parent
9390efb8aa
commit
51c82cf1f2
@ -0,0 +1,20 @@
|
|||||||
|
from swarms.structs import Flow
|
||||||
|
from swarms.models.gpt4_vision_api import GPT4VisionAPI
|
||||||
|
from swarms.prompts.multi_modal_autonomous_instruction_prompt import (
|
||||||
|
MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
llm = GPT4VisionAPI()
|
||||||
|
|
||||||
|
task = "What is the color of the object?"
|
||||||
|
img = "images/swarms.jpeg"
|
||||||
|
|
||||||
|
## Initialize the workflow
|
||||||
|
flow = Flow(
|
||||||
|
llm=llm,
|
||||||
|
sop=MULTI_MODAL_AUTO_AGENT_SYSTEM_PROMPT_1,
|
||||||
|
max_loops="auto",
|
||||||
|
)
|
||||||
|
|
||||||
|
flow.run(task=task, img=img)
|
@ -0,0 +1,209 @@
|
|||||||
|
import asyncio
|
||||||
|
import base64
|
||||||
|
import concurrent.futures
|
||||||
|
import time
|
||||||
|
from concurrent import ThreadPoolExecutor
|
||||||
|
from io import BytesIO
|
||||||
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
|
import requests
|
||||||
|
from ABC import abstractmethod
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
|
class BaseMultiModalModel:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: Optional[str],
|
||||||
|
temperature: Optional[int] = 0.5,
|
||||||
|
max_tokens: Optional[int] = 500,
|
||||||
|
max_workers: Optional[int] = 10,
|
||||||
|
top_p: Optional[int] = 1,
|
||||||
|
top_k: Optional[int] = 50,
|
||||||
|
device: Optional[str] = "cuda",
|
||||||
|
max_new_tokens: Optional[int] = 500,
|
||||||
|
retries: Optional[int] = 3,
|
||||||
|
):
|
||||||
|
self.model_name = model_name
|
||||||
|
self.temperature = temperature
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
self.max_workers = max_workers
|
||||||
|
self.top_p = top_p
|
||||||
|
self.top_k = top_k
|
||||||
|
self.device = device
|
||||||
|
self.max_new_tokens = max_new_tokens
|
||||||
|
self.retries = retries
|
||||||
|
self.chat_history = []
|
||||||
|
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def __call__(self, text: str, img: str):
|
||||||
|
"""Run the model"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def run(self, task: str, img: str):
|
||||||
|
"""Run the model"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def arun(self, task: str, img: str):
|
||||||
|
"""Run the model asynchronously"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_img_from_web(self, img: str):
|
||||||
|
"""Get the image from the web"""
|
||||||
|
try:
|
||||||
|
response = requests.get(img)
|
||||||
|
response.raise_for_status()
|
||||||
|
image_pil = Image.open(BytesIO(response.content))
|
||||||
|
return image_pil
|
||||||
|
except requests.RequestException as error:
|
||||||
|
print(f"Error fetching image from {img} and error: {error}")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def encode_img(self, img: str):
|
||||||
|
"""Encode the image to base64"""
|
||||||
|
with open(img, "rb") as image_file:
|
||||||
|
return base64.b64encode(image_file.read()).decode("utf-8")
|
||||||
|
|
||||||
|
def get_img(self, img: str):
|
||||||
|
"""Get the image from the path"""
|
||||||
|
image_pil = Image.open(img)
|
||||||
|
return image_pil
|
||||||
|
|
||||||
|
def clear_chat_history(self):
|
||||||
|
"""Clear the chat history"""
|
||||||
|
self.chat_history = []
|
||||||
|
|
||||||
|
def run_many(
|
||||||
|
self,
|
||||||
|
tasks: List[str],
|
||||||
|
imgs: List[str],
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Run the model on multiple tasks and images all at once using concurrent
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tasks (List[str]): List of tasks
|
||||||
|
imgs (List[str]): List of image paths
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: List of responses
|
||||||
|
|
||||||
|
|
||||||
|
"""
|
||||||
|
# Instantiate the thread pool executor
|
||||||
|
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
||||||
|
results = executor.map(self.run, tasks, imgs)
|
||||||
|
|
||||||
|
# Print the results for debugging
|
||||||
|
for result in results:
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
|
||||||
|
def run_batch(self, tasks_images: List[Tuple[str, str]]) -> List[str]:
|
||||||
|
"""Process a batch of tasks and images"""
|
||||||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
|
futures = [
|
||||||
|
executor.submit(self.run, task, img)
|
||||||
|
for task, img in tasks_images
|
||||||
|
]
|
||||||
|
results = [future.result() for future in futures]
|
||||||
|
return results
|
||||||
|
|
||||||
|
async def run_batch_async(
|
||||||
|
self, tasks_images: List[Tuple[str, str]]
|
||||||
|
) -> List[str]:
|
||||||
|
"""Process a batch of tasks and images asynchronously"""
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
futures = [
|
||||||
|
loop.run_in_executor(None, self.run, task, img)
|
||||||
|
for task, img in tasks_images
|
||||||
|
]
|
||||||
|
return await asyncio.gather(*futures)
|
||||||
|
|
||||||
|
async def run_batch_async_with_retries(
|
||||||
|
self, tasks_images: List[Tuple[str, str]]
|
||||||
|
) -> List[str]:
|
||||||
|
"""Process a batch of tasks and images asynchronously with retries"""
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
futures = [
|
||||||
|
loop.run_in_executor(None, self.run_with_retries, task, img)
|
||||||
|
for task, img in tasks_images
|
||||||
|
]
|
||||||
|
return await asyncio.gather(*futures)
|
||||||
|
|
||||||
|
def unique_chat_history(self):
|
||||||
|
"""Get the unique chat history"""
|
||||||
|
return list(set(self.chat_history))
|
||||||
|
|
||||||
|
def run_with_retries(self, task: str, img: str):
|
||||||
|
"""Run the model with retries"""
|
||||||
|
for i in range(self.retries):
|
||||||
|
try:
|
||||||
|
return self.run(task, img)
|
||||||
|
except Exception as error:
|
||||||
|
print(f"Error with the request {error}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
def run_batch_with_retries(self, tasks_images: List[Tuple[str, str]]):
|
||||||
|
"""Run the model with retries"""
|
||||||
|
for i in range(self.retries):
|
||||||
|
try:
|
||||||
|
return self.run_batch(tasks_images)
|
||||||
|
except Exception as error:
|
||||||
|
print(f"Error with the request {error}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
def _tokens_per_second(self) -> float:
|
||||||
|
"""Tokens per second"""
|
||||||
|
elapsed_time = self.end_time - self.start_time
|
||||||
|
if elapsed_time == 0:
|
||||||
|
return float("inf")
|
||||||
|
return self._num_tokens() / elapsed_time
|
||||||
|
|
||||||
|
def _time_for_generation(self, task: str) -> float:
|
||||||
|
"""Time for Generation"""
|
||||||
|
self.start_time = time.time()
|
||||||
|
self.run(task)
|
||||||
|
self.end_time = time.time()
|
||||||
|
return self.end_time - self.start_time
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def generate_summary(self, text: str) -> str:
|
||||||
|
"""Generate Summary"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def set_temperature(self, value: float):
|
||||||
|
"""Set Temperature"""
|
||||||
|
self.temperature = value
|
||||||
|
|
||||||
|
def set_max_tokens(self, value: int):
|
||||||
|
"""Set new max tokens"""
|
||||||
|
self.max_tokens = value
|
||||||
|
|
||||||
|
def get_generation_time(self) -> float:
|
||||||
|
"""Get generation time"""
|
||||||
|
if self.start_time and self.end_time:
|
||||||
|
return self.end_time - self.start_time
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def get_chat_history(self):
|
||||||
|
"""Get the chat history"""
|
||||||
|
return self.chat_history
|
||||||
|
|
||||||
|
def get_unique_chat_history(self):
|
||||||
|
"""Get the unique chat history"""
|
||||||
|
return list(set(self.chat_history))
|
||||||
|
|
||||||
|
def get_chat_history_length(self):
|
||||||
|
"""Get the chat history length"""
|
||||||
|
return len(self.chat_history)
|
||||||
|
|
||||||
|
def get_unique_chat_history_length(self):
|
||||||
|
"""Get the unique chat history length"""
|
||||||
|
return len(list(set(self.chat_history)))
|
||||||
|
|
||||||
|
def get_chat_history_tokens(self):
|
||||||
|
"""Get the chat history tokens"""
|
||||||
|
return self._num_tokens()
|
||||||
|
|
Loading…
Reference in new issue