parent
60b4101c14
commit
57eb57e7bd
@ -0,0 +1,63 @@
|
|||||||
|
from PIL import Image
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
||||||
|
|
||||||
|
|
||||||
|
class MoonDream(BaseMultiModalModel):
|
||||||
|
"""
|
||||||
|
MoonDream is a multi-modal model that combines text and image inputs to generate descriptive answers for images.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_name (str): The name or path of the pre-trained model to be used.
|
||||||
|
revision (str): The specific revision of the pre-trained model to be used.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
model_name (str): The name or path of the pre-trained model.
|
||||||
|
revision (str): The specific revision of the pre-trained model.
|
||||||
|
model (AutoModelForCausalLM): The pre-trained model for generating answers.
|
||||||
|
tokenizer (AutoTokenizer): The tokenizer for processing text inputs.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = "vikhyatk/moondream2",
|
||||||
|
revision: str = "2024-03-04",
|
||||||
|
system_prompt: str = None,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.model_name = model_name
|
||||||
|
self.revision = revision
|
||||||
|
self.system_prompt = system_prompt
|
||||||
|
|
||||||
|
self.model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
trust_remote_code=True,
|
||||||
|
revision=revision,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_name, revision=revision
|
||||||
|
)
|
||||||
|
|
||||||
|
def run(self, task: str, img: str):
|
||||||
|
"""
|
||||||
|
Runs the MoonDream model to generate a descriptive answer for the given image.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task or question related to the image.
|
||||||
|
img (str): The path or URL of the image file.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The descriptive answer generated by the MoonDream model.
|
||||||
|
|
||||||
|
"""
|
||||||
|
image = Image.open(img)
|
||||||
|
enc_image = self.model.encode_image(image)
|
||||||
|
return self.model.answer_question(
|
||||||
|
enc_image, f"{self.system_propmpt} {task}", self.tokenizer
|
||||||
|
)
|
@ -1,197 +0,0 @@
|
|||||||
import json
|
|
||||||
from typing import List, Optional, Sequence
|
|
||||||
|
|
||||||
import yaml
|
|
||||||
|
|
||||||
from swarms.structs.agent import Agent
|
|
||||||
from swarms.structs.conversation import Conversation
|
|
||||||
from swarms.utils.logger import logger
|
|
||||||
|
|
||||||
|
|
||||||
class BaseMultiAgentStructure:
|
|
||||||
"""
|
|
||||||
Base class for a multi-agent structure.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
agents (List[Agent], optional): List of agents in the structure. Defaults to None.
|
|
||||||
callbacks (Optional[Sequence[callable]], optional): List of callbacks for the structure. Defaults to None.
|
|
||||||
autosave (bool, optional): Flag indicating whether to enable autosave. Defaults to False.
|
|
||||||
logging (bool, optional): Flag indicating whether to enable logging. Defaults to False.
|
|
||||||
*args: Variable length argument list.
|
|
||||||
**kwargs: Arbitrary keyword arguments.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
agents (List[Agent]): List of agents in the structure.
|
|
||||||
callbacks (Optional[Sequence[callable]]): List of callbacks for the structure.
|
|
||||||
autosave (bool): Flag indicating whether autosave is enabled.
|
|
||||||
logging (bool): Flag indicating whether logging is enabled.
|
|
||||||
conversation (Conversation): Conversation object for the structure.
|
|
||||||
|
|
||||||
Methods:
|
|
||||||
metadata(): Get the metadata of the multi-agent structure.
|
|
||||||
save_to_json(filename: str): Save the current state of the multi-agent structure to a JSON file.
|
|
||||||
load_from_json(filename: str): Load the state of the multi-agent structure from a JSON file.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
agents: List[Agent] = None,
|
|
||||||
callbacks: Optional[Sequence[callable]] = None,
|
|
||||||
autosave: bool = False,
|
|
||||||
logging: bool = False,
|
|
||||||
return_metadata: bool = False,
|
|
||||||
metadata_filename: str = "multiagent_structure_metadata.json",
|
|
||||||
*args,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
self.agents = agents
|
|
||||||
self.callbacks = callbacks
|
|
||||||
self.autosave = autosave
|
|
||||||
self.logging = logging
|
|
||||||
self.return_metadata = return_metadata
|
|
||||||
self.metadata_filename = metadata_filename
|
|
||||||
self.conversation = Conversation(
|
|
||||||
time_enabled=True, *args, **kwargs
|
|
||||||
)
|
|
||||||
if self.logging:
|
|
||||||
self.logging.basicConfig(
|
|
||||||
level=logging.INFO,
|
|
||||||
format="%(asctime)s - %(levelname)s - %(message)s",
|
|
||||||
)
|
|
||||||
|
|
||||||
# Handle the case where the agents are not provided
|
|
||||||
# Handle agents
|
|
||||||
for agent in self.agents:
|
|
||||||
if not isinstance(agent, Agent):
|
|
||||||
raise TypeError("Agents must be of type Agent.")
|
|
||||||
|
|
||||||
if self.agents is None:
|
|
||||||
self.agents = []
|
|
||||||
|
|
||||||
# Handle the case where the callbacks are not provided
|
|
||||||
if self.callbacks is None:
|
|
||||||
self.callbacks = []
|
|
||||||
|
|
||||||
# Handle the case where the autosave is not provided
|
|
||||||
if self.autosave is None:
|
|
||||||
self.autosave = False
|
|
||||||
|
|
||||||
# Handle the case where the logging is not provided
|
|
||||||
if self.logging is None:
|
|
||||||
self.logging = False
|
|
||||||
|
|
||||||
# Handle callbacks
|
|
||||||
if callbacks is not None:
|
|
||||||
for callback in self.callbacks:
|
|
||||||
if not callable(callback):
|
|
||||||
raise TypeError("Callback must be callable.")
|
|
||||||
|
|
||||||
# Handle autosave
|
|
||||||
if autosave:
|
|
||||||
self.save_to_json(metadata_filename)
|
|
||||||
|
|
||||||
def metadata(self):
|
|
||||||
"""
|
|
||||||
Get the metadata of the multi-agent structure.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
dict: The metadata of the multi-agent structure.
|
|
||||||
"""
|
|
||||||
return {
|
|
||||||
"agents": self.agents,
|
|
||||||
"callbacks": self.callbacks,
|
|
||||||
"autosave": self.autosave,
|
|
||||||
"logging": self.logging,
|
|
||||||
"conversation": self.conversation,
|
|
||||||
}
|
|
||||||
|
|
||||||
def save_to_json(self, filename: str):
|
|
||||||
"""
|
|
||||||
Save the current state of the multi-agent structure to a JSON file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename (str): The name of the file to save the multi-agent structure to.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
with open(filename, "w") as f:
|
|
||||||
json.dump(self.__dict__, f)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(e)
|
|
||||||
|
|
||||||
def load_from_json(self, filename: str):
|
|
||||||
"""
|
|
||||||
Load the state of the multi-agent structure from a JSON file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename (str): The name of the file to load the multi-agent structure from.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
with open(filename) as f:
|
|
||||||
self.__dict__ = json.load(f)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(e)
|
|
||||||
|
|
||||||
def save_to_yaml(self, filename: str):
|
|
||||||
"""
|
|
||||||
Save the current state of the multi-agent structure to a YAML file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename (str): The name of the file to save the multi-agent structure to.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
with open(filename, "w") as f:
|
|
||||||
yaml.dump(self.__dict__, f)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(e)
|
|
||||||
|
|
||||||
def load_from_yaml(self, filename: str):
|
|
||||||
"""
|
|
||||||
Load the state of the multi-agent structure from a YAML file.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
filename (str): The name of the file to load the multi-agent structure from.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
None
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
with open(filename) as f:
|
|
||||||
self.__dict__ = yaml.load(f)
|
|
||||||
except Exception as e:
|
|
||||||
logger.error(e)
|
|
||||||
|
|
||||||
def __repr__(self):
|
|
||||||
return f"{self.__class__.__name__}({self.__dict__})"
|
|
||||||
|
|
||||||
def __str__(self):
|
|
||||||
return f"{self.__class__.__name__}({self.__dict__})"
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.agents)
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
|
||||||
return self.agents[index]
|
|
||||||
|
|
||||||
def __setitem__(self, index, value):
|
|
||||||
self.agents[index] = value
|
|
||||||
|
|
||||||
def __delitem__(self, index):
|
|
||||||
del self.agents[index]
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return iter(self.agents)
|
|
||||||
|
|
||||||
def __reversed__(self):
|
|
||||||
return reversed(self.agents)
|
|
||||||
|
|
||||||
def __contains__(self, value):
|
|
||||||
return value in self.agents
|
|
@ -0,0 +1,65 @@
|
|||||||
|
from typing import Union, Sequence, List, Callable
|
||||||
|
from swarms.structs.agent import Agent
|
||||||
|
|
||||||
|
|
||||||
|
class SermonSwarm:
|
||||||
|
"""
|
||||||
|
Represents a swarm of agents that communicate through sermons.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
priest (Agent): The priest agent responsible for generating sermons.
|
||||||
|
agents (Sequence[Agent]): The list of agents in the swarm.
|
||||||
|
max_loops (int, optional): The maximum number of loops to run the agents. Defaults to 5.
|
||||||
|
stop_condition (Union[str, List[str]], optional): The condition(s) that can stop the agents.
|
||||||
|
Defaults to "stop".
|
||||||
|
stop_function (Union[None, Callable], optional): The function to apply to the sermons before
|
||||||
|
checking the stop condition. Defaults to None.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
priest: Agent,
|
||||||
|
agents: Sequence[Agent],
|
||||||
|
max_loops: int = 5,
|
||||||
|
stop_condition: Union[str, List[str]] = "stop",
|
||||||
|
stop_function: Union[None, Callable] = None,
|
||||||
|
*args,
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.priest = priest
|
||||||
|
self.agents = agents
|
||||||
|
self.max_loops = max_loops
|
||||||
|
self.stop_condition = stop_condition
|
||||||
|
self.stop_function = stop_function
|
||||||
|
|
||||||
|
def run(self, task: str, *args, **kwargs):
|
||||||
|
"""
|
||||||
|
Runs the swarm by generating sermons from the priest and executing the task on each agent.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to be executed by the agents.
|
||||||
|
*args: Additional positional arguments for the task.
|
||||||
|
**kwargs: Additional keyword arguments for the task.
|
||||||
|
"""
|
||||||
|
sermon = self.priest(task, *args, **kwargs)
|
||||||
|
|
||||||
|
# Add the sermon to the memory of all agents
|
||||||
|
for agent in self.agents:
|
||||||
|
agent.add_message_to_memory(sermon)
|
||||||
|
|
||||||
|
# Then run the agents
|
||||||
|
for _ in range(self.max_loops):
|
||||||
|
for agent in self.agents:
|
||||||
|
preach = agent.run(task, *args, **kwargs)
|
||||||
|
|
||||||
|
if self.stop_function:
|
||||||
|
preach = self.stop_function(preach)
|
||||||
|
|
||||||
|
if self.stop_condition in preach:
|
||||||
|
if self.stop_condition is True:
|
||||||
|
break
|
||||||
|
|
||||||
|
elif self.stop_condition in preach:
|
||||||
|
break
|
||||||
|
|
Loading…
Reference in new issue