[FEAT][Chroma]

pull/378/merge
Kye 12 months ago
parent 075f6320e1
commit 593b9b104e

@ -0,0 +1,39 @@
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
from swarms import Agent, OpenAIChat, ChromaDB
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initilaize the chromadb client
chromadb = ChromaDB(
metric="cosine",
output="results",
)
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
model_name="gpt-4",
openai_api_key=api_key,
max_tokens=1000,
)
## Initialize the workflow
agent = Agent(
llm=llm,
max_loops=4,
autosave=True,
dashboard=True,
long_term_memory=ChromaDB(),
)
# Run the workflow on a task
agent.run("Generate a 10,000 word blog on health and wellness.")

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "4.0.3" version = "4.0.4"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]

@ -5,6 +5,7 @@ from swarms.memory.sqlite import SQLiteDB
from swarms.memory.weaviate_db import WeaviateDB from swarms.memory.weaviate_db import WeaviateDB
from swarms.memory.visual_memory import VisualShortTermMemory from swarms.memory.visual_memory import VisualShortTermMemory
from swarms.memory.action_subtask import ActionSubtaskEntry from swarms.memory.action_subtask import ActionSubtaskEntry
from swarms.memory.chroma_db import ChromaDB
__all__ = [ __all__ = [
"AbstractVectorDatabase", "AbstractVectorDatabase",
@ -14,4 +15,5 @@ __all__ = [
"WeaviateDB", "WeaviateDB",
"VisualShortTermMemory", "VisualShortTermMemory",
"ActionSubtaskEntry", "ActionSubtaskEntry",
"ChromaDB",
] ]

@ -1,30 +1,19 @@
import numpy as np
import logging import logging
import os import uuid
from typing import Dict, List, Optional from typing import Optional, Callable, List
import chromadb import chromadb
import tiktoken as tiktoken
from chromadb.config import Settings
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from dotenv import load_dotenv from dotenv import load_dotenv
from termcolor import colored from chromadb.utils.data_loaders import ImageLoader
from chromadb.utils.embedding_functions import (
OpenCLIPEmbeddingFunction,
)
from swarms.utils.token_count_tiktoken import limit_tokens_from_string
# Load environment variables
load_dotenv() load_dotenv()
# ChromaDB settings
client = chromadb.Client(Settings(anonymized_telemetry=False))
# ChromaDB client
def get_chromadb_client():
return client
# OpenAI API key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
# Results storage using local ChromaDB # Results storage using local ChromaDB
class ChromaDB: class ChromaDB:
@ -33,10 +22,10 @@ class ChromaDB:
ChromaDB database ChromaDB database
Args: Args:
metric (str): _description_ metric (str): The similarity metric to use.
RESULTS_STORE_NAME (str): _description_ output (str): The name of the collection to store the results in.
LLM_MODEL (str): _description_ limit_tokens (int, optional): The maximum number of tokens to use for the query. Defaults to 1000.
openai_api_key (str): _description_ n_results (int, optional): The number of results to retrieve. Defaults to 2.
Methods: Methods:
add: _description_ add: _description_
@ -45,135 +34,129 @@ class ChromaDB:
Examples: Examples:
>>> chromadb = ChromaDB( >>> chromadb = ChromaDB(
>>> metric="cosine", >>> metric="cosine",
>>> RESULTS_STORE_NAME="results", >>> output="results",
>>> LLM_MODEL="gpt3", >>> llm="gpt3",
>>> openai_api_key=OPENAI_API_KEY, >>> openai_api_key=OPENAI_API_KEY,
>>> ) >>> )
>>> chromadb.add(task, result, result_id) >>> chromadb.add(task, result, result_id)
>>> chromadb.query(query, top_results_num)
""" """
def __init__( def __init__(
self, self,
metric: str, metric: str,
RESULTS_STORE_NAME: str, output_dir: str,
LLM_MODEL: str,
openai_api_key: str = OPENAI_API_KEY,
top_results_num: int = 3,
limit_tokens: Optional[int] = 1000, limit_tokens: Optional[int] = 1000,
n_results: int = 2,
embedding_function: Callable = None,
data_loader: Callable = None,
multimodal: bool = False,
*args, *args,
**kwargs, **kwargs,
): ):
self.metric = metric self.metric = metric
self.RESULTS_STORE_NAME = RESULTS_STORE_NAME self.output_dir = output_dir
self.LLM_MODEL = LLM_MODEL
self.openai_api_key = openai_api_key
self.top_results_num = top_results_num
self.limit_tokens = limit_tokens self.limit_tokens = limit_tokens
self.n_results = n_results
# Disable ChromaDB logging # Disable ChromaDB logging
logging.getLogger("chromadb").setLevel(logging.ERROR) logging.getLogger("chromadb").setLevel(logging.INFO)
# Create Chroma collection # Create Chroma collection
chroma_persist_dir = "chroma" chroma_persist_dir = "chroma"
chroma_client = chromadb.PersistentClient( chroma_client = chromadb.PersistentClient(
settings=chromadb.config.Settings( settings=chromadb.config.Settings(
persist_directory=chroma_persist_dir, persist_directory=chroma_persist_dir,
) ),
*args,
**kwargs,
) )
# Create embedding function # Data loader
embedding_function = OpenAIEmbeddingFunction( if data_loader:
api_key=openai_api_key self.data_loader = data_loader
) else:
self.data_loader = ImageLoader()
# Embedding model
if embedding_function:
self.embedding_function = embedding_function
else:
self.embedding_function = None
# If multimodal set the embedding model to OpenCLIP
if multimodal:
self.embedding_function = OpenCLIPEmbeddingFunction()
# Create ChromaDB client
self.client = chromadb.Client()
# Create Chroma collection # Create Chroma collection
self.collection = chroma_client.get_or_create_collection( self.collection = chroma_client.get_or_create_collection(
name=RESULTS_STORE_NAME, name=output_dir,
metadata={"hnsw:space": metric}, metadata={"hnsw:space": metric},
embedding_function=embedding_function, embedding_function=self.embedding_function,
data_loader=self.data_loader,
*args,
**kwargs,
) )
def add( def add(
self, task: Dict, result: str, result_id: str, *args, **kwargs self,
document: str,
images: List[np.ndarray] = None,
img_urls: List[str] = None,
*args,
**kwargs,
): ):
"""Adds a result to the ChromaDB collection """
Add a document to the ChromaDB collection.
Args: Args:
task (Dict): _description_ document (str): The document to be added.
result (str): _description_ condition (bool, optional): The condition to check before adding the document. Defaults to True.
result_id (str): _description_
"""
Returns:
str: The ID of the added document.
"""
try: try:
# Embed the result doc_id = str(uuid.uuid4())
embeddings = (
self.collection.embedding_function.embed([result])[0]
.tolist()
.copy()
)
# If the result is a list, flatten it
if (
len(
self.collection.get(ids=[result_id], include=[])[
"ids"
]
)
> 0
): # Check if the result already exists
self.collection.update(
ids=result_id,
embeddings=embeddings,
documents=result,
metadatas={
"task": task["task_name"],
"result": result,
},
)
# If the result is not a list, add it
else:
self.collection.add( self.collection.add(
ids=result_id, ids=[doc_id],
embeddings=embeddings, documents=[document],
documents=result, images=images,
metadatas={ uris=img_urls,
"task": task["task_name"],
"result": result,
},
*args, *args,
**kwargs, **kwargs,
) )
except Exception as error: return doc_id
print( except Exception as e:
colored(f"Error adding to ChromaDB: {error}", "red") raise Exception(f"Failed to add document: {str(e)}")
)
def query(self, query: str, *args, **kwargs) -> List[dict]: def query(
"""Queries the ChromaDB collection with a query for the top results self,
query_text: str,
query_images: List[np.ndarray],
*args,
**kwargs,
):
"""
Query documents from the ChromaDB collection.
Args: Args:
query (str): _description_ query (str): The query string.
top_results_num (int): _description_ n_docs (int, optional): The number of documents to retrieve. Defaults to 1.
Returns: Returns:
List[dict]: _description_ dict: The retrieved documents.
""" """
try: try:
count: int = self.collection.count() docs = self.collection.query(
if count == 0: query_texts=[query_text],
return [] query_images=query_images,
results = self.collection.query( n_results=self.n_docs,
query_texts=query,
n_results=min(self.top_results_num, count),
include=["metadatas"],
*args, *args,
**kwargs, **kwargs,
) )["documents"]
out = [item["task"] for item in results["metadatas"][0]] return docs[0]
out = limit_tokens_from_string( except Exception as e:
out, "gpt-4", self.limit_tokens raise Exception(f"Failed to query documents: {str(e)}")
)
return out
except Exception as error:
print(colored(f"Error querying ChromaDB: {error}", "red"))

@ -1,69 +1,67 @@
import functools import logging
import os
from dotenv import load_dotenv from dotenv import load_dotenv
from posthog import Posthog from posthog import Posthog
from swarms.telemetry.user_utils import generate_unique_identifier
# Load environment variables # Load environment variables
load_dotenv() load_dotenv()
logger = logging.getLogger(__name__)
# # Initialize Posthog client
api_key = os.getenv("POSTHOG_API_KEY") or None
host = os.getenv("POSTHOG_HOST") or None
posthog = Posthog(api_key, host=host)
posthog.debug = True
# return posthog
def log_activity_posthog(event_name: str, **event_properties):
"""Log activity to Posthog.
Args:
event_name (str): Name of the event to log.
**event_properties: Properties of the event to log.
Examples:
>>> from swarms.telemetry.posthog_utils import log_activity_posthog
>>> @log_activity_posthog("test_event", test_property="test_value")
... def test_function():
... print("Hello, world!")
>>> test_function()
Hello, world!
>>> # Check Posthog dashboard for event "test_event" with property
>>> # "test_property" set to "test_value".
"""
def decorator_log_activity(func): class PosthogWrapper:
@functools.wraps(func) def __init__(
def wrapper_log_activity(*args, **kwargs): self, api_key, instance_address, debug=False, disabled=False
result = func(*args, **kwargs) ):
self.posthog = Posthog(api_key, host=instance_address)
self.posthog.debug = debug
self.posthog.disabled = disabled
# Assuming you have a way to get the user id def capture_event(self, distinct_id, event_name, properties=None):
distinct_user_id = generate_unique_identifier() self.posthog.capture(distinct_id, event_name, properties)
# Capture the event def capture_pageview(self, distinct_id, url):
posthog.capture( self.posthog.capture(
distinct_user_id, event_name, event_properties distinct_id, "$pageview", {"$current_url": url}
) )
return result def set_user_properties(
self, distinct_id, event_name, properties
return wrapper_log_activity ):
self.posthog.capture(
distinct_id, event=event_name, properties=properties
)
return decorator_log_activity def is_feature_enabled(
self, flag_key, distinct_id, send_feature_flag_events=True
):
return self.posthog.feature_enabled(
flag_key, distinct_id, send_feature_flag_events
)
def get_feature_flag_payload(self, flag_key, distinct_id):
return self.posthog.get_feature_flag_payload(
flag_key, distinct_id
)
# @log_activity_posthog( def get_feature_flag(self, flag_key, distinct_id):
# "function_executed", function_name="my_function" return self.posthog.get_feature_flag(flag_key, distinct_id)
# )
# def my_function():
# # Function logic here
# return "Function executed successfully!"
def capture_with_feature_flag(
self, distinct_id, event_name, flag_key, variant_key
):
self.posthog.capture(
distinct_id,
event_name,
{"$feature/{}".format(flag_key): variant_key},
)
# out = my_function() def capture_with_feature_flags(
# print(out) self, distinct_id, event_name, send_feature_flags=True
):
self.posthog.capture(
distinct_id,
event_name,
send_feature_flags=send_feature_flags,
)

Loading…
Cancel
Save