Merge pull request #414 from vyomakesh09/master

refactor execution scripts and workflows
pull/421/head
Eternal Reclaimer 10 months ago committed by GitHub
commit 581d6558d6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -0,0 +1,34 @@
name: Run Examples Script
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
schedule:
# Runs at 3:00 AM UTC every day
- cron: '0 3 * * *'
jobs:
run-examples:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: '3.9'
- name: Install dependencies
run: |
pip install -r requirements.txt
# Assuming your script might also need pytest and swarms
pip install pytest
pip install swarms
- name: Make Script Executable and Run
run: |
chmod +x ./swarms/scripts/run_examples.sh
./swarms/scripts/run_examples.sh

Binary file not shown.

After

Width:  |  Height:  |  Size: 113 KiB

@ -0,0 +1,29 @@
import os
import sys
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
)
print(f'this is a test msg for stdout and stderr: {sys.stdout}, {sys.stderr}')
## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
# Run the workflow on a task
out = agent.run("Generate a 10,000 word blog on health and wellness.")
print(out)

@ -0,0 +1,13 @@
# Import necessary modules and classes
from swarms.models import Anthropic
# Initialize an instance of the Anthropic class
model = Anthropic(anthropic_api_key="")
# Using the run method
# completion_1 = model.run("What is the capital of France?")
# print(completion_1)
# Using the __call__ method
completion_2 = model("How far is the moon from the earth?", stop=["miles", "km"])
print(completion_2)

@ -0,0 +1,24 @@
import os
from dotenv import load_dotenv
from swarms import OpenAIChat, Task, ConcurrentWorkflow, Agent
# Load environment variables from .env file
load_dotenv()
# Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1)
# Create a workflow
workflow = ConcurrentWorkflow(max_workers=5)
# Create tasks
task1 = Task(agent, "What's the weather in miami")
task2 = Task(agent, "What's the weather in new york")
task3 = Task(agent, "What's the weather in london")
# Add tasks to the workflow
workflow.add(tasks=[task1, task2, task3])
# Run the workflow
workflow.run()

@ -0,0 +1,14 @@
'''from swarms.models import Dalle3
# Create an instance of the Dalle3 class with high quality
dalle3 = Dalle3(quality="high")
# Define a text prompt
task = "A high-quality image of a sunset"
# Generate a high-quality image from the text prompt
image_url = dalle3(task)
# Print the generated image URL
print(image_url)
'''

@ -0,0 +1,14 @@
from swarms import GPT4VisionAPI
# Initialize with default API key and custom max_tokens
api = GPT4VisionAPI(max_tokens=1000)
# Define the task and image URL
task = "Describe the scene in the image."
img = "/home/kye/.swarms/swarms/examples/Screenshot from 2024-02-20 05-55-34.png"
# Run the GPT-4 Vision model
response = api.run(task, img)
# Print the model's response
print(response)

@ -0,0 +1,29 @@
from swarms.models import HuggingfaceLLM
import torch
try:
inference = HuggingfaceLLM(
model_id="gpt2",
quantize=False,
verbose=True,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
inference.model.to(device)
prompt_text = "Create a list of known biggest risks of structural collapse with references"
inputs = inference.tokenizer(prompt_text, return_tensors="pt").to(device)
generated_ids = inference.model.generate(
**inputs,
max_new_tokens=1000, # Adjust the length of the generation
temperature=0.7, # Adjust creativity
top_k=50, # Limits the vocabulary considered at each step
pad_token_id=inference.tokenizer.eos_token_id,
do_sample=True # Enable sampling to utilize temperature
)
generated_text = inference.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(generated_text)
except Exception as e:
print(f"An error occurred: {e}")

@ -0,0 +1,33 @@
# Import the idefics model from the swarms.models module
from swarms.models import Idefics
# Create an instance of the idefics model
model = Idefics()
# Define user input with an image URL and chat with the model
user_input = (
"User: What is in this image?"
" https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG"
)
response = model.chat(user_input)
print(response)
# Define another user input with an image URL and chat with the model
user_input = (
"User: And who is that?"
" https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052"
)
response = model.chat(user_input)
print(response)
# Set the checkpoint of the model to "new_checkpoint"
model.set_checkpoint("new_checkpoint")
# Set the device of the model to "cpu"
model.set_device("cpu")
# Set the maximum length of the chat to 200
model.set_max_length(200)
# Clear the chat history of the model
model.clear_chat_history()

@ -0,0 +1,10 @@
from swarms import Kosmos
# Initialize the model
model = Kosmos()
# Generate
out = model.run("Analyze the reciepts in this image", "docs.jpg")
# Print the output
print(out)

@ -0,0 +1,100 @@
from swarms.structs import Agent
import os
from dotenv import load_dotenv
from swarms.models import GPT4VisionAPI
from swarms.prompts.logistics import (
Health_Security_Agent_Prompt,
Quality_Control_Agent_Prompt,
Productivity_Agent_Prompt,
Safety_Agent_Prompt,
Security_Agent_Prompt,
Sustainability_Agent_Prompt,
Efficiency_Agent_Prompt,
)
# Load ENV
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
# GPT4VisionAPI
llm = GPT4VisionAPI(openai_api_key=api_key)
# Image for analysis
factory_image = "factory_image1.jpg"
# Initialize agents with respective prompts
health_security_agent = Agent(
llm=llm,
sop=Health_Security_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Quality control agent
quality_control_agent = Agent(
llm=llm,
sop=Quality_Control_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Productivity Agent
productivity_agent = Agent(
llm=llm,
sop=Productivity_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Initiailize safety agent
safety_agent = Agent(llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True)
# Init the security agent
security_agent = Agent(
llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True
)
# Initialize sustainability agent
sustainability_agent = Agent(
llm=llm,
sop=Sustainability_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Initialize efficincy agent
efficiency_agent = Agent(
llm=llm,
sop=Efficiency_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Run agents with respective tasks on the same image
health_analysis = health_security_agent.run(
"Analyze the safety of this factory", factory_image
)
quality_analysis = quality_control_agent.run(
"Examine product quality in the factory", factory_image
)
productivity_analysis = productivity_agent.run(
"Evaluate factory productivity", factory_image
)
safety_analysis = safety_agent.run(
"Inspect the factory's adherence to safety standards",
factory_image,
)
security_analysis = security_agent.run(
"Assess the factory's security measures and systems",
factory_image,
)
sustainability_analysis = sustainability_agent.run(
"Examine the factory's sustainability practices", factory_image
)
efficiency_analysis = efficiency_agent.run(
"Analyze the efficiency of the factory's manufacturing process",
factory_image,
)

@ -0,0 +1,10 @@
from swarms.models import Mixtral
# Initialize the Mixtral model with 4 bit and flash attention!
mixtral = Mixtral(load_in_4bit=True, use_flash_attention_2=True)
# Generate text for a simple task
generated_text = mixtral.run("Generate a creative story.")
# Print the generated text
print(generated_text)

@ -0,0 +1,14 @@
from swarms import QwenVLMultiModal
# Instantiate the QwenVLMultiModal model
model = QwenVLMultiModal(
model_name="Qwen/Qwen-VL-Chat",
device="cuda",
quantize=True,
)
# Run the model
response = model("Hello, how are you?", "https://example.com/image.jpg")
# Print the response
print(response)

@ -0,0 +1,26 @@
import os
from dotenv import load_dotenv
from swarms import OpenAIChat, Task, RecursiveWorkflow, Agent
# Load environment variables from .env file
load_dotenv()
# Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1)
# Create a workflow
workflow = RecursiveWorkflow(stop_token="<DONE>")
# Create tasks
task1 = Task(agent, "What's the weather in miami")
task2 = Task(agent, "What's the weather in new york")
task3 = Task(agent, "What's the weather in london")
# Add tasks to the workflow
workflow.add(task1)
workflow.add(task2)
workflow.add(task3)
# Run the workflow
workflow.run()

@ -0,0 +1,46 @@
import os
from swarms import OpenAIChat, Agent, SequentialWorkflow
from dotenv import load_dotenv
load_dotenv()
# Load the environment variables
api_key = os.getenv("OPENAI_API_KEY")
# Initialize the language agent
llm = OpenAIChat(
temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
)
# Initialize the agent with the language agent
agent1 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
agent2 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
agent3 = Agent(llm=llm, max_loops=1)
# Create the workflow
workflow = SequentialWorkflow(max_loops=1)
# Add tasks to the workflow
workflow.add(
agent1,
"Generate a 10,000 word blog on health and wellness.",
)
# Suppose the next task takes the output of the first task as input
workflow.add(
agent2,
"Summarize the generated blog",
)
# Run the workflow
workflow.run()
# Output the results
for task in workflow.tasks:
print(f"Task: {task.description}, Result: {task.result}")

@ -0,0 +1,43 @@
import os
from dotenv import load_dotenv
from swarms import (
OpenAIChat,
Conversation,
)
conv = Conversation(
time_enabled=True,
)
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
# Run the language model in a loop
def interactive_conversation(llm):
conv = Conversation()
while True:
user_input = input("User: ")
conv.add("user", user_input)
if user_input.lower() == "quit":
break
task = conv.return_history_as_string() # Get the conversation history
out = llm(task)
conv.add("assistant", out)
print(
f"Assistant: {out}",
)
conv.display_conversation()
conv.export_conversation("conversation.txt")
# Replace with your LLM instance
interactive_conversation(llm)

@ -0,0 +1,44 @@
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import OpenAIChat, Agent, SwarmNetwork
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
# Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
)
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
# Run the workflow on a task
out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
# Run all the agents in the swarm network on a task
out = swarmnet.run_many_agents("Generate a 10,000 word blog on health and wellness.")
print(out)

@ -0,0 +1,25 @@
hey guys, we out here testing out swarms which is a multi-modal agent
framework which potentially makes all the agents work in a single pot
for instance take an empty pot and place all the known agents in that
pot and output a well structured answer out of it
that's basically it, we belive that a multi-agent framework beats a single
agent framework which is not really rocket science
ight first we gotta make sure out evn clean, install python3-pip,
this runs on python3.10
our current version of swarms==4.1.0
make sure you in a virtual env or conda
just do
$ python3 -m venv ~/.venv
$ source ~/.venv/bin/active
then boom we in a virtual env LFG
now for the best we install swarms
$ pip3 instll --upgrade swamrs==4.1.0

@ -0,0 +1,53 @@
import os
from dotenv import load_dotenv
from swarms.structs import Agent, OpenAIChat, Task
# Load the environment variables
load_dotenv()
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
)
# Create a task
task = Task(
description=(
"Generate a report on the top 3 biggest expenses for small"
" businesses and how businesses can save 20%"
),
agent=agent,
)
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")

@ -0,0 +1,30 @@
# Import necessary libraries
from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms import ToolAgent
# Load the pre-trained model and tokenizer
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
# Define a JSON schema for person's information
json_schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number"},
"is_student": {"type": "boolean"},
"courses": {"type": "array", "items": {"type": "string"}},
},
}
# Define the task to generate a person's information
task = "Generate a person's information based on the following schema:"
# Create an instance of the ToolAgent class
agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
# Run the agent to generate the person's information
generated_data = agent.run(task)
# Print the generated data
print(generated_data)

@ -0,0 +1,33 @@
# Importing necessary modules
import os
from dotenv import load_dotenv
from swarms import Worker, OpenAIChat, tool
# Loading environment variables from .env file
load_dotenv()
# Retrieving the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY")
# Create a tool
@tool
def search_api(query: str):
pass
# Creating a Worker instance
worker = Worker(
name="My Worker",
role="Worker",
human_in_the_loop=False,
tools=[search_api],
temperature=0.5,
llm=OpenAIChat(openai_api_key=api_key),
)
# Running the worker with a prompt
out = worker.run("Hello, how are you? Create an image of how your are doing!")
# Printing the output
print(out)

@ -0,0 +1,12 @@
# Import the model
from swarms import ZeroscopeTTV
# Initialize the model
zeroscope = ZeroscopeTTV()
# Specify the task
task = "A person is walking on the street."
# Generate the video!
video_path = zeroscope(task)
print(video_path)

@ -0,0 +1,22 @@
#!/bin/bash
# Define a file to keep track of successfully executed scripts
SUCCESS_LOG="successful_runs.log"
for f in /swarms/playground/examples/example_*.py; do
# Check if the script has been logged as successful
if grep -Fxq "$f" "$SUCCESS_LOG"; then
echo "Skipping ${f} as it ran successfully in a previous run."
else
# Run the script if not previously successful
if /home/kye/miniconda3/envs/swarms/bin/python "$f" 2>>errors.txt; then
echo "(${f}) ran successfully without errors."
# Log the successful script execution
echo "$f" >> "$SUCCESS_LOG"
else
echo "Error encountered in ${f}. Check errors.txt for details."
break
fi
fi
echo "##############################################################################"
done
Loading…
Cancel
Save