parent
9a89f39700
commit
5a9b56223e
@ -0,0 +1,13 @@
|
||||
from swarms.structs.agent import Agent
|
||||
|
||||
agent = Agent(
|
||||
agent_name="Financial-Analysis-Agent",
|
||||
agent_description="Personal finance advisor agent",
|
||||
max_loops=4,
|
||||
model_name="cerebras/llama3-70b-instruct",
|
||||
dynamic_temperature_enabled=True,
|
||||
interactive=False,
|
||||
output_type="all",
|
||||
)
|
||||
|
||||
agent.run("Conduct an analysis of the best real undervalued ETFs")
|
@ -0,0 +1,86 @@
|
||||
# Using Cerebras LLaMA with Swarms
|
||||
|
||||
This guide demonstrates how to create and use an AI agent powered by the Cerebras LLaMA 3 70B model using the Swarms framework.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- Python 3.7+
|
||||
- Swarms library installed (`pip install swarms`)
|
||||
|
||||
## Step-by-Step Guide
|
||||
|
||||
### 1. Import Required Module
|
||||
|
||||
```python
|
||||
from swarms.structs.agent import Agent
|
||||
```
|
||||
|
||||
This imports the `Agent` class from Swarms, which is the core component for creating AI agents.
|
||||
|
||||
### 2. Create an Agent Instance
|
||||
|
||||
```python
|
||||
agent = Agent(
|
||||
agent_name="Financial-Analysis-Agent",
|
||||
agent_description="Personal finance advisor agent",
|
||||
max_loops=4,
|
||||
model_name="cerebras/llama3-70b-instruct",
|
||||
dynamic_temperature_enabled=True,
|
||||
interactive=False,
|
||||
output_type="all",
|
||||
)
|
||||
```
|
||||
|
||||
Let's break down each parameter:
|
||||
|
||||
- `agent_name`: A descriptive name for your agent (here, "Financial-Analysis-Agent")
|
||||
|
||||
- `agent_description`: A brief description of the agent's purpose
|
||||
|
||||
- `max_loops`: Maximum number of interaction loops the agent can perform (set to 4)
|
||||
|
||||
- `model_name`: Specifies the Cerebras LLaMA 3 70B model to use
|
||||
|
||||
- `dynamic_temperature_enabled`: Enables dynamic adjustment of temperature for varied responses
|
||||
|
||||
- `interactive`: When False, runs without requiring user interaction
|
||||
|
||||
- `output_type`: Set to "all" to return complete response information
|
||||
|
||||
### 3. Run the Agent
|
||||
|
||||
```python
|
||||
agent.run("Conduct an analysis of the best real undervalued ETFs")
|
||||
```
|
||||
|
||||
This command:
|
||||
|
||||
1. Activates the agent
|
||||
|
||||
2. Processes the given prompt about ETF analysis
|
||||
|
||||
3. Returns the analysis based on the model's knowledge
|
||||
|
||||
## Notes
|
||||
|
||||
- The Cerebras LLaMA 3 70B model is a powerful language model suitable for complex analysis tasks
|
||||
|
||||
- The agent can be customized further with additional parameters
|
||||
|
||||
- The `max_loops=4` setting prevents infinite loops while allowing sufficient processing depth
|
||||
|
||||
- Setting `interactive=False` makes the agent run autonomously without user intervention
|
||||
|
||||
## Example Output
|
||||
|
||||
The agent will provide a detailed analysis of undervalued ETFs, including:
|
||||
|
||||
- Market analysis
|
||||
|
||||
- Performance metrics
|
||||
|
||||
- Risk assessment
|
||||
|
||||
- Investment recommendations
|
||||
|
||||
Note: Actual output will vary based on current market conditions and the model's training data.
|
Loading…
Reference in new issue