pull/432/merge
evelynmitchell 1 year ago committed by GitHub
commit 50b1bcb1fc
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -1,25 +1,25 @@
# ================================== # ==================================
# Use an official Python runtime as a parent image # Use an official Python runtime as a parent image image
FROM python:3.9-slim FROM python:3.9-slim
RUN apt-get update && apt-get -y install libgl1-mesa-dev libglib2.0-0 build-essential; apt-get clean #RUN apt-get update && apt-get -y install libgl1-mesa-dev libglib2.0-0 build-essential; apt-get cleangl1-mesa-dev libglib2.0-0 build-essential; apt-get clean
RUN pip install opencv-contrib-python-headless #RUN pip install opencv-contrib-python-headlessss
# Set environment variables # Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1 ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1 ENV PYTHONUNBUFFERED 1
# Set the working directory in the container # Set the working directory in the container
WORKDIR /usr/src/swarm_cloud WORKDIR /usr/src/swarms
# Install Python dependencies # Install Python dependencies
# COPY requirements.txt and pyproject.toml if you're using poetry for dependency management # COPY requirements.txt and pyproject.toml if you're using poetry for dependency managementf you're using poetry for dependency management
COPY requirements.txt . COPY requirements.txt .
RUN pip install --upgrade pip RUN pip install --upgrade pip
RUN pip install --no-cache-dir -r requirements.txt RUN pip install --no-cache-dir -r requirements.txt
# Install the 'swarms' package, assuming it's available on PyPI # Install the 'swarms' package, assuming it's available on PyPIs available on PyPI
RUN pip install swarms RUN pip install swarms
# Copy the rest of the application # Copy the rest of the application
@ -27,18 +27,18 @@ COPY . .
# Add entrypoint script if needed # Add entrypoint script if needed
# COPY ./entrypoint.sh . # COPY ./entrypoint.sh .
# RUN chmod +x /usr/src/swarm_cloud/entrypoint.sh # RUN chmod +x /usr/src/swarm_cloud/entrypoint.shnt.sh
# Expose port if your application has a web interface # Expose port if your application has a web interfaceinterface
# EXPOSE 5000 # EXPOSE 5000
# # Define environment variable for the swarm to work # # Define environment variable for the swarm to workm to work
# ENV SWARM_API_KEY=your_swarm_api_key_here # ENV SWARM_API_KEY=your_swarm_api_key_here
# # Add Docker CMD or ENTRYPOINT script to run the application # # Add Docker CMD or ENTRYPOINT script to run the applicationun the application
# CMD python your_swarm_startup_script.py # CMD python your_swarm_startup_script.py
# Or use the entrypoint script if you have one # Or use the entrypoint script if you have onene
# ENTRYPOINT ["/usr/src/swarm_cloud/entrypoint.sh"] # ENTRYPOINT ["/usr/src/swarm_cloud/entrypoint.sh"]nt.sh"]
# If you're using `CMD` to execute a Python script, make sure it's executable # If you're using `CMD` to execute a Python script, make sure it's executablescript, make sure it's executable
# RUN chmod +x your_swarm_startup_script.py # RUN chmod +x your_swarm_startup_script.py

@ -42,14 +42,9 @@ Features:
```python ```python
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
@ -138,13 +133,8 @@ The `Worker` is a simple all-in-one agent equipped with an LLM, tools, and RAG f
# Importing necessary modules # Importing necessary modules
import os import os
from dotenv import load_dotenv
from swarms import OpenAIChat, Worker, tool from swarms import OpenAIChat, Worker, tool
# Loading environment variables from .env file
load_dotenv()
# Retrieving the OpenAI API key from environment variables # Retrieving the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
@ -279,12 +269,8 @@ Sequential Workflow enables you to sequentially execute tasks with `Agent` and t
```python ```python
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, SequentialWorkflow from swarms import Agent, OpenAIChat, SequentialWorkflow
load_dotenv()
# Load the environment variables # Load the environment variables
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
@ -336,13 +322,8 @@ for task in workflow.tasks:
```python ```python
import os import os
from dotenv import load_dotenv
from swarms import Agent, ConcurrentWorkflow, OpenAIChat, Task from swarms import Agent, ConcurrentWorkflow, OpenAIChat, Task
# Load environment variables from .env file
load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1) agent = Agent(llm=llm, max_loops=1)
@ -368,13 +349,8 @@ workflow.run()
```python ```python
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, RecursiveWorkflow, Task from swarms import Agent, OpenAIChat, RecursiveWorkflow, Task
# Load environment variables from .env file
load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1) agent = Agent(llm=llm, max_loops=1)
@ -407,12 +383,8 @@ Plug-and-Play Integration: The structure provides a seamless integration with va
```python ```python
import os import os
from dotenv import load_dotenv
from swarms import Anthropic, Gemini, Mixtral, ModelParallelizer, OpenAIChat from swarms import Anthropic, Gemini, Mixtral, ModelParallelizer, OpenAIChat
load_dotenv()
# API Keys # API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
@ -449,17 +421,12 @@ A Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our m
```python ```python
import os import os
from dotenv import load_dotenv
from swarms import Conversation, OpenAIChat from swarms import Conversation, OpenAIChat
conv = Conversation( conv = Conversation(
time_enabled=True, time_enabled=True,
) )
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
@ -502,14 +469,9 @@ interactive_conversation(llm)
```python ```python
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import Agent, OpenAIChat, SwarmNetwork from swarms import Agent, OpenAIChat, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
@ -559,14 +521,8 @@ print(out)
```python ```python
import os import os
from dotenv import load_dotenv
from swarms.structs import Agent, OpenAIChat, Task from swarms.structs import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Define a function to be used as the action # Define a function to be used as the action
def my_action(): def my_action():
print("Action executed") print("Action executed")
@ -626,14 +582,10 @@ print(f"Task result: {task.result}")
```python ```python
import os import os
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoModelForCausalLM, AutoTokenizer
from pydantic import BaseModel from pydantic import BaseModel
from swarms import BlocksList, Gemini, GPT4VisionAPI, Mixtral, OpenAI, ToolAgent from swarms import BlocksList, Gemini, GPT4VisionAPI, Mixtral, OpenAI, ToolAgent
# Load the environment variables
load_dotenv()
# Get the environment variables # Get the environment variables
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY") gemini_api_key = os.getenv("GEMINI_API_KEY")
@ -774,8 +726,6 @@ Here's a production grade swarm ready for real-world deployment in a factory and
```python ```python
import os import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.prompts.logistics import ( from swarms.prompts.logistics import (
Efficiency_Agent_Prompt, Efficiency_Agent_Prompt,
@ -788,8 +738,6 @@ from swarms.prompts.logistics import (
) )
from swarms.structs import Agent from swarms.structs import Agent
# Load ENV
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
# GPT4VisionAPI # GPT4VisionAPI
@ -885,14 +833,9 @@ Run the agent with multiple modalities useful for various real-world tasks in ma
# Description: This is an example of how to use the Agent class to run a multi-modal workflow # Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os import os
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent from swarms.structs import Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -12,7 +12,7 @@ This code provides a structure for a Discord bot with advanced features such as
1. Ensure that the necessary libraries are installed: 1. Ensure that the necessary libraries are installed:
```bash ```bash
pip install discord.py python-dotenv dalle3 invoke openai pip install discord.py dalle3 invoke openai
``` ```
2. Create a `.env` file in the same directory as your bot script and add the following: 2. Create a `.env` file in the same directory as your bot script and add the following:

@ -35,23 +35,16 @@ The abstraction provided in `revgpt.py` is designed to simplify your interaction
1. **Import the Necessary Modules:** 1. **Import the Necessary Modules:**
```python ```python
from dotenv import load_dotenv
from revgpt import AbstractChatGPT from revgpt import AbstractChatGPT
``` ```
2. **Load Environment Variables:** 2. **Initialize the ChatGPT Abstract Class:**
```python
load_dotenv()
```
3. **Initialize the ChatGPT Abstract Class:**
```python ```python
chat = AbstractChatGPT(api_key=os.getenv("ACCESS_TOKEN"), **config) chat = AbstractChatGPT(api_key=os.getenv("ACCESS_TOKEN"), **config)
``` ```
4. **Start Interacting with ChatGPT:** 3. **Start Interacting with ChatGPT:**
```python ```python
response = chat.ask("Hello, ChatGPT!") response = chat.ask("Hello, ChatGPT!")

@ -41,14 +41,9 @@ Initialize the `OmniModalAgent` and communicate with it:
```python ```python
import os import os
from dotenv import load_dotenv
from swarms.agents.omni_modal_agent import OmniModalAgent, OpenAIChat from swarms.agents.omni_modal_agent import OmniModalAgent, OpenAIChat
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -10,7 +10,7 @@ Before we begin, it's essential to have the following prerequisites in place:
1. **Python**: You'll need to have Python installed on your system. This guide assumes you're using Python 3.6 or later. 1. **Python**: You'll need to have Python installed on your system. This guide assumes you're using Python 3.6 or later.
2. **Azure Subscription**: You'll need an active Azure subscription to access Azure OpenAI services. 2. **Azure Subscription**: You'll need an active Azure subscription to access Azure OpenAI services.
3. **Azure OpenAI Resource**: Create an Azure OpenAI resource in your Azure subscription. 3. **Azure OpenAI Resource**: Create an Azure OpenAI resource in your Azure subscription.
4. **Python Packages**: Install the required Python packages, including `python-dotenv` and `swarms`. 4. **Python Packages**: Install the required Python packages, including `swarms`.
## Setting up the Environment: ## Setting up the Environment:
To kick things off, we'll set up our development environment and install the necessary dependencies. To kick things off, we'll set up our development environment and install the necessary dependencies.
@ -27,10 +27,10 @@ python -m venv myenv
source myenv/bin/activate # On Windows, use `myenv\Scripts\activate` source myenv/bin/activate # On Windows, use `myenv\Scripts\activate`
``` ```
3. **Install Required Packages**: Install the `python-dotenv` and `swarms` packages using pip. 3. **Install Required Packages**: Install the `swarms` packages using pip.
``` ```
pip install python-dotenv swarms pip install swarms
``` ```
4. **Create a `.env` File**: In the root directory of your project, create a new file called `.env`. This file will store your Azure OpenAI credentials and configuration settings. 4. **Create a `.env` File**: In the root directory of your project, create a new file called `.env`. This file will store your Azure OpenAI credentials and configuration settings.
@ -50,12 +50,8 @@ Now that we've set up our environment, let's dive into the code that connects to
```python ```python
import os import os
from dotenv import load_dotenv
from swarms import AzureOpenAI from swarms import AzureOpenAI
# Load the environment variables
load_dotenv()
# Create an instance of the AzureOpenAI class # Create an instance of the AzureOpenAI class
model = AzureOpenAI( model = AzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
@ -68,11 +64,9 @@ model = AzureOpenAI(
## Let's break down this code: ## Let's break down this code:
1. **Import Statements**: We import the necessary modules, including `os` for interacting with the operating system, `load_dotenv` from `python-dotenv` to load environment variables, and `AzureOpenAI` from `swarms` to interact with the Azure OpenAI service. 1. **Import Statements**: We import the necessary modules, including `os` for interacting with the operating system, `AzureOpenAI` from `swarms` to interact with the Azure OpenAI service.
2. **Load Environment Variables**: We use `load_dotenv()` to load the environment variables stored in the `.env` file we created earlier.
3. **Create AzureOpenAI Instance**: We create an instance of the `AzureOpenAI` class by passing in the required configuration parameters: 2. **Create AzureOpenAI Instance**: We create an instance of the `AzureOpenAI` class by passing in the required configuration parameters:
- `azure_endpoint`: The endpoint URL for your Azure OpenAI resource. - `azure_endpoint`: The endpoint URL for your Azure OpenAI resource.
- `deployment_name`: The name of the deployment you want to use. - `deployment_name`: The name of the deployment you want to use.
- `openai_api_version`: The version of the OpenAI API you want to use. - `openai_api_version`: The version of the OpenAI API you want to use.

@ -15,7 +15,6 @@ Before using Gemini, ensure that you have the required dependencies installed. Y
```bash ```bash
pip install swarms pip install swarms
pip install google-generativeai pip install google-generativeai
pip install python-dotenv
``` ```
### Class: Gemini ### Class: Gemini

@ -1,13 +1,8 @@
# Description: This is an example of how to use the Agent class to run a multi-modal workflow # Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os import os
from dotenv import load_dotenv
from swarms import Agent, GPT4VisionAPI from swarms import Agent, GPT4VisionAPI
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,13 +1,9 @@
import os import os
from dotenv import load_dotenv
import swarms.prompts.security_team as stsp import swarms.prompts.security_team as stsp
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.structs import Agent from swarms.structs import Agent
# Load environment variables and initialize the Vision API
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
llm = GPT4VisionAPI(openai_api_key=api_key) llm = GPT4VisionAPI(openai_api_key=api_key)

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms import ( from swarms import (
Conversation, Conversation,
OpenAIChat, OpenAIChat,
@ -15,9 +13,6 @@ conv = Conversation(
time_enabled=True, time_enabled=True,
) )
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,14 +1,9 @@
# Importing necessary modules # Importing necessary modules
import os import os
from dotenv import load_dotenv
from swarms import OpenAIChat from swarms import OpenAIChat
from swarms.agents.worker_agent import Worker from swarms.agents.worker_agent import Worker
# Loading environment variables from .env file
load_dotenv()
# Retrieving the OpenAI API key from environment variables # Retrieving the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms.models import Anthropic, OpenAIChat from swarms.models import Anthropic, OpenAIChat
from swarms.prompts.accountant_swarm_prompts import ( from swarms.prompts.accountant_swarm_prompts import (
DECISION_MAKING_PROMPT, DECISION_MAKING_PROMPT,
@ -12,7 +10,6 @@ from swarms.structs import Agent
from swarms.utils.pdf_to_text import pdf_to_text from swarms.utils.pdf_to_text import pdf_to_text
# Environment variables # Environment variables
load_dotenv()
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -1,13 +1,10 @@
import os import os
import random import random
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.models.stable_diffusion import StableDiffusion from swarms.models.stable_diffusion import StableDiffusion
from swarms.structs import Agent from swarms.structs import Agent
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABILITY_API_KEY") stability_api_key = os.getenv("STABILITY_API_KEY")

@ -2,15 +2,11 @@ import concurrent
import csv import csv
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from swarms.memory import ChromaDB from swarms.memory import ChromaDB
from dotenv import load_dotenv
from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.file_processing import create_file from swarms.utils.file_processing import create_file
from swarms.utils.loguru_logger import logger from swarms.utils.loguru_logger import logger
# Load ENV
load_dotenv()
# Gemini # Gemini
gemini = OpenAIChat() gemini = OpenAIChat()

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms.models import Anthropic, OpenAIChat from swarms.models import Anthropic, OpenAIChat
from swarms.prompts.ai_research_team import ( from swarms.prompts.ai_research_team import (
PAPER_IMPLEMENTOR_AGENT_PROMPT, PAPER_IMPLEMENTOR_AGENT_PROMPT,
@ -12,7 +10,6 @@ from swarms.utils.pdf_to_text import pdf_to_text
# Base llms # Base llms
# Environment variables # Environment variables
load_dotenv()
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -1,11 +1,9 @@
import os import os
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
import swarms.prompts.autoswarm as sdsp import swarms.prompts.autoswarm as sdsp
# Load environment variables and initialize the OpenAI Chat model # Load environment variables and initialize the OpenAI Chat model
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
llm = OpenAIChat(model_name="gpt-4", openai_api_key=api_key) llm = OpenAIChat(model_name="gpt-4", openai_api_key=api_key)

@ -17,13 +17,10 @@ Documentation agent -> Tests agent
import os import os
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.prompts.programming import DOCUMENTATION_SOP, TEST_SOP from swarms.prompts.programming import DOCUMENTATION_SOP, TEST_SOP
from swarms.structs import Agent from swarms.structs import Agent
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")

@ -1,13 +1,10 @@
import os import os
from dotenv import load_dotenv
import swarms.prompts.education as edu_prompts import swarms.prompts.education as edu_prompts
from swarms import Agent, SequentialWorkflow from swarms import Agent, SequentialWorkflow
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
# Load environment variables # Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABILITY_API_KEY") stability_api_key = os.getenv("STABILITY_API_KEY")

@ -1,12 +1,8 @@
import os import os
from dotenv import load_dotenv
from swarms.models.gemini import Gemini from swarms.models.gemini import Gemini
from swarms.prompts.react import react_prompt from swarms.prompts.react import react_prompt
load_dotenv()
api_key = os.environ["GEMINI_API_KEY"] api_key = os.environ["GEMINI_API_KEY"]
# Establish the prompt and image # Establish the prompt and image

@ -1,12 +1,8 @@
import os import os
from dotenv import load_dotenv
from swarms.models.gemini import Gemini from swarms.models.gemini import Gemini
from swarms.prompts.react import react_prompt from swarms.prompts.react import react_prompt
load_dotenv()
api_key = os.environ["GEMINI_API_KEY"] api_key = os.environ["GEMINI_API_KEY"]
# Establish the prompt and image # Establish the prompt and image

@ -1,13 +1,8 @@
import os import os
from dotenv import load_dotenv
from swarms.models import Gemini from swarms.models import Gemini
from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("GEMINI_API_KEY") api_key = os.environ.get("GEMINI_API_KEY")

@ -1,6 +1,5 @@
import os import os
from dotenv import load_dotenv
from termcolor import colored from termcolor import colored
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
@ -8,9 +7,6 @@ from swarms.prompts.code_interpreter import CODE_INTERPRETER
from swarms.prompts.programming import DOCUMENTATION_SOP, TEST_SOP from swarms.prompts.programming import DOCUMENTATION_SOP, TEST_SOP
from swarms.structs import Agent from swarms.structs import Agent
load_dotenv()
FEATURE = ( FEATURE = (
"Implement an all-new signup system in typescript using supabase" "Implement an all-new signup system in typescript using supabase"
) )

@ -1,13 +1,9 @@
import os import os
from dotenv import load_dotenv
from langchain.llms import OpenAIChat from langchain.llms import OpenAIChat
from swarms import Agent from swarms import Agent
# Loading environment variables from .env file
load_dotenv()
# Initialize the model # Initialize the model
llm = OpenAIChat( llm = OpenAIChat(
openai_api_key=os.getenv("OPENAI_API_KEY"), openai_api_key=os.getenv("OPENAI_API_KEY"),

@ -1,13 +1,8 @@
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.prompts.logistics import ( from swarms.prompts.logistics import (
Efficiency_Agent_Prompt, Efficiency_Agent_Prompt,
@ -15,8 +13,6 @@ from swarms.prompts.logistics import (
from swarms.structs import Agent from swarms.structs import Agent
# from swarms.utils.banana_wrapper import banana # from swarms.utils.banana_wrapper import banana
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
# GPT4VisionAPI or llama # GPT4VisionAPI or llama

@ -1,14 +1,10 @@
import os import os
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT
from swarms.structs import Agent from swarms.structs import Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -2,7 +2,6 @@ import datetime
import os import os
import streamlit as st import streamlit as st
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.models.gpt4_vision_api import GPT4VisionAPI from swarms.models.gpt4_vision_api import GPT4VisionAPI
@ -10,7 +9,6 @@ from swarms.models.stable_diffusion import StableDiffusion
from swarms.structs import Agent from swarms.structs import Agent
# Load environment variables # Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABLE_API_KEY") stability_api_key = os.getenv("STABLE_API_KEY")
@ -137,7 +135,6 @@ class Idea2Image(Agent):
# Load environment variables and initialize the models # Load environment variables and initialize the models
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABLE_API_KEY") stability_api_key = os.getenv("STABLE_API_KEY")
vision_api = GPT4VisionAPI(api_key=openai_api_key) vision_api = GPT4VisionAPI(api_key=openai_api_key)

@ -17,15 +17,11 @@ task: Generate an image of a swarm of bees -> Image generator -> GPT4V evaluates
import os import os
from dotenv import load_dotenv
from termcolor import colored from termcolor import colored
from swarms.models.gpt4_vision_api import GPT4VisionAPI from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.models.stable_diffusion import StableDiffusion from swarms.models.stable_diffusion import StableDiffusion
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
stable_api_key = os.environ.get("STABLE_API_KEY") stable_api_key = os.environ.get("STABLE_API_KEY")

@ -2,13 +2,10 @@ import base64
import os import os
import requests import requests
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
# Define prompts for various tasks # Define prompts for various tasks

@ -1,14 +1,10 @@
import os import os
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
# import modal # import modal
load_dotenv()
# Model # Model
llm = OpenAIChat( llm = OpenAIChat(
openai_api_key=os.getenv("OPENAI_API_KEY"), openai_api_key=os.getenv("OPENAI_API_KEY"),

@ -3,14 +3,10 @@ import time
import pygame import pygame
import speech_recognition as sr import speech_recognition as sr
from dotenv import load_dotenv
from playsound import playsound from playsound import playsound
from swarms import OpenAIChat, OpenAITTS from swarms import OpenAIChat, OpenAITTS
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
openai_api_key = os.environ.get("OPENAI_API_KEY") openai_api_key = os.environ.get("OPENAI_API_KEY")

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.prompts.personal_stylist import ( from swarms.prompts.personal_stylist import (
ACCESSORIES_STYLIST_AGENT_PROMPT, ACCESSORIES_STYLIST_AGENT_PROMPT,
@ -12,8 +10,6 @@ from swarms.prompts.personal_stylist import (
) )
from swarms.structs import Agent from swarms.structs import Agent
# Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
# Initialize GPT4VisionAPI # Initialize GPT4VisionAPI

@ -1,14 +1,11 @@
import os import os
from dotenv import load_dotenv
from termcolor import colored from termcolor import colored
import swarms.prompts.security_team as stsp import swarms.prompts.security_team as stsp
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.structs import Agent from swarms.structs import Agent
# Load environment variables and initialize the Vision API
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
llm = GPT4VisionAPI(openai_api_key=api_key) llm = GPT4VisionAPI(openai_api_key=api_key)

@ -3,15 +3,10 @@ import csv
import os import os
from swarms import Gemini, Agent from swarms import Gemini, Agent
from swarms.memory import ChromaDB from swarms.memory import ChromaDB
from dotenv import load_dotenv
from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.file_processing import create_file from swarms.utils.file_processing import create_file
from swarms.utils.loguru_logger import logger from swarms.utils.loguru_logger import logger
# Load ENV
load_dotenv()
gemini = Gemini( gemini = Gemini(
model_name="gemini-pro", model_name="gemini-pro",
gemini_api_key=os.getenv("GEMINI_API_KEY"), gemini_api_key=os.getenv("GEMINI_API_KEY"),

@ -16,13 +16,11 @@ health security agent -> quality control agent -> productivity agent -> safety a
import os import os
from dotenv import load_dotenv
from termcolor import colored from termcolor import colored
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.structs import Agent from swarms.structs import Agent
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
# GPT4VisionAPI # GPT4VisionAPI

@ -1,13 +1,9 @@
import os import os
from dotenv import load_dotenv
import swarms.prompts.urban_planning as upp import swarms.prompts.urban_planning as upp
from swarms.models import GPT4VisionAPI, OpenAIChat from swarms.models import GPT4VisionAPI, OpenAIChat
from swarms.structs import Agent, SequentialWorkflow from swarms.structs import Agent, SequentialWorkflow
# Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
stability_api_key = os.getenv("STABILITY_API_KEY") stability_api_key = os.getenv("STABILITY_API_KEY")

@ -1,12 +1,8 @@
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import Agent, HuggingfaceLLM from swarms import Agent, HuggingfaceLLM
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI, OpenAIChat from swarms.models import GPT4VisionAPI, OpenAIChat
from swarms.prompts.xray_swarm_prompt import ( from swarms.prompts.xray_swarm_prompt import (
TREATMENT_PLAN_PROMPT, TREATMENT_PLAN_PROMPT,
@ -9,8 +7,6 @@ from swarms.prompts.xray_swarm_prompt import (
) )
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
# Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")
# Function to analyze an X-ray image # Function to analyze an X-ray image

@ -1,14 +1,9 @@
import os import os
import sys import sys
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent from swarms import OpenAIChat, Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,10 +1,6 @@
import os import os
from dotenv import load_dotenv
from swarms import OpenAIChat, Task, ConcurrentWorkflow, Agent from swarms import OpenAIChat, Task, ConcurrentWorkflow, Agent
# Load environment variables from .env file
load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1) agent = Agent(llm=llm, max_loops=1)

@ -1,6 +1,5 @@
from swarms.structs import Agent from swarms.structs import Agent
import os import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI from swarms.models import GPT4VisionAPI
from swarms.prompts.logistics import ( from swarms.prompts.logistics import (
Health_Security_Agent_Prompt, Health_Security_Agent_Prompt,
@ -12,8 +11,6 @@ from swarms.prompts.logistics import (
Efficiency_Agent_Prompt, Efficiency_Agent_Prompt,
) )
# Load ENV
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
# GPT4VisionAPI # GPT4VisionAPI

@ -1,9 +1,6 @@
import os import os
from dotenv import load_dotenv
from swarms import OpenAIChat, Task, RecursiveWorkflow, Agent from swarms import OpenAIChat, Task, RecursiveWorkflow, Agent
# Load environment variables from .env file
load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))

@ -1,8 +1,5 @@
import os import os
from swarms import OpenAIChat, Agent, SequentialWorkflow from swarms import OpenAIChat, Agent, SequentialWorkflow
from dotenv import load_dotenv
load_dotenv()
# Load the environment variables # Load the environment variables
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")

@ -1,7 +1,5 @@
import os import os
from dotenv import load_dotenv
from swarms import ( from swarms import (
OpenAIChat, OpenAIChat,
Conversation, Conversation,
@ -11,9 +9,6 @@ conv = Conversation(
time_enabled=True, time_enabled=True,
) )
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,13 +1,8 @@
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent, SwarmNetwork from swarms import OpenAIChat, Agent, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,12 +1,7 @@
import os import os
from dotenv import load_dotenv
from swarms.structs import Agent, OpenAIChat, Task from swarms.structs import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Define a function to be used as the action # Define a function to be used as the action
def my_action(): def my_action():

@ -1,11 +1,7 @@
# Importing necessary modules # Importing necessary modules
import os import os
from dotenv import load_dotenv
from swarms import Worker, OpenAIChat, tool from swarms import Worker, OpenAIChat, tool
# Loading environment variables from .env file
load_dotenv()
# Retrieving the OpenAI API key from environment variables # Retrieving the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")

@ -1,10 +1,6 @@
import os import os
from dotenv import load_dotenv
from swarms import AzureOpenAI from swarms import AzureOpenAI
# Load the environment variables
load_dotenv()
# Create an instance of the AzureOpenAI class # Create an instance of the AzureOpenAI class
model = AzureOpenAI( model = AzureOpenAI(
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"), azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),

@ -1,11 +1,7 @@
import os import os
from dotenv import load_dotenv
from swarms.models.gemini import Gemini from swarms.models.gemini import Gemini
load_dotenv()
api_key = os.environ["GEMINI_API_KEY"] api_key = os.environ["GEMINI_API_KEY"]
# Initialize the model # Initialize the model

@ -1,11 +1,7 @@
import os import os
from dotenv import load_dotenv
from swarms import OpenAITTS from swarms import OpenAITTS
load_dotenv()
tts = OpenAITTS( tts = OpenAITTS(
model_name="tts-1-1106", model_name="tts-1-1106",
voice="onyx", voice="onyx",

@ -1,13 +1,8 @@
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import Agent, ChromaDB, OpenAIChat from swarms import Agent, ChromaDB, OpenAIChat
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -10,16 +10,10 @@ tool decorated func [search_api] -> agent which parses the docs of the tool func
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from swarms.tools.tool import tool from swarms.tools.tool import tool
# Load the environment variables
load_dotenv()
# Define a tool # Define a tool
@tool @tool
def search_api(query: str, description: str): def search_api(query: str, description: str):

@ -1,15 +1,10 @@
import os import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct # Import the OpenAIChat model and the Agent struct
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
from swarms.structs.autoscaler import AutoScaler from swarms.structs.autoscaler import AutoScaler
# Load the environment variables
load_dotenv()
# Get the API key from the environment # Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -1,12 +1,8 @@
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from swarms.structs.company import Company from swarms.structs.company import Company
load_dotenv()
llm = OpenAIChat( llm = OpenAIChat(
openai_api_key=os.getenv("OPENAI_API_KEY"), max_tokens=4000 openai_api_key=os.getenv("OPENAI_API_KEY"), max_tokens=4000
) )

@ -1,12 +1,7 @@
import os import os
from dotenv import load_dotenv
from swarms import Agent, ConcurrentWorkflow, OpenAIChat, Task from swarms import Agent, ConcurrentWorkflow, OpenAIChat, Task
# Load environment variables from .env file
load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1) agent = Agent(llm=llm, max_loops=1)

@ -1,12 +1,8 @@
import os import os
from dotenv import load_dotenv
from swarms import ModelParallelizer from swarms import ModelParallelizer
from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
load_dotenv()
# API Keys # API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -1,11 +1,7 @@
import os import os
from swarms import OpenAIChat, Agent from swarms import OpenAIChat, Agent
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Create a chat instance # Create a chat instance
llm = OpenAIChat( llm = OpenAIChat(
api_key=os.getenv("OPENAI_API_KEY"), api_key=os.getenv("OPENAI_API_KEY"),

@ -1,17 +1,11 @@
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from swarms.agents.multion_agent import MultiOnAgent from swarms.agents.multion_agent import MultiOnAgent
from swarms.memory.chroma_db import ChromaDB from swarms.memory.chroma_db import ChromaDB
from swarms.tools.tool import tool from swarms.tools.tool import tool
from swarms.utils.code_interpreter import SubprocessCodeInterpreter from swarms.utils.code_interpreter import SubprocessCodeInterpreter
# Load the environment variables
load_dotenv()
# Memory # Memory
chroma_db = ChromaDB() chroma_db = ChromaDB()

@ -1,16 +1,11 @@
# Importing necessary modules # Importing necessary modules
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from swarms.memory.chroma_db import ChromaDB from swarms.memory.chroma_db import ChromaDB
from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT from swarms.prompts.visual_cot import VISUAL_CHAIN_OF_THOUGHT
from swarms.tools.tool import tool from swarms.tools.tool import tool
# Loading environment variables from .env file
load_dotenv()
# Getting the Gemini API key from environment variables # Getting the Gemini API key from environment variables
gemini_api_key = os.getenv("GEMINI_API_KEY") gemini_api_key = os.getenv("GEMINI_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -1,10 +1,6 @@
import os import os
from swarms import Gemini, Agent from swarms import Gemini, Agent
from swarms.structs.multi_process_workflow import MultiProcessWorkflow from swarms.structs.multi_process_workflow import MultiProcessWorkflow
from dotenv import load_dotenv
# Load the environment variables
load_dotenv()
# Gemini API key # Gemini API key
api_key = os.getenv("GEMINI_API_KEY") api_key = os.getenv("GEMINI_API_KEY")

@ -1,12 +1,8 @@
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, RecursiveWorkflow, Task from swarms import Agent, OpenAIChat, RecursiveWorkflow, Task
# Load environment variables from .env file
load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1) agent = Agent(llm=llm, max_loops=1)

@ -1,12 +1,7 @@
import os import os
from dotenv import load_dotenv
from swarms.structs import Agent, OpenAIChat, Task from swarms.structs import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Define a function to be used as the action # Define a function to be used as the action
def my_action(): def my_action():

@ -1,18 +1,12 @@
import os import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat from swarms import Agent, OpenAIChat
from swarms.tools.tool import tool from swarms.tools.tool import tool
load_dotenv()
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
llm = OpenAIChat(api_key=api_key) llm = OpenAIChat(api_key=api_key)
@tool @tool
def search_api(query: str) -> str: def search_api(query: str) -> str:
"""Search API """Search API

@ -3,8 +3,6 @@ import inspect
import os import os
import threading import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms import OpenAIChat from swarms import OpenAIChat
from swarms.structs.majority_voting import MajorityVoting from swarms.structs.majority_voting import MajorityVoting
@ -12,12 +10,6 @@ from swarms.structs.stackoverflow_swarm import StackOverflowSwarm
from swarms.structs.task_queue_base import TaskQueueBase from swarms.structs.task_queue_base import TaskQueueBase
from swarms.structs.tool_json_schema import JSON from swarms.structs.tool_json_schema import JSON
##########
####################
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat( model = OpenAIChat(

@ -3,13 +3,9 @@ import os
import sys import sys
import threading import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms import OpenAIChat from swarms import OpenAIChat
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat( model = OpenAIChat(

@ -2,18 +2,9 @@ import inspect
import os import os
import threading import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms import OpenAIChat from swarms import OpenAIChat
###########
###############
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat( model = OpenAIChat(

@ -3,19 +3,13 @@ import os
import re import re
import threading import threading
########
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
from swarms import OpenAIChat from swarms import OpenAIChat
#########
from swarms.memory.dict_internal_memory import DictInternalMemory from swarms.memory.dict_internal_memory import DictInternalMemory
from swarms.memory.dict_shared_memory import DictSharedMemory from swarms.memory.dict_shared_memory import DictSharedMemory
from swarms.memory.lanchain_chroma import LangchainChromaVectorMemory from swarms.memory.lanchain_chroma import LangchainChromaVectorMemory
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat( model = OpenAIChat(

@ -3,14 +3,10 @@ import os
import sys import sys
import threading import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT from scripts.auto_tests_docs.docs import TEST_WRITER_SOP_PROMPT
from swarms import OpenAIChat from swarms import OpenAIChat
from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.parse_code import extract_code_from_markdown
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat( model = OpenAIChat(

@ -148,7 +148,7 @@ def TEST_WRITER_SOP_PROMPT(
8. **Environment Variables and Secret Handling**: 8. **Environment Variables and Secret Handling**:
- Store secrets and configurations in environment variables. - Store secrets and configurations in environment variables.
- Use libraries like `python-decouple` or `python-dotenv` to load environment variables. - Use libraries like `python-decouple` to load environment variables.
- For tests, mock or set environment variables temporarily within the test environment. - For tests, mock or set environment variables temporarily within the test environment.
9. **Grouping and Marking Tests**: 9. **Grouping and Marking Tests**:

@ -8,10 +8,6 @@ from swarms import (
TogetherLLM, TogetherLLM,
) )
from swarms.memory import ChromaDB from swarms.memory import ChromaDB
from dotenv import load_dotenv
# load the environment variables
load_dotenv()
# Initialize the ChromaDB # Initialize the ChromaDB
memory = ChromaDB() memory = ChromaDB()

@ -5,16 +5,11 @@ from typing import Callable, List, Optional
import chromadb import chromadb
import numpy as np import numpy as np
from dotenv import load_dotenv
from swarms.utils.data_to_text import data_to_text from swarms.utils.data_to_text import data_to_text
from swarms.utils.markdown_message import display_markdown_message from swarms.utils.markdown_message import display_markdown_message
from swarms.memory.base_vectordb import AbstractVectorDatabase from swarms.memory.base_vectordb import AbstractVectorDatabase
# Load environment variables
load_dotenv()
# Results storage using local ChromaDB # Results storage using local ChromaDB
class ChromaDB(AbstractVectorDatabase): class ChromaDB(AbstractVectorDatabase):
""" """

@ -10,14 +10,11 @@ import backoff
import openai import openai
import requests import requests
from cachetools import TTLCache from cachetools import TTLCache
from dotenv import load_dotenv
from openai import OpenAI from openai import OpenAI
from PIL import Image from PIL import Image
from pydantic import field_validator from pydantic import field_validator
from termcolor import colored from termcolor import colored
load_dotenv()
# Configure Logging # Configure Logging
logging.basicConfig(level=logging.INFO) logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)

@ -2,7 +2,6 @@ import os
import subprocess as sp import subprocess as sp
from pathlib import Path from pathlib import Path
from dotenv import load_dotenv
from PIL import Image from PIL import Image
from swarms.models.base_multimodal_model import BaseMultiModalModel from swarms.models.base_multimodal_model import BaseMultiModalModel
@ -17,9 +16,6 @@ except ImportError as error:
sp.run(["pip", "install", "--upgrade", "google-generativeai"]) sp.run(["pip", "install", "--upgrade", "google-generativeai"])
load_dotenv()
# Helpers # Helpers
def get_gemini_api_key_env(): def get_gemini_api_key_env():
"""Get the Gemini API key from the environment """Get the Gemini API key from the environment

@ -6,7 +6,6 @@ from typing import Optional
import aiohttp import aiohttp
import requests import requests
from dotenv import load_dotenv
from termcolor import colored from termcolor import colored
from swarms.models.base_multimodal_model import BaseMultiModalModel from swarms.models.base_multimodal_model import BaseMultiModalModel
@ -21,7 +20,6 @@ except ImportError:
raise ImportError raise ImportError
# Load environment variables # Load environment variables
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -3,7 +3,6 @@ import subprocess
import sys import sys
import requests import requests
from dotenv import load_dotenv
from swarms.models.base_llm import AbstractLLM from swarms.models.base_llm import AbstractLLM
@ -15,11 +14,6 @@ except ImportError as error:
[sys.executable, "-m", "pip", "install", "pyaudio"] [sys.executable, "-m", "pip", "install", "pyaudio"]
) )
# Load .env file
load_dotenv()
# OpenAI API Key env # OpenAI API Key env
def openai_api_key_env(): def openai_api_key_env():
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -5,9 +5,6 @@ import uuid
from typing import List from typing import List
import requests import requests
from dotenv import load_dotenv
load_dotenv()
stable_api_key = os.environ.get("STABLE_API_KEY") stable_api_key = os.environ.get("STABLE_API_KEY")

@ -3,14 +3,9 @@ import os
from typing import Optional from typing import Optional
import requests import requests
from dotenv import load_dotenv
from swarms.models.base_llm import AbstractLLM from swarms.models.base_llm import AbstractLLM
# Load environment variables
load_dotenv()
def together_api_key_env(): def together_api_key_env():
"""Get the API key from the environment.""" """Get the API key from the environment."""
return os.getenv("TOGETHER_API_KEY") return os.getenv("TOGETHER_API_KEY")

@ -48,13 +48,11 @@ copy/paste to vscode and run it without issue. Here are some tips to consider:
Output Format: A complete Python script that is ready for copy/paste to GitHub and demo execution. It should be formatted with complete logic, proper indentation, clear variable names, and comments. Output Format: A complete Python script that is ready for copy/paste to GitHub and demo execution. It should be formatted with complete logic, proper indentation, clear variable names, and comments.
Here is an example of a a working swarm script that you can use as a rough template for the logic: Here is an example of a a working swarm script that you can use as a rough template for the logic:
import os import os
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
import swarms.prompts.swarm_daddy as sdsp import swarms.prompts.swarm_daddy as sdsp
# Load environment variables and initialize the OpenAI Chat model # Load environment variables and initialize the OpenAI Chat model
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY") api_key = os.getenv("OPENAI_API_KEY")
llm = OpenAIChat(model_name = "gpt-4", openai_api_key=api_key) llm = OpenAIChat(model_name = "gpt-4", openai_api_key=api_key)

@ -39,7 +39,7 @@ and thorough, use the guide below to create the tests, make the tests as thoroug
8. **Environment Variables and Secret Handling**: 8. **Environment Variables and Secret Handling**:
- Store secrets and configurations in environment variables. - Store secrets and configurations in environment variables.
- Use libraries like `python-decouple` or `python-dotenv` to load environment variables. - Use libraries like `python-decouple`to load environment variables.
- For tests, mock or set environment variables temporarily within the test environment. - For tests, mock or set environment variables temporarily within the test environment.
9. **Grouping and Marking Tests**: 9. **Grouping and Marking Tests**:

@ -42,7 +42,7 @@ def TEST_WRITER_SOP_PROMPT(
8. **Environment Variables and Secret Handling**: 8. **Environment Variables and Secret Handling**:
- Store secrets and configurations in environment variables. - Store secrets and configurations in environment variables.
- Use libraries like `python-decouple` or `python-dotenv` to load environment variables. - Use libraries like `python-decouple` to load environment variables.
- For tests, mock or set environment variables temporarily within the test environment. - For tests, mock or set environment variables temporarily within the test environment.
9. **Grouping and Marking Tests**: 9. **Grouping and Marking Tests**:

@ -66,13 +66,10 @@ class AutoScaler(BaseStructure):
Examples: Examples:
>>> import os >>> import os
>>> from dotenv import load_dotenv
>>> # Import the OpenAIChat model and the Agent struct >>> # Import the OpenAIChat model and the Agent struct
>>> from swarms.models import OpenAIChat >>> from swarms.models import OpenAIChat
>>> from swarms.structs import Agent >>> from swarms.structs import Agent
>>> from swarms.structs.autoscaler import AutoScaler >>> from swarms.structs.autoscaler import AutoScaler
>>> # Load the environment variables
>>> load_dotenv()
>>> # Get the API key from the environment >>> # Get the API key from the environment
>>> api_key = os.environ.get("OPENAI_API_KEY") >>> api_key = os.environ.get("OPENAI_API_KEY")
>>> # Initialize the language model >>> # Initialize the language model

@ -1,9 +1,6 @@
import os import os
from dotenv import load_dotenv
import sentry_sdk import sentry_sdk
load_dotenv()
os.environ["USE_TELEMETRY"] = "True" os.environ["USE_TELEMETRY"] = "True"
use_telementry = os.getenv("USE_TELEMETRY") use_telementry = os.getenv("USE_TELEMETRY")

@ -1,12 +1,8 @@
import os import os
from unittest.mock import patch from unittest.mock import patch
from dotenv import load_dotenv
from swarms.memory.pg import PostgresDB from swarms.memory.pg import PostgresDB
load_dotenv()
PSG_CONNECTION_STRING = os.getenv("PSG_CONNECTION_STRING") PSG_CONNECTION_STRING = os.getenv("PSG_CONNECTION_STRING")

@ -2,12 +2,9 @@ import os
from unittest.mock import Mock, patch from unittest.mock import Mock, patch
import pytest import pytest
from dotenv import load_dotenv
from swarms.models.cohere_chat import BaseCohere, Cohere from swarms.models.cohere_chat import BaseCohere, Cohere
# Load the environment variables
load_dotenv()
api_key = os.getenv("COHERE_API_KEY") api_key = os.getenv("COHERE_API_KEY")

@ -2,15 +2,12 @@ import os
from unittest.mock import mock_open, patch from unittest.mock import mock_open, patch
import pytest import pytest
from dotenv import load_dotenv
from swarms.models.eleven_labs import ( from swarms.models.eleven_labs import (
ElevenLabsModel, ElevenLabsModel,
ElevenLabsText2SpeechTool, ElevenLabsText2SpeechTool,
) )
load_dotenv()
# Define some test data # Define some test data
SAMPLE_TEXT = "Hello, this is a test." SAMPLE_TEXT = "Hello, this is a test."
API_KEY = os.environ.get("ELEVEN_API_KEY") API_KEY = os.environ.get("ELEVEN_API_KEY")

@ -4,13 +4,10 @@ from unittest.mock import AsyncMock, Mock, mock_open, patch
import pytest import pytest
from aiohttp import ClientResponseError from aiohttp import ClientResponseError
from dotenv import load_dotenv
from requests.exceptions import RequestException from requests.exceptions import RequestException
from swarms.models.gpt4_vision_api import GPT4VisionAPI from swarms.models.gpt4_vision_api import GPT4VisionAPI
load_dotenv()
custom_api_key = os.environ.get("OPENAI_API_KEY") custom_api_key = os.environ.get("OPENAI_API_KEY")
img = "images/swarms.jpeg" img = "images/swarms.jpeg"

@ -4,14 +4,11 @@ from unittest import mock
from unittest.mock import MagicMock, patch from unittest.mock import MagicMock, patch
import pytest import pytest
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs.agent import Agent, stop_when_repeats from swarms.structs.agent import Agent, stop_when_repeats
from swarms.utils.logger import logger from swarms.utils.logger import logger
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY") openai_api_key = os.getenv("OPENAI_API_KEY")

@ -2,14 +2,11 @@ import os
from unittest.mock import MagicMock, patch from unittest.mock import MagicMock, patch
import pytest import pytest
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Agent from swarms.structs import Agent
from swarms.structs.autoscaler import AutoScaler from swarms.structs.autoscaler import AutoScaler
load_dotenv()
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")
llm = OpenAIChat( llm = OpenAIChat(
temperature=0.5, temperature=0.5,

@ -2,13 +2,10 @@ import json
import os import os
import pytest import pytest
from dotenv import load_dotenv
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import BaseWorkflow from swarms.structs import BaseWorkflow
load_dotenv()
api_key = os.environ.get("OPENAI_API_KEY") api_key = os.environ.get("OPENAI_API_KEY")

@ -3,7 +3,6 @@ from datetime import timedelta
from unittest.mock import Mock from unittest.mock import Mock
import pytest import pytest
from dotenv import load_dotenv
from swarms.models.gpt4_vision_api import GPT4VisionAPI from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.prompts.multi_modal_autonomous_instruction_prompt import ( from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
@ -12,8 +11,6 @@ from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.task import Task from swarms.structs.task import Task
load_dotenv()
@pytest.fixture @pytest.fixture
def llm(): def llm():

@ -2,9 +2,7 @@ import os
import subprocess import subprocess
import requests import requests
from dotenv import load_dotenv
load_dotenv
# Constants # Constants
GITHUB_USERNAME = os.getenv("GITHUB_USERNAME") GITHUB_USERNAME = os.getenv("GITHUB_USERNAME")

@ -1,14 +1,10 @@
import os import os
from dotenv import load_dotenv
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from swarms import OpenAIChat, ToolAgent from swarms import OpenAIChat, ToolAgent
from swarms.utils.json_utils import base_model_to_json from swarms.utils.json_utils import base_model_to_json
# Load the environment variables
load_dotenv()
# Initialize the OpenAIChat class # Initialize the OpenAIChat class
chat = OpenAIChat( chat = OpenAIChat(
api_key=os.getenv("OPENAI_API"), api_key=os.getenv("OPENAI_API"),

Loading…
Cancel
Save