Merge pull request #1259 from hughiwnl/agentredocs

Example file for agent rearrange
master
Kye Gomez 3 days ago committed by GitHub
commit 58040f2cc2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -410,6 +410,7 @@ nav:
- Hybrid Hierarchical-Cluster Swarm Example: "swarms/examples/hhcs_examples.md" - Hybrid Hierarchical-Cluster Swarm Example: "swarms/examples/hhcs_examples.md"
- Group Chat Example: "swarms/examples/groupchat_example.md" - Group Chat Example: "swarms/examples/groupchat_example.md"
- Sequential Workflow Example: "swarms/examples/sequential_example.md" - Sequential Workflow Example: "swarms/examples/sequential_example.md"
- AgentRearrange Example: "swarms/examples/agent_rearrange_example.md"
- SwarmRouter Example: "swarms/examples/swarm_router.md" - SwarmRouter Example: "swarms/examples/swarm_router.md"
- MultiAgentRouter Minimal Example: "swarms/examples/multi_agent_router_minimal.md" - MultiAgentRouter Minimal Example: "swarms/examples/multi_agent_router_minimal.md"
- ConcurrentWorkflow Example: "swarms/examples/concurrent_workflow.md" - ConcurrentWorkflow Example: "swarms/examples/concurrent_workflow.md"

@ -0,0 +1,175 @@
# AgentRearrange Example
!!! abstract "Overview"
Learn how to create flexible multi-agent workflows using `AgentRearrange`. Define custom flow patterns with sequential execution (`->`) and concurrent execution (`,`) to orchestrate agents in sophisticated workflows.
## Prerequisites
!!! info "Before You Begin"
Make sure you have:
- Python 3.7+ installed
- A valid API key for your model provider
- The Swarms package installed
## Installation
```bash
pip3 install -U swarms
```
## Environment Setup
!!! tip "API Key Configuration"
Set your API key in the `.env` file:
```bash
OPENAI_API_KEY="your-api-key-here"
```
## Code Implementation
### Import Required Modules
```python
from swarms import Agent, AgentRearrange
```
### Configure Agents
!!! example "Agent Configuration"
Here's how to set up your specialized agents:
```python
# Research Agent
researcher = Agent(
agent_name="Researcher",
system_prompt="You are a research specialist. Gather information, analyze data, and provide comprehensive findings.",
model_name="gpt-4o-mini",
max_loops=1,
)
# Writer Agent
writer = Agent(
agent_name="Writer",
system_prompt="You are a professional writer. Create clear and engaging content based on research findings.",
model_name="gpt-4o-mini",
max_loops=1,
)
# Editor Agent
editor = Agent(
agent_name="Editor",
system_prompt="You are an expert editor. Review content for clarity, accuracy, and style.",
model_name="gpt-4o-mini",
max_loops=1,
)
```
### Initialize AgentRearrange
!!! example "Workflow Setup"
Configure AgentRearrange with your agents and flow pattern:
```python
# Sequential flow: Researcher -> Writer -> Editor
flow = "Researcher -> Writer -> Editor"
workflow = AgentRearrange(
name="content-creation-workflow",
agents=[researcher, writer, editor],
flow=flow,
max_loops=1,
)
```
### Run the Workflow
!!! example "Execute the Workflow"
Start the workflow:
```python
result = workflow.run(
"Research and write a comprehensive article about the impact of AI on healthcare"
)
print(result)
```
## Complete Example
!!! success "Full Implementation"
Here's the complete code combined:
```python
from swarms import Agent, AgentRearrange
# Create agents
researcher = Agent(
agent_name="Researcher",
system_prompt="You are a research specialist. Gather information, analyze data, and provide comprehensive findings.",
model_name="gpt-4o-mini",
max_loops=1,
)
writer = Agent(
agent_name="Writer",
system_prompt="You are a professional writer. Create clear and engaging content based on research findings.",
model_name="gpt-4o-mini",
max_loops=1,
)
editor = Agent(
agent_name="Editor",
system_prompt="You are an expert editor. Review content for clarity, accuracy, and style.",
model_name="gpt-4o-mini",
max_loops=1,
)
# Define flow pattern
flow = "Researcher -> Writer -> Editor"
# Create workflow
workflow = AgentRearrange(
name="content-creation-workflow",
agents=[researcher, writer, editor],
flow=flow,
max_loops=1,
)
# Execute workflow
result = workflow.run(
"Research and write a comprehensive article about the impact of AI on healthcare"
)
print(result)
```
## Flow Pattern Examples
!!! info "Flow Pattern Syntax"
- **Sequential**: `"Agent1 -> Agent2 -> Agent3"` - Agents run one after another
- **Parallel**: `"Agent1, Agent2 -> Agent3"` - Agent1 and Agent2 run simultaneously, then Agent3
- **Mixed**: `"Agent1 -> Agent2, Agent3 -> Agent4"` - Combine sequential and parallel execution
## Configuration Options
!!! info "Key Parameters"
| Parameter | Description | Default |
|-----------|-------------|---------|
| `agents` | List of Agent objects | Required |
| `flow` | Flow pattern string defining execution order | Required |
| `max_loops` | Maximum number of execution loops | 1 |
| `team_awareness` | Enable sequential awareness for agents | False |
## Next Steps
!!! tip "What to Try Next"
1. Experiment with parallel execution: `"Agent1, Agent2 -> Agent3"`
2. Enable `team_awareness=True` for better agent coordination
3. Try more complex flows combining sequential and parallel patterns
4. Use SwarmRouter with `swarm_type="AgentRearrange"` for unified interface
## Troubleshooting
!!! warning "Common Issues"
- Ensure agent names in flow match `agent_name` exactly
- Check for typos in agent names
- Verify all agents in flow are included in agents list
- Enable verbose mode for debugging: `verbose=True`
Loading…
Cancel
Save