Merge pull request #414 from vyomakesh09/master
	
		
	
				
					
				
			refactor execution scripts and workflowspull/421/head
						commit
						581d6558d6
					
				@ -0,0 +1,34 @@
 | 
				
			||||
name: Run Examples Script
 | 
				
			||||
 | 
				
			||||
on:
 | 
				
			||||
  push:
 | 
				
			||||
    branches: [ main ]
 | 
				
			||||
  pull_request:
 | 
				
			||||
    branches: [ main ]
 | 
				
			||||
  schedule:
 | 
				
			||||
    # Runs at 3:00 AM UTC every day
 | 
				
			||||
    - cron: '0 3 * * *'
 | 
				
			||||
 | 
				
			||||
jobs:
 | 
				
			||||
  run-examples:
 | 
				
			||||
    runs-on: ubuntu-latest
 | 
				
			||||
 | 
				
			||||
    steps:
 | 
				
			||||
    - uses: actions/checkout@v4
 | 
				
			||||
 | 
				
			||||
    - name: Setup Python
 | 
				
			||||
      uses: actions/setup-python@v5
 | 
				
			||||
      with:
 | 
				
			||||
        python-version: '3.9'
 | 
				
			||||
 | 
				
			||||
    - name: Install dependencies
 | 
				
			||||
      run: |
 | 
				
			||||
        pip install -r requirements.txt
 | 
				
			||||
        # Assuming your script might also need pytest and swarms
 | 
				
			||||
        pip install pytest
 | 
				
			||||
        pip install swarms
 | 
				
			||||
 | 
				
			||||
    - name: Make Script Executable and Run
 | 
				
			||||
      run: |
 | 
				
			||||
        chmod +x ./swarms/scripts/run_examples.sh
 | 
				
			||||
        ./swarms/scripts/run_examples.sh
 | 
				
			||||
| 
		 After Width: | Height: | Size: 113 KiB  | 
@ -0,0 +1,29 @@
 | 
				
			||||
import os
 | 
				
			||||
import sys
 | 
				
			||||
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
 | 
				
			||||
# Import the OpenAIChat model and the Agent struct
 | 
				
			||||
from swarms import OpenAIChat, Agent
 | 
				
			||||
 | 
				
			||||
# Load the environment variables
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Get the API key from the environment
 | 
				
			||||
api_key = os.environ.get("OPENAI_API_KEY")
 | 
				
			||||
 | 
				
			||||
# Initialize the language model
 | 
				
			||||
llm = OpenAIChat(
 | 
				
			||||
    temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
print(f'this is a test msg for stdout and stderr: {sys.stdout}, {sys.stderr}')
 | 
				
			||||
 | 
				
			||||
## Initialize the workflow
 | 
				
			||||
agent = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
 | 
				
			||||
 | 
				
			||||
# Run the workflow on a task
 | 
				
			||||
out = agent.run("Generate a 10,000 word blog on health and wellness.")
 | 
				
			||||
 | 
				
			||||
print(out)
 | 
				
			||||
@ -0,0 +1,13 @@
 | 
				
			||||
# Import necessary modules and classes
 | 
				
			||||
from swarms.models import Anthropic
 | 
				
			||||
 | 
				
			||||
# Initialize an instance of the Anthropic class
 | 
				
			||||
model = Anthropic(anthropic_api_key="")
 | 
				
			||||
 | 
				
			||||
# Using the run method
 | 
				
			||||
# completion_1 = model.run("What is the capital of France?")
 | 
				
			||||
# print(completion_1)
 | 
				
			||||
 | 
				
			||||
# Using the __call__ method
 | 
				
			||||
completion_2 = model("How far is the moon from the earth?", stop=["miles", "km"])
 | 
				
			||||
print(completion_2)
 | 
				
			||||
@ -0,0 +1,24 @@
 | 
				
			||||
import os
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
from swarms import OpenAIChat, Task, ConcurrentWorkflow, Agent
 | 
				
			||||
 | 
				
			||||
# Load environment variables from .env file
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Load environment variables
 | 
				
			||||
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
 | 
				
			||||
agent = Agent(llm=llm, max_loops=1)
 | 
				
			||||
 | 
				
			||||
# Create a workflow
 | 
				
			||||
workflow = ConcurrentWorkflow(max_workers=5)
 | 
				
			||||
 | 
				
			||||
# Create tasks
 | 
				
			||||
task1 = Task(agent, "What's the weather in miami")
 | 
				
			||||
task2 = Task(agent, "What's the weather in new york")
 | 
				
			||||
task3 = Task(agent, "What's the weather in london")
 | 
				
			||||
 | 
				
			||||
# Add tasks to the workflow
 | 
				
			||||
workflow.add(tasks=[task1, task2, task3])
 | 
				
			||||
 | 
				
			||||
# Run the workflow
 | 
				
			||||
workflow.run()
 | 
				
			||||
@ -0,0 +1,14 @@
 | 
				
			||||
'''from swarms.models import Dalle3
 | 
				
			||||
 | 
				
			||||
# Create an instance of the Dalle3 class with high quality
 | 
				
			||||
dalle3 = Dalle3(quality="high")
 | 
				
			||||
 | 
				
			||||
# Define a text prompt
 | 
				
			||||
task = "A high-quality image of a sunset"
 | 
				
			||||
 | 
				
			||||
# Generate a high-quality image from the text prompt
 | 
				
			||||
image_url = dalle3(task)
 | 
				
			||||
 | 
				
			||||
# Print the generated image URL
 | 
				
			||||
print(image_url)
 | 
				
			||||
'''
 | 
				
			||||
@ -0,0 +1,14 @@
 | 
				
			||||
from swarms import GPT4VisionAPI
 | 
				
			||||
 | 
				
			||||
# Initialize with default API key and custom max_tokens
 | 
				
			||||
api = GPT4VisionAPI(max_tokens=1000)
 | 
				
			||||
 | 
				
			||||
# Define the task and image URL
 | 
				
			||||
task = "Describe the scene in the image."
 | 
				
			||||
img = "/home/kye/.swarms/swarms/examples/Screenshot from 2024-02-20 05-55-34.png"
 | 
				
			||||
 | 
				
			||||
# Run the GPT-4 Vision model
 | 
				
			||||
response = api.run(task, img)
 | 
				
			||||
 | 
				
			||||
# Print the model's response
 | 
				
			||||
print(response)
 | 
				
			||||
@ -0,0 +1,29 @@
 | 
				
			||||
from swarms.models import HuggingfaceLLM
 | 
				
			||||
import torch
 | 
				
			||||
 | 
				
			||||
try:
 | 
				
			||||
    inference = HuggingfaceLLM(
 | 
				
			||||
        model_id="gpt2",
 | 
				
			||||
        quantize=False,
 | 
				
			||||
        verbose=True,
 | 
				
			||||
    )
 | 
				
			||||
 | 
				
			||||
    device = "cuda" if torch.cuda.is_available() else "cpu"
 | 
				
			||||
    inference.model.to(device)
 | 
				
			||||
 | 
				
			||||
    prompt_text = "Create a list of known biggest risks of structural collapse with references"
 | 
				
			||||
    inputs = inference.tokenizer(prompt_text, return_tensors="pt").to(device)
 | 
				
			||||
    
 | 
				
			||||
    generated_ids = inference.model.generate(
 | 
				
			||||
        **inputs,
 | 
				
			||||
        max_new_tokens=1000,  # Adjust the length of the generation
 | 
				
			||||
        temperature=0.7,  # Adjust creativity
 | 
				
			||||
        top_k=50,  # Limits the vocabulary considered at each step
 | 
				
			||||
        pad_token_id=inference.tokenizer.eos_token_id,
 | 
				
			||||
        do_sample=True  # Enable sampling to utilize temperature
 | 
				
			||||
    )
 | 
				
			||||
    
 | 
				
			||||
    generated_text = inference.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
 | 
				
			||||
    print(generated_text)
 | 
				
			||||
except Exception as e:
 | 
				
			||||
    print(f"An error occurred: {e}")
 | 
				
			||||
@ -0,0 +1,33 @@
 | 
				
			||||
# Import the idefics model from the swarms.models module
 | 
				
			||||
from swarms.models import Idefics
 | 
				
			||||
 | 
				
			||||
# Create an instance of the idefics model
 | 
				
			||||
model = Idefics()
 | 
				
			||||
 | 
				
			||||
# Define user input with an image URL and chat with the model
 | 
				
			||||
user_input = (
 | 
				
			||||
    "User: What is in this image?"
 | 
				
			||||
    " https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG"
 | 
				
			||||
)
 | 
				
			||||
response = model.chat(user_input)
 | 
				
			||||
print(response)
 | 
				
			||||
 | 
				
			||||
# Define another user input with an image URL and chat with the model
 | 
				
			||||
user_input = (
 | 
				
			||||
    "User: And who is that?"
 | 
				
			||||
    " https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052"
 | 
				
			||||
)
 | 
				
			||||
response = model.chat(user_input)
 | 
				
			||||
print(response)
 | 
				
			||||
 | 
				
			||||
# Set the checkpoint of the model to "new_checkpoint"
 | 
				
			||||
model.set_checkpoint("new_checkpoint")
 | 
				
			||||
 | 
				
			||||
# Set the device of the model to "cpu"
 | 
				
			||||
model.set_device("cpu")
 | 
				
			||||
 | 
				
			||||
# Set the maximum length of the chat to 200
 | 
				
			||||
model.set_max_length(200)
 | 
				
			||||
 | 
				
			||||
# Clear the chat history of the model
 | 
				
			||||
model.clear_chat_history()
 | 
				
			||||
@ -0,0 +1,10 @@
 | 
				
			||||
from swarms import Kosmos
 | 
				
			||||
 | 
				
			||||
# Initialize the model
 | 
				
			||||
model = Kosmos()
 | 
				
			||||
 | 
				
			||||
# Generate
 | 
				
			||||
out = model.run("Analyze the reciepts in this image", "docs.jpg")
 | 
				
			||||
 | 
				
			||||
# Print the output
 | 
				
			||||
print(out)
 | 
				
			||||
@ -0,0 +1,100 @@
 | 
				
			||||
from swarms.structs import Agent
 | 
				
			||||
import os
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
from swarms.models import GPT4VisionAPI
 | 
				
			||||
from swarms.prompts.logistics import (
 | 
				
			||||
    Health_Security_Agent_Prompt,
 | 
				
			||||
    Quality_Control_Agent_Prompt,
 | 
				
			||||
    Productivity_Agent_Prompt,
 | 
				
			||||
    Safety_Agent_Prompt,
 | 
				
			||||
    Security_Agent_Prompt,
 | 
				
			||||
    Sustainability_Agent_Prompt,
 | 
				
			||||
    Efficiency_Agent_Prompt,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Load ENV
 | 
				
			||||
load_dotenv()
 | 
				
			||||
api_key = os.getenv("OPENAI_API_KEY")
 | 
				
			||||
 | 
				
			||||
# GPT4VisionAPI
 | 
				
			||||
llm = GPT4VisionAPI(openai_api_key=api_key)
 | 
				
			||||
 | 
				
			||||
# Image for analysis
 | 
				
			||||
factory_image = "factory_image1.jpg"
 | 
				
			||||
 | 
				
			||||
# Initialize agents with respective prompts
 | 
				
			||||
health_security_agent = Agent(
 | 
				
			||||
    llm=llm,
 | 
				
			||||
    sop=Health_Security_Agent_Prompt,
 | 
				
			||||
    max_loops=1,
 | 
				
			||||
    multi_modal=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Quality control agent
 | 
				
			||||
quality_control_agent = Agent(
 | 
				
			||||
    llm=llm,
 | 
				
			||||
    sop=Quality_Control_Agent_Prompt,
 | 
				
			||||
    max_loops=1,
 | 
				
			||||
    multi_modal=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Productivity Agent
 | 
				
			||||
productivity_agent = Agent(
 | 
				
			||||
    llm=llm,
 | 
				
			||||
    sop=Productivity_Agent_Prompt,
 | 
				
			||||
    max_loops=1,
 | 
				
			||||
    multi_modal=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Initiailize safety agent
 | 
				
			||||
safety_agent = Agent(llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True)
 | 
				
			||||
 | 
				
			||||
# Init the security agent
 | 
				
			||||
security_agent = Agent(
 | 
				
			||||
    llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Initialize sustainability agent
 | 
				
			||||
sustainability_agent = Agent(
 | 
				
			||||
    llm=llm,
 | 
				
			||||
    sop=Sustainability_Agent_Prompt,
 | 
				
			||||
    max_loops=1,
 | 
				
			||||
    multi_modal=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Initialize efficincy agent
 | 
				
			||||
efficiency_agent = Agent(
 | 
				
			||||
    llm=llm,
 | 
				
			||||
    sop=Efficiency_Agent_Prompt,
 | 
				
			||||
    max_loops=1,
 | 
				
			||||
    multi_modal=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Run agents with respective tasks on the same image
 | 
				
			||||
health_analysis = health_security_agent.run(
 | 
				
			||||
    "Analyze the safety of this factory", factory_image
 | 
				
			||||
)
 | 
				
			||||
quality_analysis = quality_control_agent.run(
 | 
				
			||||
    "Examine product quality in the factory", factory_image
 | 
				
			||||
)
 | 
				
			||||
productivity_analysis = productivity_agent.run(
 | 
				
			||||
    "Evaluate factory productivity", factory_image
 | 
				
			||||
)
 | 
				
			||||
safety_analysis = safety_agent.run(
 | 
				
			||||
    "Inspect the factory's adherence to safety standards",
 | 
				
			||||
    factory_image,
 | 
				
			||||
)
 | 
				
			||||
security_analysis = security_agent.run(
 | 
				
			||||
    "Assess the factory's security measures and systems",
 | 
				
			||||
    factory_image,
 | 
				
			||||
)
 | 
				
			||||
sustainability_analysis = sustainability_agent.run(
 | 
				
			||||
    "Examine the factory's sustainability practices", factory_image
 | 
				
			||||
)
 | 
				
			||||
efficiency_analysis = efficiency_agent.run(
 | 
				
			||||
    "Analyze the efficiency of the factory's manufacturing process",
 | 
				
			||||
    factory_image,
 | 
				
			||||
)
 | 
				
			||||
@ -0,0 +1,10 @@
 | 
				
			||||
from swarms.models import Mixtral
 | 
				
			||||
 | 
				
			||||
# Initialize the Mixtral model with 4 bit and flash attention!
 | 
				
			||||
mixtral = Mixtral(load_in_4bit=True, use_flash_attention_2=True)
 | 
				
			||||
 | 
				
			||||
# Generate text for a simple task
 | 
				
			||||
generated_text = mixtral.run("Generate a creative story.")
 | 
				
			||||
 | 
				
			||||
# Print the generated text
 | 
				
			||||
print(generated_text)
 | 
				
			||||
@ -0,0 +1,14 @@
 | 
				
			||||
from swarms import QwenVLMultiModal
 | 
				
			||||
 | 
				
			||||
# Instantiate the QwenVLMultiModal model
 | 
				
			||||
model = QwenVLMultiModal(
 | 
				
			||||
    model_name="Qwen/Qwen-VL-Chat",
 | 
				
			||||
    device="cuda",
 | 
				
			||||
    quantize=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Run the model
 | 
				
			||||
response = model("Hello, how are you?", "https://example.com/image.jpg")
 | 
				
			||||
 | 
				
			||||
# Print the response
 | 
				
			||||
print(response)
 | 
				
			||||
@ -0,0 +1,26 @@
 | 
				
			||||
import os
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
from swarms import OpenAIChat, Task, RecursiveWorkflow, Agent
 | 
				
			||||
 | 
				
			||||
# Load environment variables from .env file
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Load environment variables
 | 
				
			||||
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
 | 
				
			||||
agent = Agent(llm=llm, max_loops=1)
 | 
				
			||||
 | 
				
			||||
# Create a workflow
 | 
				
			||||
workflow = RecursiveWorkflow(stop_token="<DONE>")
 | 
				
			||||
 | 
				
			||||
# Create tasks
 | 
				
			||||
task1 = Task(agent, "What's the weather in miami")
 | 
				
			||||
task2 = Task(agent, "What's the weather in new york")
 | 
				
			||||
task3 = Task(agent, "What's the weather in london")
 | 
				
			||||
 | 
				
			||||
# Add tasks to the workflow
 | 
				
			||||
workflow.add(task1)
 | 
				
			||||
workflow.add(task2)
 | 
				
			||||
workflow.add(task3)
 | 
				
			||||
 | 
				
			||||
# Run the workflow
 | 
				
			||||
workflow.run()
 | 
				
			||||
@ -0,0 +1,46 @@
 | 
				
			||||
import os
 | 
				
			||||
from swarms import OpenAIChat, Agent, SequentialWorkflow
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Load the environment variables
 | 
				
			||||
api_key = os.getenv("OPENAI_API_KEY")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Initialize the language agent
 | 
				
			||||
llm = OpenAIChat(
 | 
				
			||||
    temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Initialize the agent with the language agent
 | 
				
			||||
agent1 = Agent(llm=llm, max_loops=1)
 | 
				
			||||
 | 
				
			||||
# Create another agent for a different task
 | 
				
			||||
agent2 = Agent(llm=llm, max_loops=1)
 | 
				
			||||
 | 
				
			||||
# Create another agent for a different task
 | 
				
			||||
agent3 = Agent(llm=llm, max_loops=1)
 | 
				
			||||
 | 
				
			||||
# Create the workflow
 | 
				
			||||
workflow = SequentialWorkflow(max_loops=1)
 | 
				
			||||
 | 
				
			||||
# Add tasks to the workflow
 | 
				
			||||
workflow.add(
 | 
				
			||||
    agent1,
 | 
				
			||||
    "Generate a 10,000 word blog on health and wellness.",
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Suppose the next task takes the output of the first task as input
 | 
				
			||||
workflow.add(
 | 
				
			||||
    agent2,
 | 
				
			||||
    "Summarize the generated blog",
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Run the workflow
 | 
				
			||||
workflow.run()
 | 
				
			||||
 | 
				
			||||
# Output the results
 | 
				
			||||
for task in workflow.tasks:
 | 
				
			||||
    print(f"Task: {task.description}, Result: {task.result}")
 | 
				
			||||
@ -0,0 +1,43 @@
 | 
				
			||||
import os
 | 
				
			||||
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
 | 
				
			||||
from swarms import (
 | 
				
			||||
    OpenAIChat,
 | 
				
			||||
    Conversation,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
conv = Conversation(
 | 
				
			||||
    time_enabled=True,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Load the environment variables
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Get the API key from the environment
 | 
				
			||||
api_key = os.environ.get("OPENAI_API_KEY")
 | 
				
			||||
 | 
				
			||||
# Initialize the language model
 | 
				
			||||
llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Run the language model in a loop
 | 
				
			||||
def interactive_conversation(llm):
 | 
				
			||||
    conv = Conversation()
 | 
				
			||||
    while True:
 | 
				
			||||
        user_input = input("User: ")
 | 
				
			||||
        conv.add("user", user_input)
 | 
				
			||||
        if user_input.lower() == "quit":
 | 
				
			||||
            break
 | 
				
			||||
        task = conv.return_history_as_string()  # Get the conversation history
 | 
				
			||||
        out = llm(task)
 | 
				
			||||
        conv.add("assistant", out)
 | 
				
			||||
        print(
 | 
				
			||||
            f"Assistant: {out}",
 | 
				
			||||
        )
 | 
				
			||||
    conv.display_conversation()
 | 
				
			||||
    conv.export_conversation("conversation.txt")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Replace with your LLM instance
 | 
				
			||||
interactive_conversation(llm)
 | 
				
			||||
@ -0,0 +1,44 @@
 | 
				
			||||
import os
 | 
				
			||||
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
 | 
				
			||||
# Import the OpenAIChat model and the Agent struct
 | 
				
			||||
from swarms import OpenAIChat, Agent, SwarmNetwork
 | 
				
			||||
 | 
				
			||||
# Load the environment variables
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Get the API key from the environment
 | 
				
			||||
api_key = os.environ.get("OPENAI_API_KEY")
 | 
				
			||||
 | 
				
			||||
# Initialize the language model
 | 
				
			||||
llm = OpenAIChat(
 | 
				
			||||
    temperature=0.5,
 | 
				
			||||
    openai_api_key=api_key,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
## Initialize the workflow
 | 
				
			||||
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
 | 
				
			||||
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
 | 
				
			||||
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Load the swarmnet with the agents
 | 
				
			||||
swarmnet = SwarmNetwork(
 | 
				
			||||
    agents=[agent, agent2, agent3],
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# List the agents in the swarm network
 | 
				
			||||
out = swarmnet.list_agents()
 | 
				
			||||
print(out)
 | 
				
			||||
 | 
				
			||||
# Run the workflow on a task
 | 
				
			||||
out = swarmnet.run_single_agent(
 | 
				
			||||
    agent2.id, "Generate a 10,000 word blog on health and wellness."
 | 
				
			||||
)
 | 
				
			||||
print(out)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Run all the agents in the swarm network on a task
 | 
				
			||||
out = swarmnet.run_many_agents("Generate a 10,000 word blog on health and wellness.")
 | 
				
			||||
print(out)
 | 
				
			||||
@ -0,0 +1,25 @@
 | 
				
			||||
hey guys, we out here testing out swarms which is a multi-modal agent 
 | 
				
			||||
framework which potentially makes all the agents work in a single pot 
 | 
				
			||||
for instance take an empty pot and place all the known agents in that 
 | 
				
			||||
pot and output a well structured answer out of it 
 | 
				
			||||
 | 
				
			||||
that's basically it, we belive that a multi-agent framework beats a single 
 | 
				
			||||
agent framework which is not really rocket science 
 | 
				
			||||
 | 
				
			||||
ight first we gotta make sure out evn clean, install python3-pip,
 | 
				
			||||
this runs on python3.10 
 | 
				
			||||
 | 
				
			||||
our current version of swarms==4.1.0
 | 
				
			||||
 | 
				
			||||
make sure you in a virtual env or conda 
 | 
				
			||||
 | 
				
			||||
just do 
 | 
				
			||||
	$ python3 -m venv ~/.venv
 | 
				
			||||
	$ source ~/.venv/bin/active
 | 
				
			||||
 | 
				
			||||
then boom we in a virtual env LFG
 | 
				
			||||
 | 
				
			||||
now for the best we install swarms
 | 
				
			||||
 | 
				
			||||
	$ pip3 instll --upgrade swamrs==4.1.0
 | 
				
			||||
 | 
				
			||||
@ -0,0 +1,53 @@
 | 
				
			||||
import os
 | 
				
			||||
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
 | 
				
			||||
from swarms.structs import Agent, OpenAIChat, Task
 | 
				
			||||
 | 
				
			||||
# Load the environment variables
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Define a function to be used as the action
 | 
				
			||||
def my_action():
 | 
				
			||||
    print("Action executed")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Define a function to be used as the condition
 | 
				
			||||
def my_condition():
 | 
				
			||||
    print("Condition checked")
 | 
				
			||||
    return True
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Create an agent
 | 
				
			||||
agent = Agent(
 | 
				
			||||
    llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
 | 
				
			||||
    max_loops=1,
 | 
				
			||||
    dashboard=False,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Create a task
 | 
				
			||||
task = Task(
 | 
				
			||||
    description=(
 | 
				
			||||
        "Generate a report on the top 3 biggest expenses for small"
 | 
				
			||||
        " businesses and how businesses can save 20%"
 | 
				
			||||
    ),
 | 
				
			||||
    agent=agent,
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Set the action and condition
 | 
				
			||||
task.set_action(my_action)
 | 
				
			||||
task.set_condition(my_condition)
 | 
				
			||||
 | 
				
			||||
# Execute the task
 | 
				
			||||
print("Executing task...")
 | 
				
			||||
task.run()
 | 
				
			||||
 | 
				
			||||
# Check if the task is completed
 | 
				
			||||
if task.is_completed():
 | 
				
			||||
    print("Task completed")
 | 
				
			||||
else:
 | 
				
			||||
    print("Task not completed")
 | 
				
			||||
 | 
				
			||||
# Output the result of the task
 | 
				
			||||
print(f"Task result: {task.result}")
 | 
				
			||||
@ -0,0 +1,30 @@
 | 
				
			||||
# Import necessary libraries
 | 
				
			||||
from transformers import AutoModelForCausalLM, AutoTokenizer
 | 
				
			||||
from swarms import ToolAgent
 | 
				
			||||
 | 
				
			||||
# Load the pre-trained model and tokenizer
 | 
				
			||||
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
 | 
				
			||||
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
 | 
				
			||||
 | 
				
			||||
# Define a JSON schema for person's information
 | 
				
			||||
json_schema = {
 | 
				
			||||
    "type": "object",
 | 
				
			||||
    "properties": {
 | 
				
			||||
        "name": {"type": "string"},
 | 
				
			||||
        "age": {"type": "number"},
 | 
				
			||||
        "is_student": {"type": "boolean"},
 | 
				
			||||
        "courses": {"type": "array", "items": {"type": "string"}},
 | 
				
			||||
    },
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
# Define the task to generate a person's information
 | 
				
			||||
task = "Generate a person's information based on the following schema:"
 | 
				
			||||
 | 
				
			||||
# Create an instance of the ToolAgent class
 | 
				
			||||
agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
 | 
				
			||||
 | 
				
			||||
# Run the agent to generate the person's information
 | 
				
			||||
generated_data = agent.run(task)
 | 
				
			||||
 | 
				
			||||
# Print the generated data
 | 
				
			||||
print(generated_data)
 | 
				
			||||
@ -0,0 +1,33 @@
 | 
				
			||||
# Importing necessary modules
 | 
				
			||||
import os
 | 
				
			||||
from dotenv import load_dotenv
 | 
				
			||||
from swarms import Worker, OpenAIChat, tool
 | 
				
			||||
 | 
				
			||||
# Loading environment variables from .env file
 | 
				
			||||
load_dotenv()
 | 
				
			||||
 | 
				
			||||
# Retrieving the OpenAI API key from environment variables
 | 
				
			||||
api_key = os.getenv("OPENAI_API_KEY")
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Create a tool
 | 
				
			||||
@tool
 | 
				
			||||
def search_api(query: str):
 | 
				
			||||
    pass
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
# Creating a Worker instance
 | 
				
			||||
worker = Worker(
 | 
				
			||||
    name="My Worker",
 | 
				
			||||
    role="Worker",
 | 
				
			||||
    human_in_the_loop=False,
 | 
				
			||||
    tools=[search_api],
 | 
				
			||||
    temperature=0.5,
 | 
				
			||||
    llm=OpenAIChat(openai_api_key=api_key),
 | 
				
			||||
)
 | 
				
			||||
 | 
				
			||||
# Running the worker with a prompt
 | 
				
			||||
out = worker.run("Hello, how are you? Create an image of how your are doing!")
 | 
				
			||||
 | 
				
			||||
# Printing the output
 | 
				
			||||
print(out)
 | 
				
			||||
@ -0,0 +1,12 @@
 | 
				
			||||
# Import the model
 | 
				
			||||
from swarms import ZeroscopeTTV
 | 
				
			||||
 | 
				
			||||
# Initialize the model
 | 
				
			||||
zeroscope = ZeroscopeTTV()
 | 
				
			||||
 | 
				
			||||
# Specify the task
 | 
				
			||||
task = "A person is walking on the street."
 | 
				
			||||
 | 
				
			||||
# Generate the video!
 | 
				
			||||
video_path = zeroscope(task)
 | 
				
			||||
print(video_path)
 | 
				
			||||
@ -0,0 +1,22 @@
 | 
				
			||||
#!/bin/bash
 | 
				
			||||
 | 
				
			||||
# Define a file to keep track of successfully executed scripts
 | 
				
			||||
SUCCESS_LOG="successful_runs.log"
 | 
				
			||||
 | 
				
			||||
for f in /swarms/playground/examples/example_*.py; do
 | 
				
			||||
    # Check if the script has been logged as successful
 | 
				
			||||
    if grep -Fxq "$f" "$SUCCESS_LOG"; then
 | 
				
			||||
        echo "Skipping ${f} as it ran successfully in a previous run."
 | 
				
			||||
    else
 | 
				
			||||
        # Run the script if not previously successful
 | 
				
			||||
        if /home/kye/miniconda3/envs/swarms/bin/python "$f" 2>>errors.txt; then
 | 
				
			||||
            echo "(${f}) ran successfully without errors."
 | 
				
			||||
            # Log the successful script execution
 | 
				
			||||
            echo "$f" >> "$SUCCESS_LOG"
 | 
				
			||||
        else
 | 
				
			||||
            echo "Error encountered in ${f}. Check errors.txt for details."
 | 
				
			||||
            break
 | 
				
			||||
        fi
 | 
				
			||||
    fi
 | 
				
			||||
    echo "##############################################################################"
 | 
				
			||||
done
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue