||||||
|
self.num_processes = num_processes or mp.cpu_count()
|
||||||
|
|
||||||
|
async def _worker(
|
||||||
|
self,
|
||||||
|
queue: asyncio.Queue,
|
||||||
|
func: Any,
|
||||||
|
*args: Any,
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
"""Async worker that processes tasks from the queue"""
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
# Non-blocking get from queue
|
||||||
|
await queue.get()
|
||||||
|
await asyncio.get_event_loop().run_in_executor(
|
||||||
|
None, partial(func, *args, **kwargs)
|
||||||
|
)
|
||||||
|
queue.task_done()
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
break
|
||||||
|
|
||||||
|
async def _distribute_tasks(
|
||||||
|
self, num_tasks: int, queue: asyncio.Queue
|
||||||
|
):
|
||||||
|
"""Distribute tasks across the queue"""
|
||||||
|
for i in range(num_tasks):
|
||||||
|
await queue.put(i)
|
||||||
|
|
||||||
|
async def execute_batch(
|
||||||
|
self,
|
||||||
|
func: Any,
|
||||||
|
num_executions: int,
|
||||||
|
*args: Any,
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> Dict[str, Union[int, float]]:
|
||||||
|
"""
|
||||||
|
Execute the given function multiple times concurrently.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
func: The function to execute
|
||||||
|
num_executions: Number of times to execute the function
|
||||||
|
*args, **kwargs: Arguments to pass to the function
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A dictionary containing the number of executions, duration, and executions per second.
|
||||||
|
"""
|
||||||
|
queue = asyncio.Queue()
|
||||||
|
|
||||||
|
# Create worker tasks
|
||||||
|
workers = [
|
||||||
|
asyncio.create_task(
|
||||||
|
self._worker(queue, func, *args, **kwargs)
|
||||||
|
)
|
||||||
|
for _ in range(self.num_processes)
|
||||||
|
]
|
||||||
|
|
||||||
|
# Start timing
|
||||||
|
start_time = time.perf_counter()
|
||||||
|
|
||||||
|
# Distribute tasks
|
||||||
|
await self._distribute_tasks(num_executions, queue)
|
||||||
|
|
||||||
|
# Wait for all tasks to complete
|
||||||
|
await queue.join()
|
||||||
|
|
||||||
|
# Cancel workers
|
||||||
|
for worker in workers:
|
||||||
|
worker.cancel()
|
||||||
|
|
||||||
|
# Wait for all workers to finish
|
||||||
|
await asyncio.gather(*workers, return_exceptions=True)
|
||||||
|
|
||||||
|
end_time = time.perf_counter()
|
||||||
|
duration = end_time - start_time
|
||||||
|
|
||||||
|
return {
|
||||||
|
"executions": num_executions,
|
||||||
|
"duration": duration,
|
||||||
|
"executions_per_second": num_executions / duration,
|
||||||
|
}
|
||||||
|
|
||||||
|
def run(
|
||||||
|
self,
|
||||||
|
func: Any,
|
||||||
|
num_executions: int,
|
||||||
|
*args: Any,
|
||||||
|
**kwargs: Any,
|
||||||
|
):
|
||||||
|
return asyncio.run(
|
||||||
|
self.execute_batch(func, num_executions, *args, **kwargs)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# def example_function(x: int = 0) -> int:
|
||||||
|
# """Example function to execute"""
|
||||||
|
# return x * x
|
||||||
|
|
||||||
|
|
||||||
|
# async def main():
|
||||||
|
# # Create executor with number of CPU cores
|
||||||
|
# executor = HighSpeedExecutor()
|
||||||
|
|
||||||
|
# # Execute the function 1000 times
|
||||||
|
# result = await executor.execute_batch(
|
||||||
|
# example_function, num_executions=1000, x=42
|
||||||
|
# )
|
||||||
|
|
||||||
|
# print(
|
||||||
|
# f"Completed {result['executions']} executions in {result['duration']:.2f} seconds"
|
||||||
|
# )
|
||||||
|
# print(
|
||||||
|
# f"Rate: {result['executions_per_second']:.2f} executions/second"
|
||||||
|
# )
|
||||||
|
|
||||||
|
|
||||||
|
# if __name__ == "__main__":
|
||||||
|
# # Run the async main function
|
||||||
|
# asyncio.run(main())
|
@ -0,0 +1,308 @@
|
|||||||
|
import os
|
||||||
|
from swarms import Agent
|
||||||
|
from swarm_models import OpenAIChat
|
||||||
|
from web3 import Web3
|
||||||
|
from typing import Dict, Optional, Any
|
||||||
|
from datetime import datetime
|
||||||
|
import asyncio
|
||||||
|
from loguru import logger
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import csv
|
||||||
|
import requests
|
||||||
|
import time
|
||||||
|
|
||||||
|
BLOCKCHAIN_AGENT_PROMPT = """
|
||||||
|
You are an expert blockchain and cryptocurrency analyst with deep knowledge of Ethereum markets and DeFi ecosystems.
|
||||||
|
You have access to real-time ETH price data and transaction information.
|
||||||
|
|
||||||
|
For each transaction, analyze:
|
||||||
|
|
||||||
|
1. MARKET CONTEXT
|
||||||
|
- Current ETH price and what this transaction means in USD terms
|
||||||
|
- How this movement compares to typical market volumes
|
||||||
|
- Whether this could impact ETH price
|
||||||
|
|
||||||
|
2. BEHAVIORAL ANALYSIS
|
||||||
|
- Whether this appears to be institutional, whale, or protocol movement
|
||||||
|
- If this fits any known wallet patterns or behaviors
|
||||||
|
- Signs of smart contract interaction or DeFi activity
|
||||||
|
|
||||||
|
3. RISK & IMPLICATIONS
|
||||||
|
- Potential market impact or price influence
|
||||||
|
- Signs of potential market manipulation or unusual activity
|
||||||
|
- Protocol or DeFi risks if applicable
|
||||||
|
|
||||||
|
4. STRATEGIC INSIGHTS
|
||||||
|
- What traders should know about this movement
|
||||||
|
- Potential chain reactions or follow-up effects
|
||||||
|
- Market opportunities or risks created
|
||||||
|
|
||||||
|
Write naturally but precisely. Focus on actionable insights and important patterns.
|
||||||
|
Your analysis helps traders and researchers understand significant market movements in real-time."""
|
||||||
|
|
||||||
|
|
||||||
|
class EthereumAnalyzer:
|
||||||
|
def __init__(self, min_value_eth: float = 100.0):
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
logger.add(
|
||||||
|
"eth_analysis.log",
|
||||||
|
rotation="500 MB",
|
||||||
|
retention="10 days",
|
||||||
|
level="INFO",
|
||||||
|
format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.w3 = Web3(
|
||||||
|
Web3.HTTPProvider(
|
||||||
|
"https://mainnet.infura.io/v3/9aa3d95b3bc440fa88ea12eaa4456161"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
if not self.w3.is_connected():
|
||||||
|
raise ConnectionError(
|
||||||
|
"Failed to connect to Ethereum network"
|
||||||
|
)
|
||||||
|
|
||||||
|
self.min_value_eth = min_value_eth
|
||||||
|
self.last_processed_block = self.w3.eth.block_number
|
||||||
|
self.eth_price = self.get_eth_price()
|
||||||
|
self.last_price_update = time.time()
|
||||||
|
|
||||||
|
# Initialize AI agent
|
||||||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
if not api_key:
|
||||||
|
raise ValueError(
|
||||||
|
"OpenAI API key not found in environment variables"
|
||||||
|
)
|
||||||
|
|
||||||
|
model = OpenAIChat(
|
||||||
|
openai_api_key=api_key,
|
||||||
|
model_name="gpt-4",
|
||||||
|
temperature=0.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.agent = Agent(
|
||||||
|
agent_name="Ethereum-Analysis-Agent",
|
||||||
|
system_prompt=BLOCKCHAIN_AGENT_PROMPT,
|
||||||
|
llm=model,
|
||||||
|
max_loops=1,
|
||||||
|
autosave=True,
|
||||||
|
dashboard=False,
|
||||||
|
verbose=True,
|
||||||
|
dynamic_temperature_enabled=True,
|
||||||
|
saved_state_path="eth_agent.json",
|
||||||
|
user_name="eth_analyzer",
|
||||||
|
retry_attempts=1,
|
||||||
|
context_length=200000,
|
||||||
|
output_type="string",
|
||||||
|
streaming_on=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.csv_filename = "ethereum_analysis.csv"
|
||||||
|
self.initialize_csv()
|
||||||
|
|
||||||
|
def get_eth_price(self) -> float:
|
||||||
|
"""Get current ETH price from CoinGecko API."""
|
||||||
|
try:
|
||||||
|
response = requests.get(
|
||||||
|
"https://api.coingecko.com/api/v3/simple/price",
|
||||||
|
params={"ids": "ethereum", "vs_currencies": "usd"},
|
||||||
|
)
|
||||||
|
return float(response.json()["ethereum"]["usd"])
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error fetching ETH price: {str(e)}")
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
def update_eth_price(self):
|
||||||
|
"""Update ETH price if more than 5 minutes have passed."""
|
||||||
|
if time.time() - self.last_price_update > 300: # 5 minutes
|
||||||
|
self.eth_price = self.get_eth_price()
|
||||||
|
self.last_price_update = time.time()
|
||||||
|
logger.info(f"Updated ETH price: ${self.eth_price:,.2f}")
|
||||||
|
|
||||||
|
def initialize_csv(self):
|
||||||
|
"""Initialize CSV file with headers."""
|
||||||
|
headers = [
|
||||||
|
"timestamp",
|
||||||
|
"transaction_hash",
|
||||||
|
"from_address",
|
||||||
|
"to_address",
|
||||||
|
"value_eth",
|
||||||
|
"value_usd",
|
||||||
|
"eth_price",
|
||||||
|
"gas_used",
|
||||||
|
"gas_price_gwei",
|
||||||
|
"block_number",
|
||||||
|
"analysis",
|
||||||
|
]
|
||||||
|
|
||||||
|
if not os.path.exists(self.csv_filename):
|
||||||
|
with open(self.csv_filename, "w", newline="") as f:
|
||||||
|
writer = csv.writer(f)
|
||||||
|
writer.writerow(headers)
|
||||||
|
|
||||||
|
async def analyze_transaction(
|
||||||
|
self, tx_hash: str
|
||||||
|
) -> Optional[Dict[str, Any]]:
|
||||||
|
"""Analyze a single transaction."""
|
||||||
|
try:
|
||||||
|
tx = self.w3.eth.get_transaction(tx_hash)
|
||||||
|
receipt = self.w3.eth.get_transaction_receipt(tx_hash)
|
||||||
|
|
||||||
|
value_eth = float(self.w3.from_wei(tx.value, "ether"))
|
||||||
|
|
||||||
|
if value_eth < self.min_value_eth:
|
||||||
|
return None
|
||||||
|
|
||||||
|
block = self.w3.eth.get_block(tx.blockNumber)
|
||||||
|
|
||||||
|
# Update ETH price if needed
|
||||||
|
self.update_eth_price()
|
||||||
|
|
||||||
|
value_usd = value_eth * self.eth_price
|
||||||
|
|
||||||
|
analysis = {
|
||||||
|
"timestamp": datetime.fromtimestamp(
|
||||||
|
block.timestamp
|
||||||
|
).isoformat(),
|
||||||
|
"transaction_hash": tx_hash.hex(),
|
||||||
|
"from_address": tx["from"],
|
||||||
|
"to_address": tx.to if tx.to else "Contract Creation",
|
||||||
|
"value_eth": value_eth,
|
||||||
|
"value_usd": value_usd,
|
||||||
|
"eth_price": self.eth_price,
|
||||||
|
"gas_used": receipt.gasUsed,
|
||||||
|
"gas_price_gwei": float(
|
||||||
|
self.w3.from_wei(tx.gasPrice, "gwei")
|
||||||
|
),
|
||||||
|
"block_number": tx.blockNumber,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Check if it's a contract
|
||||||
|
if tx.to:
|
||||||
|
code = self.w3.eth.get_code(tx.to)
|
||||||
|
analysis["is_contract"] = len(code) > 0
|
||||||
|
|
||||||
|
# Get contract events
|
||||||
|
if analysis["is_contract"]:
|
||||||
|
analysis["events"] = receipt.logs
|
||||||
|
|
||||||
|
return analysis
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Error analyzing transaction {tx_hash}: {str(e)}"
|
||||||
|
)
|
||||||
|
return None
|
||||||
|
|
||||||
|
def prepare_analysis_prompt(self, tx_data: Dict[str, Any]) -> str:
|
||||||
|
"""Prepare detailed analysis prompt including price context."""
|
||||||
|
value_usd = tx_data["value_usd"]
|
||||||
|
eth_price = tx_data["eth_price"]
|
||||||
|
|
||||||
|
prompt = f"""Analyze this Ethereum transaction in current market context:
|
||||||
|
|
||||||
|
Transaction Details:
|
||||||
|
- Value: {tx_data['value_eth']:.2f} ETH (${value_usd:,.2f} at current price)
|
||||||
|
- Current ETH Price: ${eth_price:,.2f}
|
||||||
|
- From: {tx_data['from_address']}
|
||||||
|
- To: {tx_data['to_address']}
|
||||||
|
- Contract Interaction: {tx_data.get('is_contract', False)}
|
||||||
|
- Gas Used: {tx_data['gas_used']:,} units
|
||||||
|
- Gas Price: {tx_data['gas_price_gwei']:.2f} Gwei
|
||||||
|
- Block: {tx_data['block_number']}
|
||||||
|
- Timestamp: {tx_data['timestamp']}
|
||||||
|
|
||||||
|
{f"Event Count: {len(tx_data['events'])} events" if tx_data.get('events') else "No contract events"}
|
||||||
|
|
||||||
|
Consider the transaction's significance given the current ETH price of ${eth_price:,.2f} and total USD value of ${value_usd:,.2f}.
|
||||||
|
Analyze market impact, patterns, risks, and strategic implications."""
|
||||||
|
|
||||||
|
return prompt
|
||||||
|
|
||||||
|
def save_to_csv(self, tx_data: Dict[str, Any], ai_analysis: str):
|
||||||
|
"""Save transaction data and analysis to CSV."""
|
||||||
|
row = [
|
||||||
|
tx_data["timestamp"],
|
||||||
|
tx_data["transaction_hash"],
|
||||||
|
tx_data["from_address"],
|
||||||
|
tx_data["to_address"],
|
||||||
|
tx_data["value_eth"],
|
||||||
|
tx_data["value_usd"],
|
||||||
|
tx_data["eth_price"],
|
||||||
|
tx_data["gas_used"],
|
||||||
|
tx_data["gas_price_gwei"],
|
||||||
|
tx_data["block_number"],
|
||||||
|
ai_analysis.replace("\n", " "),
|
||||||
|
]
|
||||||
|
|
||||||
|
with open(self.csv_filename, "a", newline="") as f:
|
||||||
|
writer = csv.writer(f)
|
||||||
|
writer.writerow(row)
|
||||||
|
|
||||||
|
async def monitor_transactions(self):
|
||||||
|
"""Monitor and analyze transactions one at a time."""
|
||||||
|
logger.info(
|
||||||
|
f"Starting transaction monitor (minimum value: {self.min_value_eth} ETH)"
|
||||||
|
)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
current_block = self.w3.eth.block_number
|
||||||
|
block = self.w3.eth.get_block(
|
||||||
|
current_block, full_transactions=True
|
||||||
|
)
|
||||||
|
|
||||||
|
for tx in block.transactions:
|
||||||
|
tx_analysis = await self.analyze_transaction(
|
||||||
|
tx.hash
|
||||||
|
)
|
||||||
|
|
||||||
|
if tx_analysis:
|
||||||
|
# Get AI analysis
|
||||||
|
analysis_prompt = (
|
||||||
|
self.prepare_analysis_prompt(tx_analysis)
|
||||||
|
)
|
||||||
|
ai_analysis = self.agent.run(analysis_prompt)
|
||||||
|
print(ai_analysis)
|
||||||
|
|
||||||
|
# Save to CSV
|
||||||
|
self.save_to_csv(tx_analysis, ai_analysis)
|
||||||
|
|
||||||
|
# Print analysis
|
||||||
|
print("\n" + "=" * 50)
|
||||||
|
print("New Transaction Analysis")
|
||||||
|
print(
|
||||||
|
f"Hash: {tx_analysis['transaction_hash']}"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f"Value: {tx_analysis['value_eth']:.2f} ETH (${tx_analysis['value_usd']:,.2f})"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f"Current ETH Price: ${self.eth_price:,.2f}"
|
||||||
|
)
|
||||||
|
print("=" * 50)
|
||||||
|
print(ai_analysis)
|
||||||
|
print("=" * 50 + "\n")
|
||||||
|
|
||||||
|
await asyncio.sleep(1) # Wait for next block
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error in monitoring loop: {str(e)}")
|
||||||
|
await asyncio.sleep(1)
|
||||||
|
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
"""Entry point for the analysis system."""
|
||||||
|
analyzer = EthereumAnalyzer(min_value_eth=100.0)
|
||||||
|
await analyzer.monitor_transactions()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("Starting Ethereum Transaction Analyzer...")
|
||||||
|
print("Saving results to ethereum_analysis.csv")
|
||||||
|
print("Press Ctrl+C to stop")
|
||||||
|
try:
|
||||||
|
asyncio.run(main())
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\nStopping analyzer...")
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,417 @@
|
|||||||
|
import os
|
||||||
|
from typing import List, Dict, Any, Optional, Callable
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
import json
|
||||||
|
from datetime import datetime
|
||||||
|
import inspect
|
||||||
|
import typing
|
||||||
|
from typing import Union
|
||||||
|
from swarms import Agent
|
||||||
|
from swarm_models import OpenAIChat
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ToolDefinition:
|
||||||
|
name: str
|
||||||
|
description: str
|
||||||
|
parameters: Dict[str, Any]
|
||||||
|
required_params: List[str]
|
||||||
|
callable: Optional[Callable] = None
|
||||||
|
|
||||||
|
|
||||||
|
def extract_type_hints(func: Callable) -> Dict[str, Any]:
|
||||||
|
"""Extract parameter types from function type hints."""
|
||||||
|
return typing.get_type_hints(func)
|
||||||
|
|
||||||
|
|
||||||
|
def extract_tool_info(func: Callable) -> ToolDefinition:
|
||||||
|
"""Extract tool information from a callable function."""
|
||||||
|
# Get function name
|
||||||
|
name = func.__name__
|
||||||
|
|
||||||
|
# Get docstring
|
||||||
|
description = inspect.getdoc(func) or "No description available"
|
||||||
|
|
||||||
|
# Get parameters and their types
|
||||||
|
signature = inspect.signature(func)
|
||||||
|
type_hints = extract_type_hints(func)
|
||||||
|
|
||||||
|
parameters = {}
|
||||||
|
required_params = []
|
||||||
|
|
||||||
|
for param_name, param in signature.parameters.items():
|
||||||
|
# Skip self parameter for methods
|
||||||
|
if param_name == "self":
|
||||||
|
continue
|
||||||
|
|
||||||
|
param_type = type_hints.get(param_name, Any)
|
||||||
|
|
||||||
|
# Handle optional parameters
|
||||||
|
is_optional = (
|
||||||
|
param.default != inspect.Parameter.empty
|
||||||
|
or getattr(param_type, "__origin__", None) is Union
|
||||||
|
and type(None) in param_type.__args__
|
||||||
|
)
|
||||||
|
|
||||||
|
if not is_optional:
|
||||||
|
required_params.append(param_name)
|
||||||
|
|
||||||
|
parameters[param_name] = {
|
||||||
|
"type": str(param_type),
|
||||||
|
"default": (
|
||||||
|
None
|
||||||
|
if param.default is inspect.Parameter.empty
|
||||||
|
else param.default
|
||||||
|
),
|
||||||
|
"required": not is_optional,
|
||||||
|
}
|
||||||
|
|
||||||
|
return ToolDefinition(
|
||||||
|
name=name,
|
||||||
|
description=description,
|
||||||
|
parameters=parameters,
|
||||||
|
required_params=required_params,
|
||||||
|
callable=func,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FunctionSpec:
|
||||||
|
"""Specification for a callable tool function."""
|
||||||
|
|
||||||
|
name: str
|
||||||
|
description: str
|
||||||
|
parameters: Dict[
|
||||||
|
str, dict
|
||||||
|
] # Contains type and description for each parameter
|
||||||
|
return_type: str
|
||||||
|
return_description: str
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ExecutionStep:
|
||||||
|
"""Represents a single step in the execution plan."""
|
||||||
|
|
||||||
|
step_id: int
|
||||||
|
function_name: str
|
||||||
|
parameters: Dict[str, Any]
|
||||||
|
expected_output: str
|
||||||
|
completed: bool = False
|
||||||
|
result: Any = None
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ExecutionContext:
|
||||||
|
"""Maintains state during execution."""
|
||||||
|
|
||||||
|
task: str
|
||||||
|
steps: List[ExecutionStep] = field(default_factory=list)
|
||||||
|
results: Dict[int, Any] = field(default_factory=dict)
|
||||||
|
current_step: int = 0
|
||||||
|
history: List[Dict[str, Any]] = field(default_factory=list)
|
||||||
|
|
||||||
|
|
||||||
|
class ToolAgent:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
functions: List[Callable],
|
||||||
|
openai_api_key: str,
|
||||||
|
model_name: str = "gpt-4",
|
||||||
|
temperature: float = 0.1,
|
||||||
|
):
|
||||||
|
self.functions = {func.__name__: func for func in functions}
|
||||||
|
self.function_specs = self._analyze_functions(functions)
|
||||||
|
|
||||||
|
self.model = OpenAIChat(
|
||||||
|
openai_api_key=openai_api_key,
|
||||||
|
model_name=model_name,
|
||||||
|
temperature=temperature,
|
||||||
|
)
|
||||||
|
|
||||||
|
self.system_prompt = self._create_system_prompt()
|
||||||
|
self.agent = Agent(
|
||||||
|
agent_name="Tool-Agent",
|
||||||
|
system_prompt=self.system_prompt,
|
||||||
|
llm=self.model,
|
||||||
|
max_loops=1,
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _analyze_functions(
|
||||||
|
self, functions: List[Callable]
|
||||||
|
) -> Dict[str, FunctionSpec]:
|
||||||
|
"""Analyze functions to create detailed specifications."""
|
||||||
|
specs = {}
|
||||||
|
for func in functions:
|
||||||
|
hints = get_type_hints(func)
|
||||||
|
sig = inspect.signature(func)
|
||||||
|
doc = inspect.getdoc(func) or ""
|
||||||
|
|
||||||
|
# Parse docstring for parameter descriptions
|
||||||
|
param_descriptions = {}
|
||||||
|
current_param = None
|
||||||
|
for line in doc.split("\n"):
|
||||||
|
if ":param" in line:
|
||||||
|
param_name = (
|
||||||
|
line.split(":param")[1].split(":")[0].strip()
|
||||||
|
)
|
||||||
|
desc = line.split(":", 2)[-1].strip()
|
||||||
|
param_descriptions[param_name] = desc
|
||||||
|
elif ":return:" in line:
|
||||||
|
return_desc = line.split(":return:")[1].strip()
|
||||||
|
|
||||||
|
# Build parameter specifications
|
||||||
|
parameters = {}
|
||||||
|
for name, param in sig.parameters.items():
|
||||||
|
param_type = hints.get(name, Any)
|
||||||
|
parameters[name] = {
|
||||||
|
"type": str(param_type),
|
||||||
|
"type_class": param_type,
|
||||||
|
"description": param_descriptions.get(name, ""),
|
||||||
|
"required": param.default == param.empty,
|
||||||
|
}
|
||||||
|
|
||||||
|
specs[func.__name__] = FunctionSpec(
|
||||||
|
name=func.__name__,
|
||||||
|
description=doc.split("\n")[0],
|
||||||
|
parameters=parameters,
|
||||||
|
return_type=str(hints.get("return", Any)),
|
||||||
|
return_description=(
|
||||||
|
return_desc if "return_desc" in locals() else ""
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
return specs
|
||||||
|
|
||||||
|
def _create_system_prompt(self) -> str:
|
||||||
|
"""Create system prompt with detailed function specifications."""
|
||||||
|
functions_desc = []
|
||||||
|
for spec in self.function_specs.values():
|
||||||
|
params_desc = []
|
||||||
|
for name, details in spec.parameters.items():
|
||||||
|
params_desc.append(
|
||||||
|
f" - {name}: {details['type']} - {details['description']}"
|
||||||
|
)
|
||||||
|
|
||||||
|
functions_desc.append(
|
||||||
|
f"""
|
||||||
|
Function: {spec.name}
|
||||||
|
Description: {spec.description}
|
||||||
|
Parameters:
|
||||||
|
{chr(10).join(params_desc)}
|
||||||
|
Returns: {spec.return_type} - {spec.return_description}
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
|
return f"""You are an AI agent that creates and executes plans using available functions.
|
||||||
|
|
||||||
|
Available Functions:
|
||||||
|
{chr(10).join(functions_desc)}
|
||||||
|
|
||||||
|
You must respond in two formats depending on the phase:
|
||||||
|
|
||||||
|
1. Planning Phase:
|
||||||
|
{{
|
||||||
|
"phase": "planning",
|
||||||
|
"plan": {{
|
||||||
|
"description": "Overall plan description",
|
||||||
|
"steps": [
|
||||||
|
{{
|
||||||
|
"step_id": 1,
|
||||||
|
"function": "function_name",
|
||||||
|
"parameters": {{
|
||||||
|
"param1": "value1",
|
||||||
|
"param2": "value2"
|
||||||
|
}},
|
||||||
|
"purpose": "Why this step is needed"
|
||||||
|
}}
|
||||||
|
]
|
||||||
|
}}
|
||||||
|
}}
|
||||||
|
|
||||||
|
2. Execution Phase:
|
||||||
|
{{
|
||||||
|
"phase": "execution",
|
||||||
|
"analysis": "Analysis of current result",
|
||||||
|
"next_action": {{
|
||||||
|
"type": "continue|request_input|complete",
|
||||||
|
"reason": "Why this action was chosen",
|
||||||
|
"needed_input": {{}} # If requesting input
|
||||||
|
}}
|
||||||
|
}}
|
||||||
|
|
||||||
|
Always:
|
||||||
|
- Use exact function names
|
||||||
|
- Ensure parameter types match specifications
|
||||||
|
- Provide clear reasoning for each decision
|
||||||
|
"""
|
||||||
|
|
||||||
|
def _execute_function(
|
||||||
|
self, spec: FunctionSpec, parameters: Dict[str, Any]
|
||||||
|
) -> Any:
|
||||||
|
"""Execute a function with type checking."""
|
||||||
|
converted_params = {}
|
||||||
|
for name, value in parameters.items():
|
||||||
|
param_spec = spec.parameters[name]
|
||||||
|
try:
|
||||||
|
# Convert value to required type
|
||||||
|
param_type = param_spec["type_class"]
|
||||||
|
if param_type in (int, float, str, bool):
|
||||||
|
converted_params[name] = param_type(value)
|
||||||
|
else:
|
||||||
|
converted_params[name] = value
|
||||||
|
except (ValueError, TypeError) as e:
|
||||||
|
raise ValueError(
|
||||||
|
f"Parameter '{name}' conversion failed: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return self.functions[spec.name](**converted_params)
|
||||||
|
|
||||||
|
def run(self, task: str) -> Dict[str, Any]:
|
||||||
|
"""Execute task with planning and step-by-step execution."""
|
||||||
|
context = ExecutionContext(task=task)
|
||||||
|
execution_log = {
|
||||||
|
"task": task,
|
||||||
|
"start_time": datetime.utcnow().isoformat(),
|
||||||
|
"steps": [],
|
||||||
|
"final_result": None,
|
||||||
|
}
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Planning phase
|
||||||
|
plan_prompt = f"Create a plan to: {task}"
|
||||||
|
plan_response = self.agent.run(plan_prompt)
|
||||||
|
plan_data = json.loads(
|
||||||
|
plan_response.replace("System:", "").strip()
|
||||||
|
)
|
||||||
|
|
||||||
|
# Convert plan to execution steps
|
||||||
|
for step in plan_data["plan"]["steps"]:
|
||||||
|
context.steps.append(
|
||||||
|
ExecutionStep(
|
||||||
|
step_id=step["step_id"],
|
||||||
|
function_name=step["function"],
|
||||||
|
parameters=step["parameters"],
|
||||||
|
expected_output=step["purpose"],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Execution phase
|
||||||
|
while context.current_step < len(context.steps):
|
||||||
|
step = context.steps[context.current_step]
|
||||||
|
print(
|
||||||
|
f"\nExecuting step {step.step_id}: {step.function_name}"
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Execute function
|
||||||
|
spec = self.function_specs[step.function_name]
|
||||||
|
result = self._execute_function(
|
||||||
|
spec, step.parameters
|
||||||
|
)
|
||||||
|
context.results[step.step_id] = result
|
||||||
|
step.completed = True
|
||||||
|
step.result = result
|
||||||
|
|
||||||
|
# Get agent's analysis
|
||||||
|
analysis_prompt = f"""
|
||||||
|
Step {step.step_id} completed:
|
||||||
|
Function: {step.function_name}
|
||||||
|
Result: {json.dumps(result)}
|
||||||
|
Remaining steps: {len(context.steps) - context.current_step - 1}
|
||||||
|
|
||||||
|
Analyze the result and decide next action.
|
||||||
|
"""
|
||||||
|
|
||||||
|
analysis_response = self.agent.run(
|
||||||
|
analysis_prompt
|
||||||
|
)
|
||||||
|
analysis_data = json.loads(
|
||||||
|
analysis_response.replace(
|
||||||
|
"System:", ""
|
||||||
|
).strip()
|
||||||
|
)
|
||||||
|
|
||||||
|
execution_log["steps"].append(
|
||||||
|
{
|
||||||
|
"step_id": step.step_id,
|
||||||
|
"function": step.function_name,
|
||||||
|
"parameters": step.parameters,
|
||||||
|
"result": result,
|
||||||
|
"analysis": analysis_data,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
if (
|
||||||
|
analysis_data["next_action"]["type"]
|
||||||
|
== "complete"
|
||||||
|
):
|
||||||
|
if (
|
||||||
|
context.current_step
|
||||||
|
< len(context.steps) - 1
|
||||||
|
):
|
||||||
|
continue
|
||||||
|
break
|
||||||
|
|
||||||
|
context.current_step += 1
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error in step {step.step_id}: {str(e)}")
|
||||||
|
execution_log["steps"].append(
|
||||||
|
{
|
||||||
|
"step_id": step.step_id,
|
||||||
|
"function": step.function_name,
|
||||||
|
"parameters": step.parameters,
|
||||||
|
"error": str(e),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
raise
|
||||||
|
|
||||||
|
# Final analysis
|
||||||
|
final_prompt = f"""
|
||||||
|
Task completed. Results:
|
||||||
|
{json.dumps(context.results, indent=2)}
|
||||||
|
|
||||||
|
Provide final analysis and recommendations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
final_analysis = self.agent.run(final_prompt)
|
||||||
|
execution_log["final_result"] = {
|
||||||
|
"success": True,
|
||||||
|
"results": context.results,
|
||||||
|
"analysis": json.loads(
|
||||||
|
final_analysis.replace("System:", "").strip()
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
execution_log["final_result"] = {
|
||||||
|
"success": False,
|
||||||
|
"error": str(e),
|
||||||
|
}
|
||||||
|
|
||||||
|
execution_log["end_time"] = datetime.utcnow().isoformat()
|
||||||
|
return execution_log
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_investment_return(
|
||||||
|
principal: float, rate: float, years: int
|
||||||
|
) -> float:
|
||||||
|
"""Calculate investment return with compound interest.
|
||||||
|
|
||||||
|
:param principal: Initial investment amount in dollars
|
||||||
|
:param rate: Annual interest rate as decimal (e.g., 0.07 for 7%)
|
||||||
|
:param years: Number of years to invest
|
||||||
|
:return: Final investment value
|
||||||
|
"""
|
||||||
|
return principal * (1 + rate) ** years
|
||||||
|
|
||||||
|
|
||||||
|
agent = ToolAgent(
|
||||||
|
functions=[calculate_investment_return],
|
||||||
|
openai_api_key=os.getenv("OPENAI_API_KEY"),
|
||||||
|
)
|
||||||
|
|
||||||
|
result = agent.run(
|
||||||
|
"Calculate returns for $10000 invested at 7% for 10 years"
|
||||||
|
)
|
@ -0,0 +1,9 @@
|
|||||||
|
from swarms import Agent
|
||||||
|
|
||||||
|
Agent(
|
||||||
|
agent_name="Stock-Analysis-Agent",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
max_loops="auto",
|
||||||
|
streaming_on=True,
|
||||||
|
interactive=True,
|
||||||
|
).run("What are 5 hft algorithms")
|
@ -0,0 +1,253 @@
|
|||||||
|
import re
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from tenacity import retry, stop_after_attempt, wait_exponential
|
||||||
|
|
||||||
|
from swarms import Agent
|
||||||
|
from swarms.agents.create_agents_from_yaml import (
|
||||||
|
create_agents_from_yaml,
|
||||||
|
)
|
||||||
|
from swarms.utils.formatter import formatter
|
||||||
|
from swarms.utils.litellm import LiteLLM
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_yaml_for_parsing(raw_yaml: str) -> str:
|
||||||
|
"""
|
||||||
|
Prepares raw YAML content by fixing spacing and formatting issues.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
raw_yaml (str): The raw YAML content extracted from Markdown.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The cleaned YAML content ready for parsing.
|
||||||
|
"""
|
||||||
|
# Fix sequence items that are improperly placed on the same line as their key
|
||||||
|
fixed_yaml = re.sub(
|
||||||
|
r"(\b\w+\b):\s*-\s*", r"\1:\n - ", raw_yaml
|
||||||
|
) # Fix "key: - value" to "key:\n - value"
|
||||||
|
|
||||||
|
# Ensure proper spacing after colons
|
||||||
|
fixed_yaml = re.sub(
|
||||||
|
r"(\S):(\S)", r"\1: \2", fixed_yaml
|
||||||
|
) # Ensure space after colons
|
||||||
|
|
||||||
|
# Remove trailing spaces before newlines
|
||||||
|
fixed_yaml = re.sub(r"\s+\n", "\n", fixed_yaml)
|
||||||
|
|
||||||
|
# Replace non-breaking spaces (if any) with regular spaces
|
||||||
|
fixed_yaml = fixed_yaml.replace("\xa0", " ")
|
||||||
|
|
||||||
|
return fixed_yaml.strip()
|
||||||
|
|
||||||
|
|
||||||
|
def parse_yaml_from_swarm_markdown(markdown_text: str) -> dict:
|
||||||
|
"""
|
||||||
|
Extracts and prepares YAML content from a Markdown-style 'Auto-Swarm-Builder' block and parses it.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
markdown_text (str): The Markdown text containing the YAML inside 'Auto-Swarm-Builder' block.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
dict: A parsed Python dictionary of the YAML content.
|
||||||
|
"""
|
||||||
|
# Match the 'Auto-Swarm-Builder' block with YAML inside triple backticks
|
||||||
|
pattern = r"```yaml\s*\n(.*?)```"
|
||||||
|
match = re.search(pattern, markdown_text, re.DOTALL)
|
||||||
|
|
||||||
|
if not match:
|
||||||
|
raise ValueError(
|
||||||
|
"No YAML content found in the 'Auto-Swarm-Builder' block."
|
||||||
|
)
|
||||||
|
|
||||||
|
raw_yaml = match.group(1).strip()
|
||||||
|
|
||||||
|
# Preprocess and normalize the YAML content
|
||||||
|
normalized_yaml = prepare_yaml_for_parsing(raw_yaml)
|
||||||
|
|
||||||
|
return normalized_yaml
|
||||||
|
|
||||||
|
|
||||||
|
AUTO_GEN_PROMPT = """
|
||||||
|
You are a specialized agent responsible for creating YAML configuration files for multi-agent swarms. Your role is to generate well-structured YAML that defines both individual agents and swarm architectures based on user requirements.
|
||||||
|
Output only the yaml nothing else. You will be penalized for making mistakes
|
||||||
|
|
||||||
|
GUIDELINES:
|
||||||
|
1. Each YAML file must contain an `agents` section with at least one agent configuration
|
||||||
|
2. Each agent configuration requires the following mandatory fields:
|
||||||
|
- agent_name (string)
|
||||||
|
- system_prompt (string)
|
||||||
|
|
||||||
|
3. Optional agent fields include:
|
||||||
|
- max_loops (integer)
|
||||||
|
- autosave (boolean)
|
||||||
|
- dashboard (boolean)
|
||||||
|
- verbose (boolean)
|
||||||
|
- dynamic_temperature_enabled (boolean)
|
||||||
|
- saved_state_path (string)
|
||||||
|
- user_name (string)
|
||||||
|
- retry_attempts (integer)
|
||||||
|
- context_length (integer)
|
||||||
|
- return_step_meta (boolean)
|
||||||
|
- output_type (string)
|
||||||
|
- task (string)
|
||||||
|
|
||||||
|
4. When a swarm is needed, include a `swarm_architecture` section with:
|
||||||
|
Mandatory fields:
|
||||||
|
- name (string)
|
||||||
|
- swarm_type (string: "ConcurrentWorkflow" or "SequentialWorkflow") [AgentRearrange, MixtureOfAgents, SpreadSheetSwarm, SequentialWorkflow, ConcurrentWorkflow]
|
||||||
|
|
||||||
|
Optional fields:
|
||||||
|
- description (string)
|
||||||
|
- max_loops (integer)
|
||||||
|
- task (string)
|
||||||
|
|
||||||
|
TEMPLATE STRUCTURE:
|
||||||
|
```yaml
|
||||||
|
agents:
|
||||||
|
- agent_name: "Agent-1-Name"
|
||||||
|
system_prompt: "Detailed system prompt here"
|
||||||
|
max_loops: 1
|
||||||
|
# [additional optional fields]
|
||||||
|
|
||||||
|
- agent_name: "Agent-2-Name"
|
||||||
|
system_prompt: "Detailed system prompt here"
|
||||||
|
# [additional optional fields]
|
||||||
|
|
||||||
|
swarm_architecture:
|
||||||
|
name: "Swarm-Name"
|
||||||
|
description: "Swarm purpose and goals"
|
||||||
|
swarm_type: "ConcurrentWorkflow"
|
||||||
|
max_loops: 5
|
||||||
|
task: "Main swarm task description"
|
||||||
|
```
|
||||||
|
|
||||||
|
VALIDATION RULES:
|
||||||
|
1. All agent names must be unique
|
||||||
|
2. System prompts must be clear and specific to the agent's role
|
||||||
|
3. Integer values must be positive
|
||||||
|
4. Boolean values must be true or false (lowercase)
|
||||||
|
5. File paths should use forward slashes
|
||||||
|
6. Tasks should be specific and aligned with the agent/swarm purpose
|
||||||
|
|
||||||
|
When generating a YAML configuration:
|
||||||
|
1. Ask for specific requirements about the agents and swarm needed
|
||||||
|
2. Determine if a swarm architecture is necessary based on the task complexity
|
||||||
|
3. Generate appropriate system prompts for each agent based on their roles
|
||||||
|
4. Include relevant optional fields based on the use case
|
||||||
|
5. Validate the configuration against all rules before returning
|
||||||
|
|
||||||
|
Example valid YAML configurations are provided below. Use these as references for structure and formatting:
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
|
||||||
|
|
||||||
|
agents:
|
||||||
|
- agent_name: "Data-Analysis-Agent"
|
||||||
|
system_prompt: "You are a specialized data analysis agent focused on processing and interpreting financial data. Provide clear, actionable insights based on the data provided."
|
||||||
|
max_loops: 3
|
||||||
|
autosave: true
|
||||||
|
verbose: true
|
||||||
|
context_length: 100000
|
||||||
|
output_type: "json"
|
||||||
|
task: "Analyze quarterly financial reports and identify trends"
|
||||||
|
|
||||||
|
# Multi-Agent Swarm Example
|
||||||
|
agents:
|
||||||
|
- agent_name: "Research-Agent"
|
||||||
|
system_prompt: "You are a research agent specialized in gathering and summarizing scientific publications. Focus on peer-reviewed sources and provide comprehensive summaries."
|
||||||
|
max_loops: 2
|
||||||
|
context_length: 150000
|
||||||
|
output_type: "str"
|
||||||
|
|
||||||
|
- agent_name: "Analysis-Agent"
|
||||||
|
system_prompt: "You are an analysis agent that processes research summaries and identifies key patterns and insights. Provide detailed analytical reports."
|
||||||
|
max_loops: 3
|
||||||
|
context_length: 200000
|
||||||
|
output_type: "json"
|
||||||
|
|
||||||
|
swarm_architecture:
|
||||||
|
name: "Research-Analysis-Swarm"
|
||||||
|
description: "A swarm for comprehensive research analysis and insight generation"
|
||||||
|
swarm_type: "SequentialWorkflow"
|
||||||
|
max_loops: 5
|
||||||
|
task: "Research and analyze recent developments in quantum computing"
|
||||||
|
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def generate_swarm_config(
|
||||||
|
task: str,
|
||||||
|
file_name: str = "swarm_config_output.yaml",
|
||||||
|
model_name: str = "gpt-4o",
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Generates a swarm configuration based on the provided task and model name.
|
||||||
|
|
||||||
|
This function attempts to generate a swarm configuration by running an agent with the specified task and model name.
|
||||||
|
It then parses the output into YAML format and creates agents based on the parsed YAML content.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to be performed by the swarm.
|
||||||
|
file_name (str, optional): The file name for the output YAML configuration. Defaults to "swarm_config_output.yaml".
|
||||||
|
model_name (str, optional): The name of the model to use for the agent. Defaults to "gpt-4o".
|
||||||
|
*args: Additional positional arguments to be passed to the agent's run method.
|
||||||
|
**kwargs: Additional keyword arguments to be passed to the agent's run method.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Any: The output of the swarm configuration generation process. This can be a SwarmRouter instance or an error message.
|
||||||
|
"""
|
||||||
|
formatter.print_panel(
|
||||||
|
"Auto Generating Swarm...", "Auto Swarm Builder"
|
||||||
|
)
|
||||||
|
|
||||||
|
@retry(
|
||||||
|
stop=stop_after_attempt(3),
|
||||||
|
wait=wait_exponential(min=4, max=10),
|
||||||
|
)
|
||||||
|
def attempt_generate_swarm_config():
|
||||||
|
try:
|
||||||
|
model = LiteLLM(model_name=model_name)
|
||||||
|
|
||||||
|
# Initialize the agent
|
||||||
|
agent = Agent(
|
||||||
|
agent_name="Auto-Swarm-Builder",
|
||||||
|
system_prompt=AUTO_GEN_PROMPT,
|
||||||
|
llm=model,
|
||||||
|
max_loops=1,
|
||||||
|
dynamic_temperature_enabled=True,
|
||||||
|
saved_state_path="swarm_builder.json",
|
||||||
|
user_name="swarms_corp",
|
||||||
|
output_type="str",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Generate output from the agent
|
||||||
|
raw_output = agent.run(task, *args, **kwargs)
|
||||||
|
yaml_content = parse_yaml_from_swarm_markdown(raw_output)
|
||||||
|
print(yaml_content)
|
||||||
|
|
||||||
|
# Create agents from the YAML file
|
||||||
|
output = create_agents_from_yaml(
|
||||||
|
yaml_string=yaml_content,
|
||||||
|
return_type="run_swarm",
|
||||||
|
)
|
||||||
|
|
||||||
|
formatter.print_panel(
|
||||||
|
"Swarm configuration generated successfully.",
|
||||||
|
"Success",
|
||||||
|
)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
formatter.print_panel(
|
||||||
|
f"Error generating swarm configuration: {str(e)}",
|
||||||
|
"Error",
|
||||||
|
)
|
||||||
|
raise
|
||||||
|
|
||||||
|
return attempt_generate_swarm_config()
|
@ -1,9 +1,5 @@
|
|||||||
from swarms.artifacts.base_artifact import BaseArtifact
|
|
||||||
from swarms.artifacts.text_artifact import TextArtifact
|
|
||||||
from swarms.artifacts.main_artifact import Artifact
|
from swarms.artifacts.main_artifact import Artifact
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"BaseArtifact",
|
|
||||||
"TextArtifact",
|
|
||||||
"Artifact",
|
"Artifact",
|
||||||
]
|
]
|
||||||
|
@ -1,77 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import json
|
|
||||||
import uuid
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Any
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class BaseArtifact(ABC):
|
|
||||||
"""
|
|
||||||
Base class for artifacts.
|
|
||||||
"""
|
|
||||||
|
|
||||||
id: str
|
|
||||||
name: str
|
|
||||||
value: Any
|
|
||||||
|
|
||||||
def __post_init__(self):
|
|
||||||
if self.id is None:
|
|
||||||
self.id = uuid.uuid4().hex
|
|
||||||
if self.name is None:
|
|
||||||
self.name = self.id
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def value_to_bytes(cls, value: Any) -> bytes:
|
|
||||||
"""
|
|
||||||
Convert the value to bytes.
|
|
||||||
"""
|
|
||||||
if isinstance(value, bytes):
|
|
||||||
return value
|
|
||||||
else:
|
|
||||||
return str(value).encode()
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def value_to_dict(cls, value: Any) -> dict:
|
|
||||||
"""
|
|
||||||
Convert the value to a dictionary.
|
|
||||||
"""
|
|
||||||
if isinstance(value, dict):
|
|
||||||
dict_value = value
|
|
||||||
else:
|
|
||||||
dict_value = json.loads(value)
|
|
||||||
|
|
||||||
return {k: v for k, v in dict_value.items()}
|
|
||||||
|
|
||||||
def to_text(self) -> str:
|
|
||||||
"""
|
|
||||||
Convert the value to text.
|
|
||||||
"""
|
|
||||||
return str(self.value)
|
|
||||||
|
|
||||||
def __str__(self) -> str:
|
|
||||||
"""
|
|
||||||
Return a string representation of the artifact.
|
|
||||||
"""
|
|
||||||
return self.to_text()
|
|
||||||
|
|
||||||
def __bool__(self) -> bool:
|
|
||||||
"""
|
|
||||||
Return the boolean value of the artifact.
|
|
||||||
"""
|
|
||||||
return bool(self.value)
|
|
||||||
|
|
||||||
def __len__(self) -> int:
|
|
||||||
"""
|
|
||||||
Return the length of the artifact.
|
|
||||||
"""
|
|
||||||
return len(self.value)
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def __add__(self, other: BaseArtifact) -> BaseArtifact:
|
|
||||||
"""
|
|
||||||
Add two artifacts together.
|
|
||||||
"""
|
|
||||||
...
|
|
@ -1,58 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from dataclasses import dataclass, field
|
|
||||||
from typing import Callable
|
|
||||||
from swarms.artifacts.base_artifact import BaseArtifact
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class TextArtifact(BaseArtifact):
|
|
||||||
"""
|
|
||||||
Represents a text artifact.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
value (str): The text value of the artifact.
|
|
||||||
encoding (str, optional): The encoding of the text (default is "utf-8").
|
|
||||||
encoding_error_handler (str, optional): The error handler for encoding errors (default is "strict").
|
|
||||||
_embedding (list[float]): The embedding of the text artifact (default is an empty list).
|
|
||||||
|
|
||||||
Properties:
|
|
||||||
embedding (Optional[list[float]]): The embedding of the text artifact.
|
|
||||||
|
|
||||||
Methods:
|
|
||||||
__add__(self, other: BaseArtifact) -> TextArtifact: Concatenates the text value of the artifact with another artifact.
|
|
||||||
__bool__(self) -> bool: Checks if the text value of the artifact is non-empty.
|
|
||||||
generate_embedding(self, driver: BaseEmbeddingModel) -> Optional[list[float]]: Generates the embedding of the text artifact using a given embedding model.
|
|
||||||
token_count(self, tokenizer: BaseTokenizer) -> int: Counts the number of tokens in the text artifact using a given tokenizer.
|
|
||||||
to_bytes(self) -> bytes: Converts the text value of the artifact to bytes using the specified encoding and error handler.
|
|
||||||
"""
|
|
||||||
|
|
||||||
value: str
|
|
||||||
encoding: str = "utf-8"
|
|
||||||
encoding_error_handler: str = "strict"
|
|
||||||
tokenizer: Callable = None
|
|
||||||
_embedding: list[float] = field(default_factory=list)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def embedding(self) -> list[float] | None:
|
|
||||||
return None if len(self._embedding) == 0 else self._embedding
|
|
||||||
|
|
||||||
def __add__(self, other: BaseArtifact) -> TextArtifact:
|
|
||||||
return TextArtifact(self.value + other.value)
|
|
||||||
|
|
||||||
def __bool__(self) -> bool:
|
|
||||||
return bool(self.value.strip())
|
|
||||||
|
|
||||||
def generate_embedding(self, model) -> list[float] | None:
|
|
||||||
self._embedding.clear()
|
|
||||||
self._embedding.extend(model.embed_string(str(self.value)))
|
|
||||||
|
|
||||||
return self.embedding
|
|
||||||
|
|
||||||
def token_count(self) -> int:
|
|
||||||
return self.tokenizer.count_tokens(str(self.value))
|
|
||||||
|
|
||||||
def to_bytes(self) -> bytes:
|
|
||||||
return self.value.encode(
|
|
||||||
encoding=self.encoding, errors=self.encoding_error_handler
|
|
||||||
)
|
|
@ -1,109 +1,87 @@
|
|||||||
import os
|
|
||||||
from typing import List, Any
|
|
||||||
from swarms.structs.agent import Agent
|
from swarms.structs.agent import Agent
|
||||||
from loguru import logger
|
from typing import List
|
||||||
import uuid
|
|
||||||
|
|
||||||
WORKSPACE_DIR = os.getenv("WORKSPACE_DIR")
|
|
||||||
uuid_for_log = str(uuid.uuid4())
|
|
||||||
logger.add(
|
|
||||||
os.path.join(
|
|
||||||
WORKSPACE_DIR,
|
|
||||||
"agents_available",
|
|
||||||
f"agents-available-{uuid_for_log}.log",
|
|
||||||
),
|
|
||||||
level="INFO",
|
|
||||||
colorize=True,
|
|
||||||
backtrace=True,
|
|
||||||
diagnose=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_agent_name(agent: Any) -> str:
|
|
||||||
"""Helper function to safely get agent name
|
|
||||||
|
|
||||||
Args:
|
|
||||||
agent (Any): The agent object to get name from
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The agent's name if found, 'Unknown' otherwise
|
|
||||||
"""
|
|
||||||
if isinstance(agent, Agent) and hasattr(agent, "agent_name"):
|
|
||||||
return agent.agent_name
|
|
||||||
return "Unknown"
|
|
||||||
|
|
||||||
|
|
||||||
def get_agent_description(agent: Any) -> str:
|
|
||||||
"""Helper function to get agent description or system prompt preview
|
|
||||||
|
|
||||||
Args:
|
|
||||||
agent (Any): The agent object
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: Description or first 100 chars of system prompt
|
|
||||||
"""
|
|
||||||
if not isinstance(agent, Agent):
|
|
||||||
return "N/A"
|
|
||||||
|
|
||||||
if hasattr(agent, "description") and agent.description:
|
|
||||||
return agent.description
|
|
||||||
|
|
||||||
if hasattr(agent, "system_prompt") and agent.system_prompt:
|
|
||||||
return f"{agent.system_prompt[:150]}..."
|
|
||||||
|
|
||||||
return "N/A"
|
|
||||||
|
|
||||||
|
|
||||||
def showcase_available_agents(
|
def showcase_available_agents(
|
||||||
|
agents: List[Agent],
|
||||||
name: str = None,
|
name: str = None,
|
||||||
description: str = None,
|
description: str = None,
|
||||||
agents: List[Agent] = [],
|
format: str = "XML",
|
||||||
update_agents_on: bool = False,
|
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""
|
||||||
Generate a formatted string showcasing all available agents and their descriptions.
|
Format the available agents in either XML or Table format.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
agents (List[Agent]): List of Agent objects to showcase.
|
agents (List[Agent]): A list of agents to represent
|
||||||
update_agents_on (bool, optional): If True, updates each agent's system prompt with
|
name (str, optional): Name of the swarm
|
||||||
the showcase information. Defaults to False.
|
description (str, optional): Description of the swarm
|
||||||
|
format (str, optional): Output format ("XML" or "Table"). Defaults to "XML"
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
str: Formatted string containing agent information, including names, descriptions
|
str: Formatted string containing agent information
|
||||||
and IDs for all available agents.
|
|
||||||
"""
|
"""
|
||||||
logger.info(f"Showcasing {len(agents)} available agents")
|
|
||||||
|
|
||||||
formatted_agents = []
|
def truncate(text: str, max_length: int = 130) -> str:
|
||||||
header = f"\n####### Agents available in the swarm: {name} ############\n"
|
return (
|
||||||
header += f"{description}\n"
|
f"{text[:max_length]}..."
|
||||||
row_format = "{:<5} | {:<20} | {:<50}"
|
if len(text) > max_length
|
||||||
header_row = row_format.format("ID", "Agent Name", "Description")
|
else text
|
||||||
separator = "-" * 80
|
)
|
||||||
|
|
||||||
formatted_agents.append(header)
|
output = []
|
||||||
formatted_agents.append(separator)
|
|
||||||
formatted_agents.append(header_row)
|
|
||||||
formatted_agents.append(separator)
|
|
||||||
|
|
||||||
|
if format.upper() == "TABLE":
|
||||||
|
output.append("\n| ID | Agent Name | Description |")
|
||||||
|
output.append("|-----|------------|-------------|")
|
||||||
for idx, agent in enumerate(agents):
|
for idx, agent in enumerate(agents):
|
||||||
if not isinstance(agent, Agent):
|
if isinstance(agent, Agent):
|
||||||
logger.warning(
|
agent_name = getattr(agent, "agent_name", str(agent))
|
||||||
f"Skipping non-Agent object: {type(agent)}"
|
description = getattr(
|
||||||
|
agent,
|
||||||
|
"description",
|
||||||
|
getattr(
|
||||||
|
agent, "system_prompt", "Unknown description"
|
||||||
|
),
|
||||||
)
|
)
|
||||||
continue
|
desc = truncate(description, 50)
|
||||||
|
output.append(
|
||||||
agent_name = get_agent_name(agent)
|
f"| {idx + 1} | {agent_name} | {desc} |"
|
||||||
description = (
|
|
||||||
get_agent_description(agent)[:100] + "..."
|
|
||||||
if len(get_agent_description(agent)) > 100
|
|
||||||
else get_agent_description(agent)
|
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
formatted_agents.append(
|
output.append(
|
||||||
row_format.format(idx + 1, agent_name, description)
|
f"| {idx + 1} | {agent} | Unknown description |"
|
||||||
)
|
)
|
||||||
|
return "\n".join(output)
|
||||||
|
|
||||||
|
# Default XML format
|
||||||
|
output.append("<agents>")
|
||||||
|
if name:
|
||||||
|
output.append(f" <name>{name}</name>")
|
||||||
|
if description:
|
||||||
|
output.append(
|
||||||
|
f" <description>{truncate(description)}</description>"
|
||||||
|
)
|
||||||
|
for idx, agent in enumerate(agents):
|
||||||
|
output.append(f" <agent id='{idx + 1}'>")
|
||||||
|
if isinstance(agent, Agent):
|
||||||
|
agent_name = getattr(agent, "agent_name", str(agent))
|
||||||
|
description = getattr(
|
||||||
|
agent,
|
||||||
|
"description",
|
||||||
|
getattr(
|
||||||
|
agent, "system_prompt", "Unknown description"
|
||||||
|
),
|
||||||
|
)
|
||||||
|
output.append(f" <name>{agent_name}</name>")
|
||||||
|
output.append(
|
||||||
|
f" <description>{truncate(description)}</description>"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
output.append(f" <name>{agent}</name>")
|
||||||
|
output.append(
|
||||||
|
" <description>Unknown description</description>"
|
||||||
|
)
|
||||||
|
output.append(" </agent>")
|
||||||
|
output.append("</agents>")
|
||||||
|
|
||||||
showcase = "\n".join(formatted_agents)
|
return "\n".join(output)
|
||||||
|
|
||||||
return showcase
|
|
||||||
|
@ -0,0 +1,665 @@
|
|||||||
|
"""
|
||||||
|
GraphSwarm: A production-grade framework for orchestrating swarms of agents
|
||||||
|
Author: Claude
|
||||||
|
License: MIT
|
||||||
|
Version: 2.0.0
|
||||||
|
"""
|
||||||
|
|
||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
import time
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
from datetime import datetime
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
|
import chromadb
|
||||||
|
import networkx as nx
|
||||||
|
from loguru import logger
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
|
||||||
|
from swarms import Agent
|
||||||
|
|
||||||
|
|
||||||
|
# Configure logging
|
||||||
|
logger.add(
|
||||||
|
"graphswarm.log",
|
||||||
|
rotation="500 MB",
|
||||||
|
retention="10 days",
|
||||||
|
level="INFO",
|
||||||
|
format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class AgentOutput(BaseModel):
|
||||||
|
"""Structured output from an agent."""
|
||||||
|
|
||||||
|
agent_name: str
|
||||||
|
timestamp: float = Field(default_factory=time.time)
|
||||||
|
output: Any
|
||||||
|
execution_time: float
|
||||||
|
error: Optional[str] = None
|
||||||
|
metadata: Dict = Field(default_factory=dict)
|
||||||
|
|
||||||
|
|
||||||
|
class SwarmOutput(BaseModel):
|
||||||
|
"""Structured output from the entire swarm."""
|
||||||
|
|
||||||
|
timestamp: float = Field(default_factory=time.time)
|
||||||
|
outputs: Dict[str, AgentOutput]
|
||||||
|
execution_time: float
|
||||||
|
success: bool
|
||||||
|
error: Optional[str] = None
|
||||||
|
metadata: Dict = Field(default_factory=dict)
|
||||||
|
|
||||||
|
|
||||||
|
class SwarmMemory:
|
||||||
|
"""Vector-based memory system for GraphSwarm using ChromaDB."""
|
||||||
|
|
||||||
|
def __init__(self, collection_name: str = "swarm_memories"):
|
||||||
|
"""Initialize SwarmMemory with ChromaDB."""
|
||||||
|
self.client = chromadb.Client()
|
||||||
|
|
||||||
|
# Get or create collection
|
||||||
|
self.collection = self.client.get_or_create_collection(
|
||||||
|
name=collection_name,
|
||||||
|
metadata={"description": "GraphSwarm execution memories"},
|
||||||
|
)
|
||||||
|
|
||||||
|
def store_execution(self, task: str, result: SwarmOutput):
|
||||||
|
"""Store execution results in vector memory."""
|
||||||
|
try:
|
||||||
|
# Create metadata
|
||||||
|
metadata = {
|
||||||
|
"timestamp": datetime.now().isoformat(),
|
||||||
|
"success": result.success,
|
||||||
|
"execution_time": result.execution_time,
|
||||||
|
"agent_sequence": json.dumps(
|
||||||
|
[name for name in result.outputs.keys()]
|
||||||
|
),
|
||||||
|
"error": result.error if result.error else "",
|
||||||
|
}
|
||||||
|
|
||||||
|
# Create document from outputs
|
||||||
|
document = {
|
||||||
|
"task": task,
|
||||||
|
"outputs": json.dumps(
|
||||||
|
{
|
||||||
|
name: {
|
||||||
|
"output": str(output.output),
|
||||||
|
"execution_time": output.execution_time,
|
||||||
|
"error": output.error,
|
||||||
|
}
|
||||||
|
for name, output in result.outputs.items()
|
||||||
|
}
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
# Store in ChromaDB
|
||||||
|
self.collection.add(
|
||||||
|
documents=[json.dumps(document)],
|
||||||
|
metadatas=[metadata],
|
||||||
|
ids=[f"exec_{datetime.now().timestamp()}"],
|
||||||
|
)
|
||||||
|
|
||||||
|
print("added to database")
|
||||||
|
|
||||||
|
logger.info(f"Stored execution in memory: {task}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to store execution in memory: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_similar_executions(self, task: str, limit: int = 5):
|
||||||
|
"""Retrieve similar past executions."""
|
||||||
|
try:
|
||||||
|
# Query ChromaDB for similar executions
|
||||||
|
results = self.collection.query(
|
||||||
|
query_texts=[task],
|
||||||
|
n_results=limit,
|
||||||
|
include=["documents", "metadatas"],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(results)
|
||||||
|
|
||||||
|
if not results["documents"]:
|
||||||
|
return []
|
||||||
|
|
||||||
|
# Process results
|
||||||
|
executions = []
|
||||||
|
for doc, metadata in zip(
|
||||||
|
results["documents"][0], results["metadatas"][0]
|
||||||
|
):
|
||||||
|
doc_dict = json.loads(doc)
|
||||||
|
executions.append(
|
||||||
|
{
|
||||||
|
"task": doc_dict["task"],
|
||||||
|
"outputs": json.loads(doc_dict["outputs"]),
|
||||||
|
"success": metadata["success"],
|
||||||
|
"execution_time": metadata["execution_time"],
|
||||||
|
"agent_sequence": json.loads(
|
||||||
|
metadata["agent_sequence"]
|
||||||
|
),
|
||||||
|
"timestamp": metadata["timestamp"],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
return executions
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to retrieve similar executions: {str(e)}"
|
||||||
|
)
|
||||||
|
return []
|
||||||
|
|
||||||
|
def get_optimal_sequence(self, task: str) -> Optional[List[str]]:
|
||||||
|
"""Get the most successful agent sequence for similar tasks."""
|
||||||
|
similar_executions = self.get_similar_executions(task)
|
||||||
|
print(f"similar_executions {similar_executions}")
|
||||||
|
|
||||||
|
if not similar_executions:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Sort by success and execution time
|
||||||
|
successful_execs = [
|
||||||
|
ex for ex in similar_executions if ex["success"]
|
||||||
|
]
|
||||||
|
|
||||||
|
if not successful_execs:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# Return sequence from most successful execution
|
||||||
|
return successful_execs[0]["agent_sequence"]
|
||||||
|
|
||||||
|
def clear_memory(self):
|
||||||
|
"""Clear all memories."""
|
||||||
|
self.client.delete_collection(self.collection.name)
|
||||||
|
self.collection = self.client.get_or_create_collection(
|
||||||
|
name=self.collection.name
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class GraphSwarm:
|
||||||
|
"""
|
||||||
|
Enhanced framework for creating and managing swarms of collaborative agents.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
agents: Union[
|
||||||
|
List[Agent], List[Tuple[Agent, List[str]]], None
|
||||||
|
] = None,
|
||||||
|
max_workers: Optional[int] = None,
|
||||||
|
swarm_name: str = "Collaborative Agent Swarm",
|
||||||
|
memory_collection: str = "swarm_memory",
|
||||||
|
):
|
||||||
|
"""Initialize GraphSwarm."""
|
||||||
|
self.graph = nx.DiGraph()
|
||||||
|
self.agents: Dict[str, Agent] = {}
|
||||||
|
self.dependencies: Dict[str, List[str]] = {}
|
||||||
|
self.executor = ThreadPoolExecutor(max_workers=max_workers)
|
||||||
|
self.swarm_name = swarm_name
|
||||||
|
self.memory_collection = memory_collection
|
||||||
|
self.memory = SwarmMemory(collection_name=memory_collection)
|
||||||
|
|
||||||
|
if agents:
|
||||||
|
self.initialize_agents(agents)
|
||||||
|
|
||||||
|
logger.info(f"Initialized GraphSwarm: {swarm_name}")
|
||||||
|
|
||||||
|
def initialize_agents(
|
||||||
|
self,
|
||||||
|
agents: Union[List[Agent], List[Tuple[Agent, List[str]]]],
|
||||||
|
):
|
||||||
|
"""Initialize agents and their dependencies."""
|
||||||
|
try:
|
||||||
|
# Handle list of Agents or (Agent, dependencies) tuples
|
||||||
|
for item in agents:
|
||||||
|
if isinstance(item, tuple):
|
||||||
|
agent, dependencies = item
|
||||||
|
else:
|
||||||
|
agent, dependencies = item, []
|
||||||
|
|
||||||
|
if not isinstance(agent, Agent):
|
||||||
|
raise ValueError(
|
||||||
|
f"Expected Agent object, got {type(agent)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
self.agents[agent.agent_name] = agent
|
||||||
|
self.dependencies[agent.agent_name] = dependencies
|
||||||
|
self.graph.add_node(agent.agent_name, agent=agent)
|
||||||
|
|
||||||
|
# Add dependencies
|
||||||
|
for dep in dependencies:
|
||||||
|
if dep not in self.agents:
|
||||||
|
raise ValueError(
|
||||||
|
f"Dependency {dep} not found for agent {agent.agent_name}"
|
||||||
|
)
|
||||||
|
self.graph.add_edge(dep, agent.agent_name)
|
||||||
|
|
||||||
|
self._validate_graph()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to initialize agents: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def _validate_graph(self):
|
||||||
|
"""Validate the agent dependency graph."""
|
||||||
|
if not self.graph.nodes():
|
||||||
|
raise ValueError("No agents added to swarm")
|
||||||
|
|
||||||
|
if not nx.is_directed_acyclic_graph(self.graph):
|
||||||
|
cycles = list(nx.simple_cycles(self.graph))
|
||||||
|
raise ValueError(
|
||||||
|
f"Agent dependency graph contains cycles: {cycles}"
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_agent_role_description(self, agent_name: str) -> str:
|
||||||
|
"""Generate a description of the agent's role in the swarm."""
|
||||||
|
predecessors = list(self.graph.predecessors(agent_name))
|
||||||
|
successors = list(self.graph.successors(agent_name))
|
||||||
|
position = (
|
||||||
|
"initial"
|
||||||
|
if not predecessors
|
||||||
|
else ("final" if not successors else "intermediate")
|
||||||
|
)
|
||||||
|
|
||||||
|
role = f"""You are {agent_name}, a specialized agent in the {self.swarm_name}.
|
||||||
|
Position: {position} agent in the workflow
|
||||||
|
|
||||||
|
Your relationships:"""
|
||||||
|
|
||||||
|
if predecessors:
|
||||||
|
role += (
|
||||||
|
f"\nYou receive input from: {', '.join(predecessors)}"
|
||||||
|
)
|
||||||
|
if successors:
|
||||||
|
role += f"\nYour output will be used by: {', '.join(successors)}"
|
||||||
|
|
||||||
|
return role
|
||||||
|
|
||||||
|
def _generate_workflow_context(self) -> str:
|
||||||
|
"""Generate a description of the entire workflow."""
|
||||||
|
execution_order = list(nx.topological_sort(self.graph))
|
||||||
|
|
||||||
|
workflow = f"""Workflow Overview of {self.swarm_name}:
|
||||||
|
|
||||||
|
Processing Order:
|
||||||
|
{' -> '.join(execution_order)}
|
||||||
|
|
||||||
|
Agent Roles:
|
||||||
|
"""
|
||||||
|
|
||||||
|
for agent_name in execution_order:
|
||||||
|
predecessors = list(self.graph.predecessors(agent_name))
|
||||||
|
successors = list(self.graph.successors(agent_name))
|
||||||
|
|
||||||
|
workflow += f"\n\n{agent_name}:"
|
||||||
|
if predecessors:
|
||||||
|
workflow += (
|
||||||
|
f"\n- Receives from: {', '.join(predecessors)}"
|
||||||
|
)
|
||||||
|
if successors:
|
||||||
|
workflow += f"\n- Sends to: {', '.join(successors)}"
|
||||||
|
if not predecessors and not successors:
|
||||||
|
workflow += "\n- Independent agent"
|
||||||
|
|
||||||
|
return workflow
|
||||||
|
|
||||||
|
def _build_agent_prompt(
|
||||||
|
self, agent_name: str, task: str, context: Dict = None
|
||||||
|
) -> str:
|
||||||
|
"""Build a comprehensive prompt for the agent including role and context."""
|
||||||
|
prompt_parts = [
|
||||||
|
self._get_agent_role_description(agent_name),
|
||||||
|
"\nWorkflow Context:",
|
||||||
|
self._generate_workflow_context(),
|
||||||
|
"\nYour Task:",
|
||||||
|
task,
|
||||||
|
]
|
||||||
|
|
||||||
|
if context:
|
||||||
|
prompt_parts.extend(
|
||||||
|
["\nContext from Previous Agents:", str(context)]
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt_parts.extend(
|
||||||
|
[
|
||||||
|
"\nInstructions:",
|
||||||
|
"1. Process the task according to your role",
|
||||||
|
"2. Consider the input from previous agents when available",
|
||||||
|
"3. Provide clear, structured output",
|
||||||
|
"4. Remember that your output will be used by subsequent agents",
|
||||||
|
"\nResponse Guidelines:",
|
||||||
|
"- Provide clear, well-organized output",
|
||||||
|
"- Include relevant details and insights",
|
||||||
|
"- Highlight key findings",
|
||||||
|
"- Flag any uncertainties or issues",
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
return "\n".join(prompt_parts)
|
||||||
|
|
||||||
|
async def _execute_agent(
|
||||||
|
self, agent_name: str, task: str, context: Dict = None
|
||||||
|
) -> AgentOutput:
|
||||||
|
"""Execute a single agent."""
|
||||||
|
start_time = time.time()
|
||||||
|
agent = self.agents[agent_name]
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Build comprehensive prompt
|
||||||
|
full_prompt = self._build_agent_prompt(
|
||||||
|
agent_name, task, context
|
||||||
|
)
|
||||||
|
logger.debug(f"Prompt for {agent_name}:\n{full_prompt}")
|
||||||
|
|
||||||
|
# Execute agent
|
||||||
|
output = await asyncio.to_thread(agent.run, full_prompt)
|
||||||
|
|
||||||
|
return AgentOutput(
|
||||||
|
agent_name=agent_name,
|
||||||
|
output=output,
|
||||||
|
execution_time=time.time() - start_time,
|
||||||
|
metadata={
|
||||||
|
"task": task,
|
||||||
|
"context": context,
|
||||||
|
"position_in_workflow": list(
|
||||||
|
nx.topological_sort(self.graph)
|
||||||
|
).index(agent_name),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Error executing agent {agent_name}: {str(e)}"
|
||||||
|
)
|
||||||
|
return AgentOutput(
|
||||||
|
agent_name=agent_name,
|
||||||
|
output=None,
|
||||||
|
execution_time=time.time() - start_time,
|
||||||
|
error=str(e),
|
||||||
|
metadata={"task": task},
|
||||||
|
)
|
||||||
|
|
||||||
|
async def execute(self, task: str) -> SwarmOutput:
|
||||||
|
"""
|
||||||
|
Execute the entire swarm of agents with memory integration.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task: Initial task to execute
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
SwarmOutput: Structured output from all agents
|
||||||
|
"""
|
||||||
|
start_time = time.time()
|
||||||
|
outputs = {}
|
||||||
|
success = True
|
||||||
|
error = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Get similar past executions
|
||||||
|
similar_executions = self.memory.get_similar_executions(
|
||||||
|
task, limit=3
|
||||||
|
)
|
||||||
|
optimal_sequence = self.memory.get_optimal_sequence(task)
|
||||||
|
|
||||||
|
# Get base execution order
|
||||||
|
base_execution_order = list(
|
||||||
|
nx.topological_sort(self.graph)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Determine final execution order
|
||||||
|
if optimal_sequence and all(
|
||||||
|
agent in base_execution_order
|
||||||
|
for agent in optimal_sequence
|
||||||
|
):
|
||||||
|
logger.info(
|
||||||
|
f"Using optimal sequence from memory: {optimal_sequence}"
|
||||||
|
)
|
||||||
|
execution_order = optimal_sequence
|
||||||
|
else:
|
||||||
|
execution_order = base_execution_order
|
||||||
|
|
||||||
|
# Get historical context if available
|
||||||
|
historical_context = {}
|
||||||
|
if similar_executions:
|
||||||
|
best_execution = similar_executions[0]
|
||||||
|
if best_execution["success"]:
|
||||||
|
historical_context = {
|
||||||
|
"similar_task": best_execution["task"],
|
||||||
|
"previous_outputs": best_execution["outputs"],
|
||||||
|
"execution_time": best_execution[
|
||||||
|
"execution_time"
|
||||||
|
],
|
||||||
|
"success_patterns": self._extract_success_patterns(
|
||||||
|
similar_executions
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
# Execute agents in order
|
||||||
|
for agent_name in execution_order:
|
||||||
|
try:
|
||||||
|
# Get context from dependencies and history
|
||||||
|
agent_context = {
|
||||||
|
"dependencies": {
|
||||||
|
dep: outputs[dep].output
|
||||||
|
for dep in self.graph.predecessors(
|
||||||
|
agent_name
|
||||||
|
)
|
||||||
|
if dep in outputs
|
||||||
|
},
|
||||||
|
"historical": historical_context,
|
||||||
|
"position": execution_order.index(agent_name),
|
||||||
|
"total_agents": len(execution_order),
|
||||||
|
}
|
||||||
|
|
||||||
|
# Execute agent with enhanced context
|
||||||
|
output = await self._execute_agent(
|
||||||
|
agent_name, task, agent_context
|
||||||
|
)
|
||||||
|
outputs[agent_name] = output
|
||||||
|
|
||||||
|
# Update historical context with current execution
|
||||||
|
if output.output:
|
||||||
|
historical_context.update(
|
||||||
|
{
|
||||||
|
f"current_{agent_name}_output": output.output
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check for errors
|
||||||
|
if output.error:
|
||||||
|
success = False
|
||||||
|
error = f"Agent {agent_name} failed: {output.error}"
|
||||||
|
|
||||||
|
# Try to recover using memory
|
||||||
|
if similar_executions:
|
||||||
|
recovery_output = self._attempt_recovery(
|
||||||
|
agent_name, task, similar_executions
|
||||||
|
)
|
||||||
|
if recovery_output:
|
||||||
|
outputs[agent_name] = recovery_output
|
||||||
|
success = True
|
||||||
|
error = None
|
||||||
|
continue
|
||||||
|
break
|
||||||
|
|
||||||
|
except Exception as agent_error:
|
||||||
|
logger.error(
|
||||||
|
f"Error executing agent {agent_name}: {str(agent_error)}"
|
||||||
|
)
|
||||||
|
success = False
|
||||||
|
error = f"Agent {agent_name} failed: {str(agent_error)}"
|
||||||
|
break
|
||||||
|
|
||||||
|
# Create result
|
||||||
|
result = SwarmOutput(
|
||||||
|
outputs=outputs,
|
||||||
|
execution_time=time.time() - start_time,
|
||||||
|
success=success,
|
||||||
|
error=error,
|
||||||
|
metadata={
|
||||||
|
"task": task,
|
||||||
|
"used_optimal_sequence": optimal_sequence
|
||||||
|
is not None,
|
||||||
|
"similar_executions_found": len(
|
||||||
|
similar_executions
|
||||||
|
),
|
||||||
|
"execution_order": execution_order,
|
||||||
|
"historical_context_used": bool(
|
||||||
|
historical_context
|
||||||
|
),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store execution in memory
|
||||||
|
await self._store_execution_async(task, result)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Swarm execution failed: {str(e)}")
|
||||||
|
return SwarmOutput(
|
||||||
|
outputs=outputs,
|
||||||
|
execution_time=time.time() - start_time,
|
||||||
|
success=False,
|
||||||
|
error=str(e),
|
||||||
|
metadata={"task": task},
|
||||||
|
)
|
||||||
|
|
||||||
|
def run(self, task: str) -> SwarmOutput:
|
||||||
|
"""Synchronous interface to execute the swarm."""
|
||||||
|
return asyncio.run(self.execute(task))
|
||||||
|
|
||||||
|
def _extract_success_patterns(
|
||||||
|
self, similar_executions: List[Dict]
|
||||||
|
) -> Dict:
|
||||||
|
"""Extract success patterns from similar executions."""
|
||||||
|
patterns = {}
|
||||||
|
successful_execs = [
|
||||||
|
ex for ex in similar_executions if ex["success"]
|
||||||
|
]
|
||||||
|
|
||||||
|
if successful_execs:
|
||||||
|
patterns = {
|
||||||
|
"common_sequences": self._find_common_sequences(
|
||||||
|
successful_execs
|
||||||
|
),
|
||||||
|
"avg_execution_time": sum(
|
||||||
|
ex["execution_time"] for ex in successful_execs
|
||||||
|
)
|
||||||
|
/ len(successful_execs),
|
||||||
|
"successful_strategies": self._extract_strategies(
|
||||||
|
successful_execs
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
return patterns
|
||||||
|
|
||||||
|
def _attempt_recovery(
|
||||||
|
self,
|
||||||
|
failed_agent: str,
|
||||||
|
task: str,
|
||||||
|
similar_executions: List[Dict],
|
||||||
|
) -> Optional[AgentOutput]:
|
||||||
|
"""Attempt to recover from failure using memory."""
|
||||||
|
for execution in similar_executions:
|
||||||
|
if (
|
||||||
|
execution["success"]
|
||||||
|
and failed_agent in execution["outputs"]
|
||||||
|
):
|
||||||
|
historical_output = execution["outputs"][failed_agent]
|
||||||
|
|
||||||
|
return AgentOutput(
|
||||||
|
agent_name=failed_agent,
|
||||||
|
output=historical_output["output"],
|
||||||
|
execution_time=historical_output[
|
||||||
|
"execution_time"
|
||||||
|
],
|
||||||
|
metadata={
|
||||||
|
"recovered_from_memory": True,
|
||||||
|
"original_task": execution["task"],
|
||||||
|
},
|
||||||
|
)
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _store_execution_async(
|
||||||
|
self, task: str, result: SwarmOutput
|
||||||
|
):
|
||||||
|
"""Asynchronously store execution in memory."""
|
||||||
|
try:
|
||||||
|
await asyncio.to_thread(
|
||||||
|
self.memory.store_execution, task, result
|
||||||
|
)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Failed to store execution in memory: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
def add_agent(self, agent: Agent, dependencies: List[str] = None):
|
||||||
|
"""Add a new agent to the swarm."""
|
||||||
|
dependencies = dependencies or []
|
||||||
|
self.agents[agent.agent_name] = agent
|
||||||
|
self.dependencies[agent.agent_name] = dependencies
|
||||||
|
self.graph.add_node(agent.agent_name, agent=agent)
|
||||||
|
|
||||||
|
for dep in dependencies:
|
||||||
|
if dep not in self.agents:
|
||||||
|
raise ValueError(f"Dependency {dep} not found")
|
||||||
|
self.graph.add_edge(dep, agent.agent_name)
|
||||||
|
|
||||||
|
self._validate_graph()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
try:
|
||||||
|
# Create agents
|
||||||
|
data_collector = Agent(
|
||||||
|
agent_name="Market-Data-Collector",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
max_loops=1,
|
||||||
|
streaming_on=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
trend_analyzer = Agent(
|
||||||
|
agent_name="Market-Trend-Analyzer",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
max_loops=1,
|
||||||
|
streaming_on=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
report_generator = Agent(
|
||||||
|
agent_name="Investment-Report-Generator",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
max_loops=1,
|
||||||
|
streaming_on=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create swarm
|
||||||
|
swarm = GraphSwarm(
|
||||||
|
agents=[
|
||||||
|
(data_collector, []),
|
||||||
|
(trend_analyzer, ["Market-Data-Collector"]),
|
||||||
|
(report_generator, ["Market-Trend-Analyzer"]),
|
||||||
|
],
|
||||||
|
swarm_name="Market Analysis Intelligence Network",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the swarm
|
||||||
|
result = swarm.run(
|
||||||
|
"Analyze current market trends for tech stocks and provide investment recommendations"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Print results
|
||||||
|
print(f"Execution success: {result.success}")
|
||||||
|
print(f"Total time: {result.execution_time:.2f} seconds")
|
||||||
|
|
||||||
|
for agent_name, output in result.outputs.items():
|
||||||
|
print(f"\nAgent: {agent_name}")
|
||||||
|
print(f"Output: {output.output}")
|
||||||
|
if output.error:
|
||||||
|
print(f"Error: {output.error}")
|
||||||
|
except Exception as error:
|
||||||
|
logger.error(error)
|
||||||
|
raise error
|
@ -0,0 +1,244 @@
|
|||||||
|
import os
|
||||||
|
import asyncio
|
||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from typing import List, Dict, Any
|
||||||
|
from swarms import Agent
|
||||||
|
from swarm_models import OpenAIChat
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from swarms.utils.formatter import formatter
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# Get OpenAI API key
|
||||||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
|
||||||
|
# Define Pydantic schema for agent outputs
|
||||||
|
class AgentOutput(BaseModel):
|
||||||
|
"""Schema for capturing the output of each agent."""
|
||||||
|
|
||||||
|
agent_name: str = Field(..., description="The name of the agent")
|
||||||
|
message: str = Field(
|
||||||
|
...,
|
||||||
|
description="The agent's response or contribution to the group chat",
|
||||||
|
)
|
||||||
|
metadata: Dict[str, Any] = Field(
|
||||||
|
default_factory=dict,
|
||||||
|
description="Additional metadata about the agent's response",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class GroupChat:
|
||||||
|
"""
|
||||||
|
GroupChat class to enable multiple agents to communicate in an asynchronous group chat.
|
||||||
|
Each agent is aware of all other agents, every message exchanged, and the social context.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name: str,
|
||||||
|
description: str,
|
||||||
|
agents: List[Agent],
|
||||||
|
max_loops: int = 1,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initialize the GroupChat.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
name (str): Name of the group chat.
|
||||||
|
description (str): Description of the purpose of the group chat.
|
||||||
|
agents (List[Agent]): A list of agents participating in the chat.
|
||||||
|
max_loops (int): Maximum number of loops to run through all agents.
|
||||||
|
"""
|
||||||
|
self.name = name
|
||||||
|
self.description = description
|
||||||
|
self.agents = agents
|
||||||
|
self.max_loops = max_loops
|
||||||
|
self.chat_history = (
|
||||||
|
[]
|
||||||
|
) # Stores all messages exchanged in the chat
|
||||||
|
|
||||||
|
formatter.print_panel(
|
||||||
|
f"Initialized GroupChat '{self.name}' with {len(self.agents)} agents. Max loops: {self.max_loops}",
|
||||||
|
title="Groupchat Swarm",
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _agent_conversation(
|
||||||
|
self, agent: Agent, input_message: str
|
||||||
|
) -> AgentOutput:
|
||||||
|
"""
|
||||||
|
Facilitate a single agent's response to the chat.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
agent (Agent): The agent responding.
|
||||||
|
input_message (str): The message triggering the response.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
AgentOutput: The agent's response captured in a structured format.
|
||||||
|
"""
|
||||||
|
formatter.print_panel(
|
||||||
|
f"Agent '{agent.agent_name}' is responding to the message: {input_message}",
|
||||||
|
title="Groupchat Swarm",
|
||||||
|
)
|
||||||
|
response = await asyncio.to_thread(agent.run, input_message)
|
||||||
|
|
||||||
|
output = AgentOutput(
|
||||||
|
agent_name=agent.agent_name,
|
||||||
|
message=response,
|
||||||
|
metadata={"context_length": agent.context_length},
|
||||||
|
)
|
||||||
|
# logger.debug(f"Agent '{agent.agent_name}' response: {response}")
|
||||||
|
return output
|
||||||
|
|
||||||
|
async def _run(self, initial_message: str) -> List[AgentOutput]:
|
||||||
|
"""
|
||||||
|
Execute the group chat asynchronously, looping through all agents up to max_loops.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
initial_message (str): The initial message to start the chat.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[AgentOutput]: The responses of all agents across all loops.
|
||||||
|
"""
|
||||||
|
formatter.print_panel(
|
||||||
|
f"Starting group chat '{self.name}' with initial message: {initial_message}",
|
||||||
|
title="Groupchat Swarm",
|
||||||
|
)
|
||||||
|
self.chat_history.append(
|
||||||
|
{"sender": "System", "message": initial_message}
|
||||||
|
)
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for loop in range(self.max_loops):
|
||||||
|
formatter.print_panel(
|
||||||
|
f"Group chat loop {loop + 1}/{self.max_loops}",
|
||||||
|
title="Groupchat Swarm",
|
||||||
|
)
|
||||||
|
|
||||||
|
for agent in self.agents:
|
||||||
|
# Create a custom input message for each agent, sharing the chat history and social context
|
||||||
|
input_message = (
|
||||||
|
f"Chat History:\n{self._format_chat_history()}\n\n"
|
||||||
|
f"Participants:\n"
|
||||||
|
+ "\n".join(
|
||||||
|
[
|
||||||
|
f"- {a.agent_name}: {a.system_prompt}"
|
||||||
|
for a in self.agents
|
||||||
|
]
|
||||||
|
)
|
||||||
|
+ f"\n\nNew Message: {initial_message}\n\n"
|
||||||
|
f"You are '{agent.agent_name}'. Remember to keep track of the social context, who is speaking, "
|
||||||
|
f"and respond accordingly based on your role: {agent.system_prompt}."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Collect agent's response
|
||||||
|
output = await self._agent_conversation(
|
||||||
|
agent, input_message
|
||||||
|
)
|
||||||
|
outputs.append(output)
|
||||||
|
|
||||||
|
# Update chat history with the agent's response
|
||||||
|
self.chat_history.append(
|
||||||
|
{
|
||||||
|
"sender": agent.agent_name,
|
||||||
|
"message": output.message,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
formatter.print_panel(
|
||||||
|
"Group chat completed. All agent responses captured.",
|
||||||
|
title="Groupchat Swarm",
|
||||||
|
)
|
||||||
|
return outputs
|
||||||
|
|
||||||
|
def run(self, task: str, *args, **kwargs):
|
||||||
|
return asyncio.run(self.run(task, *args, **kwargs))
|
||||||
|
|
||||||
|
def _format_chat_history(self) -> str:
|
||||||
|
"""
|
||||||
|
Format the chat history for agents to understand the context.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The formatted chat history as a string.
|
||||||
|
"""
|
||||||
|
return "\n".join(
|
||||||
|
[
|
||||||
|
f"{entry['sender']}: {entry['message']}"
|
||||||
|
for entry in self.chat_history
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
"""String representation of the group chat's outputs."""
|
||||||
|
return self._format_chat_history()
|
||||||
|
|
||||||
|
def to_json(self) -> str:
|
||||||
|
"""JSON representation of the group chat's outputs."""
|
||||||
|
return [
|
||||||
|
{"sender": entry["sender"], "message": entry["message"]}
|
||||||
|
for entry in self.chat_history
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
# Example Usage
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# Get the OpenAI API key from the environment variable
|
||||||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
|
||||||
|
# Create an instance of the OpenAIChat class
|
||||||
|
model = OpenAIChat(
|
||||||
|
openai_api_key=api_key,
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
temperature=0.1,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Example agents
|
||||||
|
agent1 = Agent(
|
||||||
|
agent_name="Financial-Analysis-Agent",
|
||||||
|
system_prompt="You are a financial analyst specializing in investment strategies.",
|
||||||
|
llm=model,
|
||||||
|
max_loops=1,
|
||||||
|
autosave=False,
|
||||||
|
dashboard=False,
|
||||||
|
verbose=True,
|
||||||
|
dynamic_temperature_enabled=True,
|
||||||
|
user_name="swarms_corp",
|
||||||
|
retry_attempts=1,
|
||||||
|
context_length=200000,
|
||||||
|
output_type="string",
|
||||||
|
streaming_on=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
agent2 = Agent(
|
||||||
|
agent_name="Tax-Adviser-Agent",
|
||||||
|
system_prompt="You are a tax adviser who provides clear and concise guidance on tax-related queries.",
|
||||||
|
llm=model,
|
||||||
|
max_loops=1,
|
||||||
|
autosave=False,
|
||||||
|
dashboard=False,
|
||||||
|
verbose=True,
|
||||||
|
dynamic_temperature_enabled=True,
|
||||||
|
user_name="swarms_corp",
|
||||||
|
retry_attempts=1,
|
||||||
|
context_length=200000,
|
||||||
|
output_type="string",
|
||||||
|
streaming_on=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create group chat
|
||||||
|
group_chat = GroupChat(
|
||||||
|
name="Financial Discussion",
|
||||||
|
description="A group chat for financial analysis and tax advice.",
|
||||||
|
agents=[agent1, agent2],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the group chat
|
||||||
|
asyncio.run(
|
||||||
|
group_chat.run(
|
||||||
|
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria? What do you guys think?"
|
||||||
|
)
|
||||||
|
)
|
@ -0,0 +1,276 @@
|
|||||||
|
import asyncio
|
||||||
|
import pulsar
|
||||||
|
|
||||||
|
from pulsar import ConsumerType
|
||||||
|
from loguru import logger
|
||||||
|
from swarms import Agent
|
||||||
|
from typing import List, Dict, Any
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
class ScalableAsyncAgentSwarm:
|
||||||
|
"""
|
||||||
|
A scalable, asynchronous swarm of agents leveraging Apache Pulsar for inter-agent communication.
|
||||||
|
Provides load balancing, health monitoring, dead letter queues, and centralized logging.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
pulsar_url: str,
|
||||||
|
topic: str,
|
||||||
|
dlq_topic: str,
|
||||||
|
agents_config: List[Dict[str, Any]],
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initializes the async swarm with agents.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pulsar_url (str): The URL of the Apache Pulsar broker.
|
||||||
|
topic (str): The main topic for task distribution.
|
||||||
|
dlq_topic (str): The Dead Letter Queue topic for failed messages.
|
||||||
|
agents_config (List[Dict[str, Any]]): List of agent configurations with `name`, `description`, and `model_name`.
|
||||||
|
"""
|
||||||
|
self.pulsar_url = pulsar_url
|
||||||
|
self.topic = topic
|
||||||
|
self.dlq_topic = dlq_topic
|
||||||
|
self.agents_config = agents_config
|
||||||
|
self.client = pulsar.Client(pulsar_url)
|
||||||
|
self.consumer = self.client.subscribe(
|
||||||
|
topic,
|
||||||
|
subscription_name="swarm-task-sub",
|
||||||
|
consumer_type=ConsumerType.Shared,
|
||||||
|
)
|
||||||
|
self.dlq_producer = self.client.create_producer(dlq_topic)
|
||||||
|
self.response_logger = []
|
||||||
|
self.agents = [
|
||||||
|
self.create_agent(config) for config in agents_config
|
||||||
|
]
|
||||||
|
self.agent_index = 0
|
||||||
|
|
||||||
|
logger.info(
|
||||||
|
"Swarm initialized with agents: {}",
|
||||||
|
[agent["name"] for agent in agents_config],
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_agent(
|
||||||
|
self, agent_config: Dict[str, Any]
|
||||||
|
) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Creates a new agent configuration with asynchronous capabilities.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
agent_config (Dict[str, Any]): Configuration dictionary with agent details.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict[str, Any]: A dictionary containing agent metadata and functionality.
|
||||||
|
"""
|
||||||
|
agent_name = agent_config["name"]
|
||||||
|
description = agent_config["description"]
|
||||||
|
model_name = agent_config.get("model_name", "gpt-4o-mini")
|
||||||
|
|
||||||
|
class AsyncAgent:
|
||||||
|
"""
|
||||||
|
An asynchronous agent that processes tasks and communicates via Apache Pulsar.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self, name: str, description: str, model_name: str
|
||||||
|
):
|
||||||
|
self.name = name
|
||||||
|
self.description = description
|
||||||
|
self.agent = Agent(
|
||||||
|
agent_name=name,
|
||||||
|
model_name=model_name,
|
||||||
|
max_loops="auto",
|
||||||
|
interactive=True,
|
||||||
|
streaming_on=True,
|
||||||
|
)
|
||||||
|
logger.info(
|
||||||
|
f"Initialized agent '{name}' - {description}"
|
||||||
|
)
|
||||||
|
|
||||||
|
async def process_task(
|
||||||
|
self, message: str
|
||||||
|
) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Processes a single task using the agent.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message (str): The task message.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dict[str, Any]: JSON-formatted response.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
logger.info(
|
||||||
|
f"Agent {self.name} processing task: {message}"
|
||||||
|
)
|
||||||
|
response = await asyncio.to_thread(
|
||||||
|
self.agent.run, message
|
||||||
|
)
|
||||||
|
logger.info(f"Agent {self.name} completed task.")
|
||||||
|
return {
|
||||||
|
"agent_name": self.name,
|
||||||
|
"response": response,
|
||||||
|
}
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Agent {self.name} encountered an error: {e}"
|
||||||
|
)
|
||||||
|
return {"agent_name": self.name, "error": str(e)}
|
||||||
|
|
||||||
|
return {
|
||||||
|
"name": agent_name,
|
||||||
|
"instance": AsyncAgent(
|
||||||
|
agent_name, description, model_name
|
||||||
|
),
|
||||||
|
}
|
||||||
|
|
||||||
|
async def distribute_task(self, message: str):
|
||||||
|
"""
|
||||||
|
Distributes a task to the next available agent using round-robin.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message (str): The task message.
|
||||||
|
"""
|
||||||
|
agent = self.agents[self.agent_index]
|
||||||
|
self.agent_index = (self.agent_index + 1) % len(self.agents)
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = await agent["instance"].process_task(message)
|
||||||
|
self.log_response(response)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(
|
||||||
|
f"Error processing task by agent {agent['name']}: {e}"
|
||||||
|
)
|
||||||
|
self.send_to_dlq(message)
|
||||||
|
|
||||||
|
async def monitor_health(self):
|
||||||
|
"""
|
||||||
|
Periodically monitors the health of agents.
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
logger.info("Performing health check for all agents.")
|
||||||
|
for agent in self.agents:
|
||||||
|
logger.info(f"Agent {agent['name']} is online.")
|
||||||
|
await asyncio.sleep(10)
|
||||||
|
|
||||||
|
def send_to_dlq(self, message: str):
|
||||||
|
"""
|
||||||
|
Sends a failed message to the Dead Letter Queue (DLQ).
|
||||||
|
|
||||||
|
Args:
|
||||||
|
message (str): The message to send to the DLQ.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
self.dlq_producer.send(message.encode("utf-8"))
|
||||||
|
logger.info("Message sent to Dead Letter Queue.")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to send message to DLQ: {e}")
|
||||||
|
|
||||||
|
def log_response(self, response: Dict[str, Any]):
|
||||||
|
"""
|
||||||
|
Logs the response to a centralized list for later analysis.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
response (Dict[str, Any]): The agent's response.
|
||||||
|
"""
|
||||||
|
self.response_logger.append(response)
|
||||||
|
logger.info(f"Response logged: {response}")
|
||||||
|
|
||||||
|
async def listen_and_distribute(self):
|
||||||
|
"""
|
||||||
|
Listens to the main Pulsar topic and distributes tasks to agents.
|
||||||
|
"""
|
||||||
|
while True:
|
||||||
|
msg = self.consumer.receive()
|
||||||
|
try:
|
||||||
|
message = msg.data().decode("utf-8")
|
||||||
|
logger.info(f"Received task: {message}")
|
||||||
|
await self.distribute_task(message)
|
||||||
|
self.consumer.acknowledge(msg)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error processing message: {e}")
|
||||||
|
self.send_to_dlq(msg.data().decode("utf-8"))
|
||||||
|
self.consumer.negative_acknowledge(msg)
|
||||||
|
|
||||||
|
async def run(self):
|
||||||
|
"""
|
||||||
|
Runs the swarm asynchronously with health monitoring and task distribution.
|
||||||
|
"""
|
||||||
|
logger.info("Starting the async swarm...")
|
||||||
|
task_listener = asyncio.create_task(
|
||||||
|
self.listen_and_distribute()
|
||||||
|
)
|
||||||
|
health_monitor = asyncio.create_task(self.monitor_health())
|
||||||
|
await asyncio.gather(task_listener, health_monitor)
|
||||||
|
|
||||||
|
def shutdown(self):
|
||||||
|
"""
|
||||||
|
Safely shuts down the swarm and logs all responses.
|
||||||
|
"""
|
||||||
|
logger.info("Shutting down the swarm...")
|
||||||
|
self.client.close()
|
||||||
|
with open("responses.json", "w") as f:
|
||||||
|
json.dump(self.response_logger, f, indent=4)
|
||||||
|
logger.info("Responses saved to 'responses.json'.")
|
||||||
|
|
||||||
|
|
||||||
|
# from scalable_agent_swarm import ScalableAsyncAgentSwarm # Assuming your swarm class is saved here
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Example Configuration
|
||||||
|
PULSAR_URL = "pulsar://localhost:6650"
|
||||||
|
TOPIC = "stock-analysis"
|
||||||
|
DLQ_TOPIC = "stock-analysis-dlq"
|
||||||
|
|
||||||
|
# Agents configuration
|
||||||
|
AGENTS_CONFIG = [
|
||||||
|
{
|
||||||
|
"name": "Stock-Analysis-Agent-1",
|
||||||
|
"description": "Analyzes stock trends.",
|
||||||
|
"model_name": "gpt-4o-mini",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Stock-News-Agent",
|
||||||
|
"description": "Summarizes stock news.",
|
||||||
|
"model_name": "gpt-4o-mini",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Tech-Trends-Agent",
|
||||||
|
"description": "Tracks tech sector trends.",
|
||||||
|
"model_name": "gpt-4o-mini",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
# Tasks to send
|
||||||
|
TASKS = [
|
||||||
|
"Analyze the trend for tech stocks in Q4 2024",
|
||||||
|
"Summarize the latest news on the S&P 500",
|
||||||
|
"Identify the top-performing sectors in the stock market",
|
||||||
|
"Provide a forecast for AI-related stocks for 2025",
|
||||||
|
]
|
||||||
|
|
||||||
|
# Initialize and run the swarm
|
||||||
|
swarm = ScalableAsyncAgentSwarm(
|
||||||
|
PULSAR_URL, TOPIC, DLQ_TOPIC, AGENTS_CONFIG
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
# Run the swarm in the background
|
||||||
|
swarm_task = asyncio.create_task(swarm.run())
|
||||||
|
|
||||||
|
# Send tasks to the topic
|
||||||
|
client = pulsar.Client(PULSAR_URL)
|
||||||
|
producer = client.create_producer(TOPIC)
|
||||||
|
|
||||||
|
for task in TASKS:
|
||||||
|
producer.send(task.encode("utf-8"))
|
||||||
|
print(f"Sent task: {task}")
|
||||||
|
|
||||||
|
producer.close()
|
||||||
|
client.close()
|
||||||
|
|
||||||
|
# Keep the swarm running
|
||||||
|
asyncio.run(swarm_task)
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
swarm.shutdown()
|
@ -0,0 +1,105 @@
|
|||||||
|
try:
|
||||||
|
from litellm import completion
|
||||||
|
except ImportError:
|
||||||
|
import subprocess
|
||||||
|
|
||||||
|
subprocess.check_call(["pip", "install", "litellm"])
|
||||||
|
import litellm
|
||||||
|
from litellm import completion
|
||||||
|
|
||||||
|
litellm.set_verbose = True
|
||||||
|
|
||||||
|
|
||||||
|
class LiteLLM:
|
||||||
|
"""
|
||||||
|
This class represents a LiteLLM.
|
||||||
|
It is used to interact with the LLM model for various tasks.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = "gpt-4o",
|
||||||
|
system_prompt: str = None,
|
||||||
|
stream: bool = False,
|
||||||
|
temperature: float = 0.5,
|
||||||
|
max_tokens: int = 4000,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initialize the LiteLLM with the given parameters.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_name (str, optional): The name of the model to use. Defaults to "gpt-4o".
|
||||||
|
system_prompt (str, optional): The system prompt to use. Defaults to None.
|
||||||
|
stream (bool, optional): Whether to stream the output. Defaults to False.
|
||||||
|
temperature (float, optional): The temperature for the model. Defaults to 0.5.
|
||||||
|
max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 4000.
|
||||||
|
"""
|
||||||
|
self.model_name = model_name
|
||||||
|
self.system_prompt = system_prompt
|
||||||
|
self.stream = stream
|
||||||
|
self.temperature = temperature
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
|
||||||
|
def _prepare_messages(self, task: str) -> list:
|
||||||
|
"""
|
||||||
|
Prepare the messages for the given task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to prepare messages for.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
list: A list of messages prepared for the task.
|
||||||
|
"""
|
||||||
|
messages = []
|
||||||
|
|
||||||
|
if self.system_prompt: # Check if system_prompt is not None
|
||||||
|
messages.append(
|
||||||
|
{"role": "system", "content": self.system_prompt}
|
||||||
|
)
|
||||||
|
|
||||||
|
messages.append({"role": "user", "content": task})
|
||||||
|
|
||||||
|
return messages
|
||||||
|
|
||||||
|
def run(self, task: str, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Run the LLM model for the given task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to run the model for.
|
||||||
|
*args: Additional positional arguments to pass to the model.
|
||||||
|
**kwargs: Additional keyword arguments to pass to the model.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The content of the response from the model.
|
||||||
|
"""
|
||||||
|
messages = self._prepare_messages(task)
|
||||||
|
|
||||||
|
response = completion(
|
||||||
|
model=self.model_name,
|
||||||
|
messages=messages,
|
||||||
|
stream=self.stream,
|
||||||
|
temperature=self.temperature,
|
||||||
|
# max_completion_tokens=self.max_tokens,
|
||||||
|
max_tokens=self.max_tokens,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
content = response.choices[
|
||||||
|
0
|
||||||
|
].message.content # Accessing the content
|
||||||
|
return content
|
||||||
|
|
||||||
|
def __call__(self, task: str, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Call the LLM model for the given task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to run the model for.
|
||||||
|
*args: Additional positional arguments to pass to the model.
|
||||||
|
**kwargs: Additional keyword arguments to pass to the model.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The content of the response from the model.
|
||||||
|
"""
|
||||||
|
return self.run(task, *args, **kwargs)
|
@ -1,50 +1,64 @@
|
|||||||
import re
|
import re
|
||||||
|
|
||||||
|
|
||||||
def extract_code_from_markdown(markdown_content: str) -> str:
|
def extract_code_blocks_with_language(markdown_text: str):
|
||||||
"""
|
"""
|
||||||
Extracts code blocks from a Markdown string and returns them as a single string.
|
Extracts all code blocks from Markdown text along with their languages.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
- markdown_content (str): The Markdown content as a string.
|
markdown_text (str): The input Markdown text.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
- str: A single string containing all the code blocks separated by newlines.
|
list[dict]: A list of dictionaries, each containing:
|
||||||
|
- 'language': The detected language (or 'plaintext' if none specified).
|
||||||
|
- 'content': The content of the code block.
|
||||||
"""
|
"""
|
||||||
# Regular expression for fenced code blocks with optional language specifier
|
# Regex pattern to match code blocks and optional language specifiers
|
||||||
pattern = r"```(?:\w+\n)?(.*?)```"
|
pattern = r"```(\w+)?\n(.*?)```"
|
||||||
|
|
||||||
# Check if markdown_content is a string
|
# Find all matches (language and content)
|
||||||
if not isinstance(markdown_content, str):
|
matches = re.findall(pattern, markdown_text, re.DOTALL)
|
||||||
raise TypeError("markdown_content must be a string")
|
|
||||||
|
|
||||||
# Find all matches of the pattern
|
# Parse results
|
||||||
matches = re.finditer(pattern, markdown_content, re.DOTALL)
|
|
||||||
|
|
||||||
# Extract the content inside the backticks
|
|
||||||
code_blocks = []
|
code_blocks = []
|
||||||
for match in matches:
|
for language, content in matches:
|
||||||
code_block = match.group(1).strip()
|
language = (
|
||||||
# Remove any leading or trailing whitespace from the code block
|
language.strip() if language else "plaintext"
|
||||||
code_block = code_block.strip()
|
) # Default to 'plaintext'
|
||||||
# Remove any empty lines from the code block
|
code_blocks.append(
|
||||||
code_block = "\n".join(
|
{"language": language, "content": content.strip()}
|
||||||
[line for line in code_block.split("\n") if line.strip()]
|
|
||||||
)
|
)
|
||||||
code_blocks.append(code_block)
|
|
||||||
|
|
||||||
# Concatenate all code blocks separated by newlines
|
return code_blocks
|
||||||
if code_blocks:
|
|
||||||
return "\n\n".join(code_blocks)
|
|
||||||
else:
|
def extract_code_from_markdown(
|
||||||
return ""
|
markdown_text: str, language: str = None
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Extracts content of code blocks for a specific language or all blocks if no language specified.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
markdown_text (str): The input Markdown text.
|
||||||
|
language (str, optional): The language to filter by (e.g., 'yaml', 'python').
|
||||||
|
|
||||||
# example = """
|
Returns:
|
||||||
# hello im an agent
|
str: The concatenated content of matched code blocks or an empty string if none found.
|
||||||
# ```bash
|
"""
|
||||||
# pip install swarms
|
# Get all code blocks with detected languages
|
||||||
# ```
|
code_blocks = extract_code_blocks_with_language(markdown_text)
|
||||||
# """
|
|
||||||
|
# Filter by language if specified
|
||||||
|
if language:
|
||||||
|
code_blocks = [
|
||||||
|
block["content"]
|
||||||
|
for block in code_blocks
|
||||||
|
if block["language"] == language
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
code_blocks = [
|
||||||
|
block["content"] for block in code_blocks
|
||||||
|
] # Include all blocks
|
||||||
|
|
||||||
# print(extract_code_from_markdown(example)) # Output: { "type": "function", "function": { "name": "fetch_financial_news", "parameters": { "query": "Nvidia news", "num_articles": 5 } } }
|
# Return concatenated content
|
||||||
|
return "\n\n".join(code_blocks) if code_blocks else ""
|
||||||
|
@ -1,51 +0,0 @@
|
|||||||
import json
|
|
||||||
|
|
||||||
import yaml
|
|
||||||
|
|
||||||
|
|
||||||
def remove_whitespace_from_json(json_string: str) -> str:
|
|
||||||
"""
|
|
||||||
Removes unnecessary whitespace from a JSON string.
|
|
||||||
|
|
||||||
This function parses the JSON string into a Python object and then
|
|
||||||
serializes it back into a JSON string without unnecessary whitespace.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
json_string (str): The JSON string.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The JSON string with whitespace removed.
|
|
||||||
"""
|
|
||||||
parsed = json.loads(json_string)
|
|
||||||
return json.dumps(parsed, separators=(",", ":"))
|
|
||||||
|
|
||||||
|
|
||||||
# # Example usage for JSON
|
|
||||||
# json_string = '{"field1": 123, "field2": "example text"}'
|
|
||||||
# print(remove_whitespace_from_json(json_string))
|
|
||||||
|
|
||||||
|
|
||||||
def remove_whitespace_from_yaml(yaml_string: str) -> str:
|
|
||||||
"""
|
|
||||||
Removes unnecessary whitespace from a YAML string.
|
|
||||||
|
|
||||||
This function parses the YAML string into a Python object and then
|
|
||||||
serializes it back into a YAML string with minimized whitespace.
|
|
||||||
Note: This might change the representation style of YAML data.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
yaml_string (str): The YAML string.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The YAML string with whitespace reduced.
|
|
||||||
"""
|
|
||||||
parsed = yaml.safe_load(yaml_string)
|
|
||||||
return yaml.dump(parsed, default_flow_style=True)
|
|
||||||
|
|
||||||
|
|
||||||
# # Example usage for YAML
|
|
||||||
# yaml_string = """
|
|
||||||
# field1: 123
|
|
||||||
# field2: example text
|
|
||||||
# """
|
|
||||||
# print(remove_whitespace_from_yaml(yaml_string))
|
|
@ -0,0 +1,53 @@
|
|||||||
|
import concurrent.futures
|
||||||
|
from typing import List, Union
|
||||||
|
from swarms.structs.agent import Agent
|
||||||
|
|
||||||
|
|
||||||
|
def update_system_prompts(
|
||||||
|
agents: List[Union[Agent, str]],
|
||||||
|
prompt: str,
|
||||||
|
) -> List[Agent]:
|
||||||
|
"""
|
||||||
|
Update system prompts for a list of agents concurrently.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
agents: List of Agent objects or strings to update
|
||||||
|
prompt: The prompt text to append to each agent's system prompt
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of updated Agent objects
|
||||||
|
"""
|
||||||
|
if not agents:
|
||||||
|
return agents
|
||||||
|
|
||||||
|
def update_agent_prompt(agent: Union[Agent, str]) -> Agent:
|
||||||
|
# Convert string to Agent if needed
|
||||||
|
if isinstance(agent, str):
|
||||||
|
agent = Agent(
|
||||||
|
agent_name=agent,
|
||||||
|
system_prompt=prompt, # Initialize with the provided prompt
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Preserve existing prompt and append new one
|
||||||
|
existing_prompt = (
|
||||||
|
agent.system_prompt if agent.system_prompt else ""
|
||||||
|
)
|
||||||
|
agent.system_prompt = existing_prompt + "\n" + prompt
|
||||||
|
return agent
|
||||||
|
|
||||||
|
# Use ThreadPoolExecutor for concurrent execution
|
||||||
|
max_workers = min(len(agents), 4) # Reasonable thread count
|
||||||
|
with concurrent.futures.ThreadPoolExecutor(
|
||||||
|
max_workers=max_workers
|
||||||
|
) as executor:
|
||||||
|
futures = []
|
||||||
|
for agent in agents:
|
||||||
|
future = executor.submit(update_agent_prompt, agent)
|
||||||
|
futures.append(future)
|
||||||
|
|
||||||
|
# Collect results as they complete
|
||||||
|
updated_agents = []
|
||||||
|
for future in concurrent.futures.as_completed(futures):
|
||||||
|
updated_agents.append(future.result())
|
||||||
|
|
||||||
|
return updated_agents
|
Loading…
Reference in new issue