agent examples updates

pull/852/merge
Kye Gomez 3 days ago
parent ea965ef16b
commit 566e27755e

@ -314,6 +314,12 @@ nav:
- VLLM: "swarms/examples/vllm_integration.md"
- Llama4: "swarms/examples/llama4.md"
- Agent Examples:
- Basic Agent: "swarms/examples/basic_agent.md"
- Agents with Callable Tools: "swarms/examples/agent_with_tools.md"
# - Agent With MCP Integration: "swarms/examples/agent_with_mcp.md"
- Swarms Tools:
- Agent with Yahoo Finance: "swarms/examples/yahoo_finance.md"
- Twitter Agents: "swarms_tools/twitter.md"
@ -322,12 +328,12 @@ nav:
- Agent with HTX + CoinGecko Function Calling: "swarms/examples/swarms_tools_htx_gecko.md"
- Lumo: "swarms/examples/lumo.md"
- Quant Crypto Agent: "swarms/examples/quant_crypto_agent.md"
- Multi-Agent Collaboration:
- Unique Swarms: "swarms/examples/unique_swarms.md"
- Swarms DAO: "swarms/examples/swarms_dao.md"
- Hybrid Hierarchical-Cluster Swarm Example: "swarms/examples/hhcs_examples.md"
- Group Chat Example: "swarms/examples/groupchat_example.md"
- Meme Agent Builder: "swarms/examples/meme_agents.md"
- Sequential Workflow Example: "swarms/examples/sequential_example.md"
- ConcurrentWorkflow with VLLM Agents: "swarms/examples/vllm.md"
- External Agents:

@ -0,0 +1,646 @@
# Basic Agent Example
This tutorial demonstrates how to create and use tools (callables) with the Swarms framework. Tools are Python functions that your agent can call to perform specific tasks, interact with external services, or process data. We'll show you how to build well-structured tools and integrate them with your agent.
## Prerequisites
- Python 3.7+
- OpenAI API key
- Swarms library
## Building Tools for Your Agent
Tools are functions that your agent can use to interact with external services, process data, or perform specific tasks. Here's a guide on how to build effective tools for your agent:
### Tool Structure Best Practices
1. **Type Hints**: Always use type hints to specify input and output types
2. **Docstrings**: Include comprehensive docstrings with description, args, returns, and examples
3. **Error Handling**: Implement proper error handling and return consistent JSON responses
4. **Rate Limiting**: Include rate limiting when dealing with APIs
5. **Input Validation**: Validate input parameters before processing
### Example Tool Template
Here's a template for creating a well-structured tool:
```python
from typing import Optional, Dict, Any
import json
def example_tool(param1: str, param2: Optional[int] = None) -> str:
"""
Brief description of what the tool does.
Args:
param1 (str): Description of first parameter
param2 (Optional[int]): Description of optional parameter
Returns:
str: JSON formatted string containing the result
Raises:
ValueError: Description of when this error occurs
RequestException: Description of when this error occurs
Example:
>>> result = example_tool("test", 123)
>>> print(result)
{"status": "success", "data": {"key": "value"}}
"""
try:
# Input validation
if not isinstance(param1, str):
raise ValueError("param1 must be a string")
# Main logic
result: Dict[str, Any] = {
"status": "success",
"data": {
"param1": param1,
"param2": param2
}
}
# Return JSON string
return json.dumps(result, indent=2)
except ValueError as e:
return json.dumps({"error": f"Validation error: {str(e)}"})
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
```
### Building API Integration Tools
When building tools that interact with external APIs:
1. **API Client Setup**:
```python
def get_api_data(endpoint: str, params: Dict[str, Any]) -> str:
"""
Generic API data fetcher with proper error handling.
Args:
endpoint (str): API endpoint to call
params (Dict[str, Any]): Query parameters
Returns:
str: JSON formatted response
"""
try:
response = requests.get(
endpoint,
params=params,
timeout=10
)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps({"error": f"API error: {str(e)}"})
```
### Data Processing Tools
Example of a tool that processes data:
```python
from typing import List, Dict
import pandas as pd
def process_market_data(prices: List[float], window: int = 14) -> str:
"""
Calculate technical indicators from price data.
Args:
prices (List[float]): List of historical prices
window (int): Rolling window size for calculations
Returns:
str: JSON formatted string with calculated indicators
Example:
>>> prices = [100, 101, 99, 102, 98, 103]
>>> result = process_market_data(prices, window=3)
>>> print(result)
{"sma": 101.0, "volatility": 2.1}
"""
try:
df = pd.DataFrame({"price": prices})
results: Dict[str, float] = {
"sma": df["price"].rolling(window).mean().iloc[-1],
"volatility": df["price"].rolling(window).std().iloc[-1]
}
return json.dumps(results, indent=2)
except Exception as e:
return json.dumps({"error": f"Processing error: {str(e)}"})
```
### Adding Tools to Your Agent
Once you've created your tools, add them to your agent like this:
```python
agent = Agent(
agent_name="Your-Agent",
agent_description="Description of your agent",
system_prompt="System prompt for your agent",
tools=[
example_tool,
get_api_data,
rate_limited_api_call,
process_market_data
]
)
```
## Tutorial Steps
1. First, install the latest version of Swarms:
```bash
pip3 install -U swarms
```
2. Set up your environment variables in a `.env` file:
```plaintext
OPENAI_API_KEY="your-api-key-here"
WORKSPACE_DIR="agent_workspace"
```
3. Create a new Python file and customize your agent with the following parameters:
- `agent_name`: A unique identifier for your agent
- `agent_description`: A detailed description of your agent's capabilities
- `system_prompt`: The core instructions that define your agent's behavior
- `model_name`: The GPT model to use
- Additional configuration options for temperature and output format
4. Run the example code below:
```python
import json
import requests
from swarms import Agent
from typing import List
import time
def get_coin_price(coin_id: str, vs_currency: str) -> str:
"""
Get the current price of a specific cryptocurrency.
Args:
coin_id (str): The CoinGecko ID of the cryptocurrency (e.g., 'bitcoin', 'ethereum')
vs_currency (str, optional): The target currency. Defaults to "usd".
Returns:
str: JSON formatted string containing the coin's current price and market data
Raises:
requests.RequestException: If the API request fails
Example:
>>> result = get_coin_price("bitcoin")
>>> print(result)
{"bitcoin": {"usd": 45000, "usd_market_cap": 850000000000, ...}}
"""
try:
url = "https://api.coingecko.com/api/v3/simple/price"
params = {
"ids": coin_id,
"vs_currencies": vs_currency,
"include_market_cap": True,
"include_24hr_vol": True,
"include_24hr_change": True,
"include_last_updated_at": True,
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
return json.dumps(data, indent=2)
except requests.RequestException as e:
return json.dumps(
{
"error": f"Failed to fetch price for {coin_id}: {str(e)}"
}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_top_cryptocurrencies(limit: int, vs_currency: str) -> str:
"""
Fetch the top cryptocurrencies by market capitalization.
Args:
limit (int, optional): Number of coins to retrieve (1-250). Defaults to 10.
vs_currency (str, optional): The target currency. Defaults to "usd".
Returns:
str: JSON formatted string containing top cryptocurrencies with detailed market data
Raises:
requests.RequestException: If the API request fails
ValueError: If limit is not between 1 and 250
Example:
>>> result = get_top_cryptocurrencies(5)
>>> print(result)
[{"id": "bitcoin", "name": "Bitcoin", "current_price": 45000, ...}]
"""
try:
if not 1 <= limit <= 250:
raise ValueError("Limit must be between 1 and 250")
url = "https://api.coingecko.com/api/v3/coins/markets"
params = {
"vs_currency": vs_currency,
"order": "market_cap_desc",
"per_page": limit,
"page": 1,
"sparkline": False,
"price_change_percentage": "24h,7d",
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
# Simplify the data structure for better readability
simplified_data = []
for coin in data:
simplified_data.append(
{
"id": coin.get("id"),
"symbol": coin.get("symbol"),
"name": coin.get("name"),
"current_price": coin.get("current_price"),
"market_cap": coin.get("market_cap"),
"market_cap_rank": coin.get("market_cap_rank"),
"total_volume": coin.get("total_volume"),
"price_change_24h": coin.get(
"price_change_percentage_24h"
),
"price_change_7d": coin.get(
"price_change_percentage_7d_in_currency"
),
"last_updated": coin.get("last_updated"),
}
)
return json.dumps(simplified_data, indent=2)
except (requests.RequestException, ValueError) as e:
return json.dumps(
{
"error": f"Failed to fetch top cryptocurrencies: {str(e)}"
}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def search_cryptocurrencies(query: str) -> str:
"""
Search for cryptocurrencies by name or symbol.
Args:
query (str): The search term (coin name or symbol)
Returns:
str: JSON formatted string containing search results with coin details
Raises:
requests.RequestException: If the API request fails
Example:
>>> result = search_cryptocurrencies("ethereum")
>>> print(result)
{"coins": [{"id": "ethereum", "name": "Ethereum", "symbol": "eth", ...}]}
"""
try:
url = "https://api.coingecko.com/api/v3/search"
params = {"query": query}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
# Extract and format the results
result = {
"coins": data.get("coins", [])[
:10
], # Limit to top 10 results
"query": query,
"total_results": len(data.get("coins", [])),
}
return json.dumps(result, indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f'Failed to search for "{query}": {str(e)}'}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_jupiter_quote(
input_mint: str,
output_mint: str,
amount: float,
slippage: float = 0.5,
) -> str:
"""
Get a quote for token swaps using Jupiter Protocol on Solana.
Args:
input_mint (str): Input token mint address
output_mint (str): Output token mint address
amount (float): Amount of input tokens to swap
slippage (float, optional): Slippage tolerance percentage. Defaults to 0.5.
Returns:
str: JSON formatted string containing the swap quote details
Example:
>>> result = get_jupiter_quote("SOL_MINT_ADDRESS", "USDC_MINT_ADDRESS", 1.0)
>>> print(result)
{"inputAmount": "1000000000", "outputAmount": "22.5", "route": [...]}
"""
try:
url = "https://lite-api.jup.ag/swap/v1/quote"
params = {
"inputMint": input_mint,
"outputMint": output_mint,
"amount": str(int(amount * 1e9)), # Convert to lamports
"slippageBps": int(slippage * 100),
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to get Jupiter quote: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_htx_market_data(symbol: str) -> str:
"""
Get market data for a trading pair from HTX exchange.
Args:
symbol (str): Trading pair symbol (e.g., 'btcusdt', 'ethusdt')
Returns:
str: JSON formatted string containing market data
Example:
>>> result = get_htx_market_data("btcusdt")
>>> print(result)
{"symbol": "btcusdt", "price": "45000", "volume": "1000000", ...}
"""
try:
url = "https://api.htx.com/market/detail/merged"
params = {"symbol": symbol.lower()}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to fetch HTX market data: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_token_historical_data(
token_id: str, days: int = 30, vs_currency: str = "usd"
) -> str:
"""
Get historical price and market data for a cryptocurrency.
Args:
token_id (str): The CoinGecko ID of the cryptocurrency
days (int, optional): Number of days of historical data. Defaults to 30.
vs_currency (str, optional): The target currency. Defaults to "usd".
Returns:
str: JSON formatted string containing historical price and market data
Example:
>>> result = get_token_historical_data("bitcoin", 7)
>>> print(result)
{"prices": [[timestamp, price], ...], "market_caps": [...], "volumes": [...]}
"""
try:
url = f"https://api.coingecko.com/api/v3/coins/{token_id}/market_chart"
params = {
"vs_currency": vs_currency,
"days": days,
"interval": "daily",
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to fetch historical data: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_defi_stats() -> str:
"""
Get global DeFi statistics including TVL, trading volumes, and dominance.
Returns:
str: JSON formatted string containing global DeFi statistics
Example:
>>> result = get_defi_stats()
>>> print(result)
{"total_value_locked": 50000000000, "defi_dominance": 15.5, ...}
"""
try:
url = "https://api.coingecko.com/api/v3/global/decentralized_finance_defi"
response = requests.get(url, timeout=10)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to fetch DeFi stats: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_jupiter_tokens() -> str:
"""
Get list of tokens supported by Jupiter Protocol on Solana.
Returns:
str: JSON formatted string containing supported tokens
Example:
>>> result = get_jupiter_tokens()
>>> print(result)
{"tokens": [{"symbol": "SOL", "mint": "...", "decimals": 9}, ...]}
"""
try:
url = "https://lite-api.jup.ag/tokens/v1/mints/tradable"
response = requests.get(url, timeout=10)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to fetch Jupiter tokens: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_htx_trading_pairs() -> str:
"""
Get list of all trading pairs available on HTX exchange.
Returns:
str: JSON formatted string containing trading pairs information
Example:
>>> result = get_htx_trading_pairs()
>>> print(result)
{"symbols": [{"symbol": "btcusdt", "state": "online", "type": "spot"}, ...]}
"""
try:
url = "https://api.htx.com/v1/common/symbols"
response = requests.get(url, timeout=10)
response.raise_for_status()
return json.dumps(response.json(), indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to fetch HTX trading pairs: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
def get_market_sentiment(coin_ids: List[str]) -> str:
"""
Get market sentiment data including social metrics and developer activity.
Args:
coin_ids (List[str]): List of CoinGecko coin IDs
Returns:
str: JSON formatted string containing market sentiment data
Example:
>>> result = get_market_sentiment(["bitcoin", "ethereum"])
>>> print(result)
{"bitcoin": {"sentiment_score": 75, "social_volume": 15000, ...}, ...}
"""
try:
sentiment_data = {}
for coin_id in coin_ids:
url = f"https://api.coingecko.com/api/v3/coins/{coin_id}"
params = {
"localization": False,
"tickers": False,
"market_data": False,
"community_data": True,
"developer_data": True,
}
response = requests.get(url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
sentiment_data[coin_id] = {
"community_score": data.get("community_score"),
"developer_score": data.get("developer_score"),
"public_interest_score": data.get(
"public_interest_score"
),
"community_data": data.get("community_data"),
"developer_data": data.get("developer_data"),
}
# Rate limiting to avoid API restrictions
time.sleep(0.6)
return json.dumps(sentiment_data, indent=2)
except requests.RequestException as e:
return json.dumps(
{"error": f"Failed to fetch market sentiment: {str(e)}"}
)
except Exception as e:
return json.dumps({"error": f"Unexpected error: {str(e)}"})
# Initialize the agent with expanded tools
agent = Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Advanced financial advisor agent with comprehensive cryptocurrency market analysis capabilities across multiple platforms including Jupiter Protocol and HTX",
system_prompt="You are an advanced financial advisor agent with access to real-time cryptocurrency data from multiple sources including CoinGecko, Jupiter Protocol, and HTX. You can help users analyze market trends, check prices, find trading opportunities, perform swaps, and get detailed market insights. Always provide accurate, up-to-date information and explain market data in an easy-to-understand way.",
max_loops=1,
max_tokens=4096,
model_name="gpt-4o-mini",
dynamic_temperature_enabled=True,
output_type="all",
tools=[
get_coin_price,
get_top_cryptocurrencies,
search_cryptocurrencies,
get_jupiter_quote,
get_htx_market_data,
get_token_historical_data,
get_defi_stats,
get_jupiter_tokens,
get_htx_trading_pairs,
get_market_sentiment,
],
# Upload your tools to the tools parameter here!
)
# agent.run("Use defi stats to find the best defi project to invest in")
agent.run("Get the market sentiment for bitcoin")
# Automatically executes any number and combination of tools you have uploaded to the tools parameter!
```

@ -0,0 +1,107 @@
# Basic Agent Example
This example demonstrates how to create and configure a sophisticated AI agent using the Swarms framework. In this tutorial, we'll build a Quantitative Trading Agent that can analyze financial markets and provide investment insights. The agent is powered by GPT models and can be customized for various financial analysis tasks.
## Prerequisites
- Python 3.7+
- OpenAI API key
- Swarms library
## Tutorial Steps
1. First, install the latest version of Swarms:
```bash
pip3 install -U swarms
```
2. Set up your environment variables in a `.env` file:
```plaintext
OPENAI_API_KEY="your-api-key-here"
WORKSPACE_DIR="agent_workspace"
```
3. Create a new Python file and customize your agent with the following parameters:
- `agent_name`: A unique identifier for your agent
- `agent_description`: A detailed description of your agent's capabilities
- `system_prompt`: The core instructions that define your agent's behavior
- `model_name`: The GPT model to use
- Additional configuration options for temperature and output format
4. Run the example code below:
## Code
```python
import time
from swarms import Agent
# Initialize the agent
agent = Agent(
agent_name="Quantitative-Trading-Agent",
agent_description="Advanced quantitative trading and algorithmic analysis agent",
system_prompt="""You are an expert quantitative trading agent with deep expertise in:
- Algorithmic trading strategies and implementation
- Statistical arbitrage and market making
- Risk management and portfolio optimization
- High-frequency trading systems
- Market microstructure analysis
- Quantitative research methodologies
- Financial mathematics and stochastic processes
- Machine learning applications in trading
Your core responsibilities include:
1. Developing and backtesting trading strategies
2. Analyzing market data and identifying alpha opportunities
3. Implementing risk management frameworks
4. Optimizing portfolio allocations
5. Conducting quantitative research
6. Monitoring market microstructure
7. Evaluating trading system performance
You maintain strict adherence to:
- Mathematical rigor in all analyses
- Statistical significance in strategy development
- Risk-adjusted return optimization
- Market impact minimization
- Regulatory compliance
- Transaction cost analysis
- Performance attribution
You communicate in precise, technical terms while maintaining clarity for stakeholders.""",
max_loops=1,
model_name="gpt-4o-mini",
dynamic_temperature_enabled=True,
output_type="json",
safety_prompt_on=True,
)
out = agent.run("What are the best top 3 etfs for gold coverage?")
time.sleep(10)
print(out)
```
## Example Output
The agent will return a JSON response containing recommendations for gold ETFs based on the query.
## Customization
You can modify the system prompt and agent parameters to create specialized agents for different use cases:
| Use Case | Description |
|----------|-------------|
| Market Analysis | Analyze market trends, patterns, and indicators to identify trading opportunities |
| Portfolio Management | Optimize asset allocation and rebalancing strategies |
| Risk Assessment | Evaluate and mitigate potential risks in trading strategies |
| Trading Strategy Development | Design and implement algorithmic trading strategies |

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "7.8.5"
version = "7.8.6"
description = "Swarms - TGSC"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -1,10 +1,13 @@
from swarms.structs.agent import Agent
from swarms.structs.agent_builder import AgentsBuilder
from swarms.structs.auto_swarm_builder import AutoSwarmBuilder
from swarms.structs.base_structure import BaseStructure
from swarms.structs.base_swarm import BaseSwarm
from swarms.structs.base_workflow import BaseWorkflow
from swarms.structs.batch_agent_execution import batch_agent_execution
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
from swarms.structs.conversation import Conversation
from swarms.structs.council_judge import CouncilAsAJudge
from swarms.structs.de_hallucination_swarm import DeHallucinationSwarm
from swarms.structs.deep_research_swarm import DeepResearchSwarm
from swarms.structs.graph_workflow import (
@ -20,6 +23,11 @@ from swarms.structs.groupchat import (
from swarms.structs.hybrid_hiearchical_peer_swarm import (
HybridHierarchicalClusterSwarm,
)
from swarms.structs.ma_blocks import (
aggregate,
find_agent_by_name,
run_agent,
)
from swarms.structs.majority_voting import (
MajorityVoting,
majority_voting,
@ -34,6 +42,8 @@ from swarms.structs.mixture_of_agents import MixtureOfAgents
from swarms.structs.model_router import ModelRouter
from swarms.structs.multi_agent_collab import MultiAgentCollaboration
from swarms.structs.multi_agent_exec import (
get_agents_info,
get_swarms_info,
run_agent_with_timeout,
run_agents_concurrently,
run_agents_concurrently_async,
@ -43,8 +53,6 @@ from swarms.structs.multi_agent_exec import (
run_agents_with_resource_monitoring,
run_agents_with_tasks_concurrently,
run_single_agent,
get_agents_info,
get_swarms_info,
)
from swarms.structs.multi_agent_router import MultiAgentRouter
from swarms.structs.rearrange import AgentRearrange, rearrange
@ -76,11 +84,6 @@ from swarms.structs.swarming_architectures import (
staircase_swarm,
star_swarm,
)
from swarms.structs.auto_swarm_builder import AutoSwarmBuilder
from swarms.structs.council_judge import CouncilAsAJudge
from swarms.structs.batch_agent_execution import batch_agent_execution
from swarms.structs.ma_blocks import aggregate
__all__ = [
"Agent",
@ -151,4 +154,6 @@ __all__ = [
"CouncilAsAJudge",
"batch_agent_execution",
"aggregate",
"find_agent_by_name",
"run_agent",
]

@ -3,6 +3,7 @@ import random
from swarms.structs.agent import Agent
from typing import List
from swarms.structs.conversation import Conversation
from swarms.structs.ma_blocks import find_agent_by_name
from swarms.utils.history_output_formatter import (
history_output_formatter,
)
@ -84,14 +85,22 @@ class DynamicConversationalSwarm:
except json.JSONDecodeError:
raise ValueError("Invalid JSON string")
def find_agent_by_name(self, agent_name: str) -> Agent:
for agent in self.agents:
if agent.name == agent_name:
return agent
raise ValueError(f"Agent with name {agent_name} not found")
def run_agent(self, agent_name: str, task: str) -> str:
agent = self.find_agent_by_name(agent_name)
"""
Run a specific agent with a given task.
Args:
agent_name (str): The name of the agent to run
task (str): The task to execute
Returns:
str: The agent's response to the task
Raises:
ValueError: If agent is not found
RuntimeError: If there's an error running the agent
"""
agent = find_agent_by_name(agents=self.agents, agent_name=agent_name)
return agent.run(task)
def fetch_random_agent_name(self) -> str:

@ -1,3 +1,4 @@
from typing import Union
from swarms.structs.agent import Agent
from typing import List, Callable
from swarms.structs.conversation import Conversation
@ -82,3 +83,77 @@ def aggregate(
return history_output_formatter(
conversation=conversation, type=type
)
def run_agent(
agent: Agent,
task: str,
type: HistoryOutputType = "all",
*args,
**kwargs,
):
"""
Run an agent on a task.
Args:
agent (Agent): The agent to run
task (str): The task to run the agent on
type (HistoryOutputType, optional): The type of history output. Defaults to "all".
*args: Variable length argument list
**kwargs: Arbitrary keyword arguments
Returns:
Any: The result of running the agent
Raises:
ValueError: If agent or task is None
TypeError: If agent is not an instance of Agent
"""
if agent is None:
raise ValueError("Agent cannot be None")
if task is None:
raise ValueError("Task cannot be None")
if not isinstance(agent, Agent):
raise TypeError("Agent must be an instance of Agent")
try:
return agent.run(task=task, *args, **kwargs)
except Exception as e:
raise RuntimeError(f"Error running agent: {str(e)}")
def find_agent_by_name(agents: List[Union[Agent, Callable]], agent_name: str) -> Agent:
"""
Find an agent by its name in a list of agents.
Args:
agents (List[Union[Agent, Callable]]): List of agents to search through
agent_name (str): Name of the agent to find
Returns:
Agent: The found agent
Raises:
ValueError: If agents list is empty or agent not found
TypeError: If agent_name is not a string
"""
if not agents:
raise ValueError("Agents list cannot be empty")
if not isinstance(agent_name, str):
raise TypeError("Agent name must be a string")
if not agent_name.strip():
raise ValueError("Agent name cannot be empty or whitespace")
try:
for agent in agents:
if hasattr(agent, 'name') and agent.name == agent_name:
return agent
raise ValueError(f"Agent with name '{agent_name}' not found")
except Exception as e:
raise RuntimeError(f"Error finding agent: {str(e)}")

@ -29,8 +29,10 @@ agents = [
),
]
aggregate(
out = aggregate(
workers=agents,
task="What is the best sector to invest in?",
type="all",
)
print(out)

Loading…
Cancel
Save