parent
1f734ab206
commit
4eb60fea4d
@ -1,96 +0,0 @@
|
|||||||
import os
|
|
||||||
import datetime
|
|
||||||
from dotenv import load_dotenv
|
|
||||||
from swarms.models.stable_diffusion import StableDiffusion
|
|
||||||
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
|
||||||
from swarms.models import OpenAIChat
|
|
||||||
from swarms.structs import Agent
|
|
||||||
|
|
||||||
# Load environment variables
|
|
||||||
load_dotenv()
|
|
||||||
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
||||||
stability_api_key = os.getenv("STABILITY_API_KEY")
|
|
||||||
|
|
||||||
# Initialize the models
|
|
||||||
vision_api = GPT4VisionAPI(api_key=openai_api_key)
|
|
||||||
sd_api = StableDiffusion(api_key=stability_api_key)
|
|
||||||
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
|
|
||||||
|
|
||||||
|
|
||||||
class Idea2Image(Agent):
|
|
||||||
def __init__(self, llm, vision_api):
|
|
||||||
super().__init__(llm=llm)
|
|
||||||
self.vision_api = vision_api
|
|
||||||
|
|
||||||
def run(self, initial_prompt, num_iterations, run_folder):
|
|
||||||
current_prompt = initial_prompt
|
|
||||||
|
|
||||||
for i in range(num_iterations):
|
|
||||||
print(f"Iteration {i}: Image generation and analysis")
|
|
||||||
|
|
||||||
if i == 0:
|
|
||||||
current_prompt = self.enrich_prompt(current_prompt)
|
|
||||||
print(f"Enriched Prompt: {current_prompt}")
|
|
||||||
|
|
||||||
img = sd_api.generate_and_move_image(
|
|
||||||
current_prompt, i, run_folder
|
|
||||||
)
|
|
||||||
if not img:
|
|
||||||
print("Failed to generate image")
|
|
||||||
break
|
|
||||||
print(f"Generated image at: {img}")
|
|
||||||
|
|
||||||
analysis = (
|
|
||||||
self.vision_api.run(img, current_prompt)
|
|
||||||
if img
|
|
||||||
else None
|
|
||||||
)
|
|
||||||
if analysis:
|
|
||||||
current_prompt += (
|
|
||||||
". " + analysis[:500]
|
|
||||||
) # Ensure the analysis is concise
|
|
||||||
print(f"Image Analysis: {analysis}")
|
|
||||||
else:
|
|
||||||
print(f"Failed to analyze image at: {img}")
|
|
||||||
|
|
||||||
def enrich_prompt(self, prompt):
|
|
||||||
enrichment_task = (
|
|
||||||
"Create a concise and effective image generation prompt"
|
|
||||||
" within 400 characters or less, based on Stable"
|
|
||||||
" Diffusion and Dalle best practices. Starting prompt:"
|
|
||||||
f" \n\n'{prompt}'\n\nImprove the prompt with any"
|
|
||||||
" applicable details or keywords by considering the"
|
|
||||||
" following aspects: \n1. Subject details (like actions,"
|
|
||||||
" emotions, environment) \n2. Artistic style (such as"
|
|
||||||
" surrealism, hyperrealism) \n3. Medium (digital"
|
|
||||||
" painting, oil on canvas) \n4. Color themes and"
|
|
||||||
" lighting (like warm colors, cinematic lighting) \n5."
|
|
||||||
" Composition and framing (close-up, wide-angle) \n6."
|
|
||||||
" Additional elements (like a specific type of"
|
|
||||||
" background, weather conditions) \n7. Any other"
|
|
||||||
" artistic or thematic details that can make the image"
|
|
||||||
" more vivid and compelling."
|
|
||||||
)
|
|
||||||
llm_result = self.llm.generate([enrichment_task])
|
|
||||||
return (
|
|
||||||
llm_result.generations[0][0].text[:500]
|
|
||||||
if llm_result.generations
|
|
||||||
else None
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# User input and setup
|
|
||||||
user_prompt = input("Prompt for image generation: ")
|
|
||||||
num_iterations = int(
|
|
||||||
input("Enter the number of iterations for image improvement: ")
|
|
||||||
)
|
|
||||||
run_folder = os.path.join(
|
|
||||||
"runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
||||||
)
|
|
||||||
os.makedirs(run_folder, exist_ok=True)
|
|
||||||
|
|
||||||
# Initialize and run the agent
|
|
||||||
idea2image_agent = Idea2Image(gpt_api, vision_api)
|
|
||||||
idea2image_agent.run(user_prompt, num_iterations, run_folder)
|
|
||||||
|
|
||||||
print("Image improvement process completed.")
|
|
@ -1,7 +0,0 @@
|
|||||||
"""
|
|
||||||
Idea 2 img
|
|
||||||
|
|
||||||
task -> gpt4 text -> dalle3 img -> gpt4vision img + text analyze img -> dalle3 img -> loop
|
|
||||||
|
|
||||||
"""
|
|
||||||
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
|
@ -0,0 +1,185 @@
|
|||||||
|
import datetime
|
||||||
|
import os
|
||||||
|
|
||||||
|
import streamlit as st
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
from swarms.models import OpenAIChat
|
||||||
|
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
||||||
|
from swarms.models.stable_diffusion import StableDiffusion
|
||||||
|
from swarms.structs import Agent
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
stability_api_key = os.getenv("STABLE_API_KEY")
|
||||||
|
|
||||||
|
# Initialize the models
|
||||||
|
vision_api = GPT4VisionAPI(api_key=openai_api_key)
|
||||||
|
sd_api = StableDiffusion(api_key=stability_api_key)
|
||||||
|
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
|
||||||
|
|
||||||
|
|
||||||
|
class Idea2Image(Agent):
|
||||||
|
def __init__(self, llm, vision_api):
|
||||||
|
super().__init__(llm=llm)
|
||||||
|
self.vision_api = vision_api
|
||||||
|
|
||||||
|
def run(self, initial_prompt, num_iterations, run_folder):
|
||||||
|
current_prompt = initial_prompt
|
||||||
|
|
||||||
|
for i in range(num_iterations):
|
||||||
|
print(f"Iteration {i}: Image generation and analysis")
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
current_prompt = self.enrich_prompt(current_prompt)
|
||||||
|
print(f"Enriched Prompt: {current_prompt}")
|
||||||
|
|
||||||
|
img = sd_api.generate_and_move_image(
|
||||||
|
current_prompt, i, run_folder
|
||||||
|
)
|
||||||
|
if not img:
|
||||||
|
print("Failed to generate image")
|
||||||
|
break
|
||||||
|
print(f"Generated image at: {img}")
|
||||||
|
|
||||||
|
analysis = (
|
||||||
|
self.vision_api.run(img, current_prompt)
|
||||||
|
if img
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
if analysis:
|
||||||
|
current_prompt += (
|
||||||
|
". " + analysis[:500]
|
||||||
|
) # Ensure the analysis is concise
|
||||||
|
print(f"Image Analysis: {analysis}")
|
||||||
|
else:
|
||||||
|
print(f"Failed to analyze image at: {img}")
|
||||||
|
|
||||||
|
def enrich_prompt(self, prompt):
|
||||||
|
enrichment_task = (
|
||||||
|
"Create a concise and effective image generation prompt"
|
||||||
|
" within 400 characters or less, based on Stable"
|
||||||
|
" Diffusion and Dalle best practices to help it create"
|
||||||
|
" much better images. Starting prompt:"
|
||||||
|
f" \n\n'{prompt}'\n\nImprove the prompt with any"
|
||||||
|
" applicable details or keywords by considering the"
|
||||||
|
" following aspects: \n1. Subject details (like actions,"
|
||||||
|
" emotions, environment) \n2. Artistic style (such as"
|
||||||
|
" surrealism, hyperrealism) \n3. Medium (digital"
|
||||||
|
" painting, oil on canvas) \n4. Color themes and"
|
||||||
|
" lighting (like warm colors, cinematic lighting) \n5."
|
||||||
|
" Composition and framing (close-up, wide-angle) \n6."
|
||||||
|
" Additional elements (like a specific type of"
|
||||||
|
" background, weather conditions) \n7. Any other"
|
||||||
|
" artistic or thematic details that can make the image"
|
||||||
|
" more vivid and compelling. Help the image generator"
|
||||||
|
" create better images by enriching the prompt."
|
||||||
|
)
|
||||||
|
llm_result = self.llm.generate([enrichment_task])
|
||||||
|
return (
|
||||||
|
llm_result.generations[0][0].text[:500]
|
||||||
|
if llm_result.generations
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
|
def run_gradio(self, initial_prompt, num_iterations, run_folder):
|
||||||
|
results = []
|
||||||
|
current_prompt = initial_prompt
|
||||||
|
|
||||||
|
for i in range(num_iterations):
|
||||||
|
enriched_prompt = (
|
||||||
|
self.enrich_prompt(current_prompt)
|
||||||
|
if i == 0
|
||||||
|
else current_prompt
|
||||||
|
)
|
||||||
|
img_path = sd_api.generate_and_move_image(
|
||||||
|
enriched_prompt, i, run_folder
|
||||||
|
)
|
||||||
|
analysis = (
|
||||||
|
self.vision_api.run(img_path, enriched_prompt)
|
||||||
|
if img_path
|
||||||
|
else None
|
||||||
|
)
|
||||||
|
|
||||||
|
if analysis:
|
||||||
|
current_prompt += (
|
||||||
|
". " + analysis[:500]
|
||||||
|
) # Ensuring the analysis is concise
|
||||||
|
results.append((enriched_prompt, img_path, analysis))
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
|
||||||
|
# print(
|
||||||
|
# colored("---------------------------------------- MultiModal Tree of Thought agents for Image Generation", "cyan", attrs=["bold"])
|
||||||
|
# )
|
||||||
|
# # User input and setup
|
||||||
|
# user_prompt = input("Prompt for image generation: ")
|
||||||
|
# num_iterations = int(
|
||||||
|
# input("Enter the number of iterations for image improvement: ")
|
||||||
|
# )
|
||||||
|
# run_folder = os.path.join(
|
||||||
|
# "runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
|
# )
|
||||||
|
# os.makedirs(run_folder, exist_ok=True)
|
||||||
|
|
||||||
|
# print(
|
||||||
|
# colored(
|
||||||
|
# f"---------------------------------- Running Multi-Modal Tree of thoughts agent with {num_iterations} iterations", "green"
|
||||||
|
# )
|
||||||
|
# )
|
||||||
|
# # Initialize and run the agent
|
||||||
|
# idea2image_agent = Idea2Image(gpt_api, vision_api)
|
||||||
|
# idea2image_agent.run(user_prompt, num_iterations, run_folder)
|
||||||
|
|
||||||
|
# print("Idea space has been traversed.")
|
||||||
|
|
||||||
|
|
||||||
|
# Load environment variables and initialize the models
|
||||||
|
load_dotenv()
|
||||||
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
stability_api_key = os.getenv("STABLE_API_KEY")
|
||||||
|
vision_api = GPT4VisionAPI(api_key=openai_api_key)
|
||||||
|
sd_api = StableDiffusion(api_key=stability_api_key)
|
||||||
|
gpt_api = OpenAIChat(openai_api_key=openai_api_key)
|
||||||
|
|
||||||
|
# Define the modified Idea2Image class here
|
||||||
|
|
||||||
|
# Streamlit UI layout
|
||||||
|
st.title(
|
||||||
|
"Explore the infinite Multi-Modal Idea Space with Idea2Image"
|
||||||
|
)
|
||||||
|
user_prompt = st.text_input("Prompt for image generation:")
|
||||||
|
num_iterations = st.number_input(
|
||||||
|
"Enter the number of iterations for image improvement:",
|
||||||
|
min_value=1,
|
||||||
|
step=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
if st.button("Generate Image"):
|
||||||
|
run_folder = os.path.join(
|
||||||
|
"runs", datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||||
|
)
|
||||||
|
os.makedirs(run_folder, exist_ok=True)
|
||||||
|
idea2image_agent = Idea2Image(gpt_api, vision_api)
|
||||||
|
|
||||||
|
results = idea2image_agent.run_gradio(
|
||||||
|
user_prompt, num_iterations, run_folder
|
||||||
|
)
|
||||||
|
|
||||||
|
for i, (enriched_prompt, img_path, analysis) in enumerate(
|
||||||
|
results
|
||||||
|
):
|
||||||
|
st.write(f"Iteration {i+1}:")
|
||||||
|
st.write("Enriched Prompt:", enriched_prompt)
|
||||||
|
if img_path:
|
||||||
|
st.image(img_path, caption="Generated Image")
|
||||||
|
else:
|
||||||
|
st.error("Failed to generate image")
|
||||||
|
if analysis:
|
||||||
|
st.write("Image Analysis:", analysis)
|
||||||
|
|
||||||
|
st.success("Idea space has been traversed.")
|
||||||
|
|
||||||
|
# [Add any additional necessary code adjustments]
|
@ -0,0 +1,114 @@
|
|||||||
|
"""
|
||||||
|
Multi Modal tree of thoughts that leverages the GPT-4 language model and the
|
||||||
|
Stable Diffusion model to generate a multimodal output and evaluate the
|
||||||
|
output based a metric from 0.0 to 1.0 and then run a search algorithm using DFS and BFS and return the best output.
|
||||||
|
|
||||||
|
|
||||||
|
task: Generate an image of a swarm of bees -> Image generator -> GPT4V evaluates the img from 0.0 to 1.0 -> DFS/BFS -> return the best output
|
||||||
|
|
||||||
|
|
||||||
|
- GPT4Vision will evaluate the image from 0.0 to 1.0 based on how likely it accomplishes the task
|
||||||
|
- DFS/BFS will search for the best output based on the evaluation from GPT4Vision
|
||||||
|
- The output will be a multimodal output that is a combination of the image and the text
|
||||||
|
- The output will be evaluated by GPT4Vision
|
||||||
|
- The prompt to the image generator will be optimized from the output of GPT4Vision and the search
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
||||||
|
from swarms.models.stable_diffusion import StableDiffusion
|
||||||
|
from termcolor import colored
|
||||||
|
|
||||||
|
# Load the environment variables
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
# Get the API key from the environment
|
||||||
|
api_key = os.environ.get("OPENAI_API_KEY")
|
||||||
|
stable_api_key = os.environ.get("STABLE_API_KEY")
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize the language model
|
||||||
|
llm = GPT4VisionAPI(
|
||||||
|
openai_api_key=api_key,
|
||||||
|
max_tokens=500,
|
||||||
|
)
|
||||||
|
|
||||||
|
# IMG Generator
|
||||||
|
img_generator = StableDiffusion(api_key=stable_api_key)
|
||||||
|
|
||||||
|
|
||||||
|
# Initialize the language model
|
||||||
|
task = "Garden of Eden futuristic city graphic art"
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_img(llm, task: str, img: str):
|
||||||
|
EVAL_IMG = f"""
|
||||||
|
Evaluate the image: {img} on a scale from 0.0 to 1.0 based on how likely it accomplishes the task: {task}. Output nothing than the float representing the evaluated img.
|
||||||
|
"""
|
||||||
|
out = llm.run(task=EVAL_IMG, img=img)
|
||||||
|
out = float(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
def enrichment_prompt(starting_prompt: str, evaluated_img: str):
|
||||||
|
enrichment_task = (
|
||||||
|
"Create a concise and effective image generation prompt"
|
||||||
|
" within 400 characters or less, based on Stable Diffusion"
|
||||||
|
" and Dalle best practices. Starting prompt:"
|
||||||
|
f" \n\n'{starting_prompt}'\n\nImprove the prompt with any"
|
||||||
|
" applicable details or keywords by considering the"
|
||||||
|
" following aspects: \n1. Subject details (like actions,"
|
||||||
|
" emotions, environment) \n2. Artistic style (such as"
|
||||||
|
" surrealism, hyperrealism) \n3. Medium (digital painting,"
|
||||||
|
" oil on canvas) \n4. Color themes and lighting (like warm"
|
||||||
|
" colors, cinematic lighting) \n5. Composition and framing"
|
||||||
|
" (close-up, wide-angle) \n6. Additional elements (like a"
|
||||||
|
" specific type of background, weather conditions) \n7. Any"
|
||||||
|
" other artistic or thematic details that can make the image"
|
||||||
|
" more vivid and compelling. 8. Based on the evaluation of"
|
||||||
|
" the first generated prompt used by the first prompt:"
|
||||||
|
f" {evaluated_img} Enrich the prompt to generate a more"
|
||||||
|
" compelling image. Output only a new prompt to create a"
|
||||||
|
" better image"
|
||||||
|
)
|
||||||
|
return enrichment_task
|
||||||
|
|
||||||
|
|
||||||
|
# Main loop
|
||||||
|
max_iterations = 10 # Define the maximum number of iterations
|
||||||
|
best_score = 0
|
||||||
|
best_image = None
|
||||||
|
|
||||||
|
for _ in range(max_iterations):
|
||||||
|
# Generate an image and get its path
|
||||||
|
print(colored(f"Generating img for Task: {task}", "purple"))
|
||||||
|
|
||||||
|
img_path = img_generator.run(
|
||||||
|
task=task
|
||||||
|
) # This should return the file path of the generated image
|
||||||
|
img_path = img_path[0]
|
||||||
|
print(colored(f"Generated Image Path: {img_path}", "green"))
|
||||||
|
|
||||||
|
# Evaluate the image by passing the file path
|
||||||
|
score = evaluate_img(llm, task, img_path)
|
||||||
|
print(
|
||||||
|
colored(
|
||||||
|
f"Evaluated Image Score: {score} for {img_path}", "cyan"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Update the best score and image path if necessary
|
||||||
|
if score > best_score:
|
||||||
|
best_score = score
|
||||||
|
best_image_path = img_path
|
||||||
|
|
||||||
|
# Enrich the prompt based on the evaluation
|
||||||
|
prompt = enrichment_prompt(task, score)
|
||||||
|
print(colored(f"Enrichment Prompt: {prompt}", "yellow"))
|
||||||
|
|
||||||
|
|
||||||
|
# Output the best result
|
||||||
|
print("Best Image Path:", best_image_path)
|
||||||
|
print("Best Score:", best_score)
|
Loading…
Reference in new issue