|
|
@ -3,11 +3,14 @@ import subprocess as sp
|
|
|
|
from pathlib import Path
|
|
|
|
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
|
|
|
from swarms.models.base_multimodal_model import BaseMultiModalModel
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
import google.generativeai as genai
|
|
|
|
import google.generativeai as genai
|
|
|
|
|
|
|
|
from google.generativeai.types import GenerationConfig
|
|
|
|
except ImportError as error:
|
|
|
|
except ImportError as error:
|
|
|
|
print(f"Error importing google.generativeai: {error}")
|
|
|
|
print(f"Error importing google.generativeai: {error}")
|
|
|
|
print("Please install the google.generativeai package")
|
|
|
|
print("Please install the google.generativeai package")
|
|
|
@ -39,13 +42,24 @@ class Gemini(BaseMultiModalModel):
|
|
|
|
"""Gemini model
|
|
|
|
"""Gemini model
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
BaseMultiModalModel (class): Base multimodal model class
|
|
|
|
model_name (str, optional): _description_. Defaults to "gemini-pro".
|
|
|
|
model_name (str, optional): model name. Defaults to "gemini-pro".
|
|
|
|
gemini_api_key (str, optional): _description_. Defaults to get_gemini_api_key_env.
|
|
|
|
gemini_api_key (str, optional): Gemini API key. Defaults to None.
|
|
|
|
return_safety (bool, optional): _description_. Defaults to False.
|
|
|
|
|
|
|
|
candidates (bool, optional): _description_. Defaults to False.
|
|
|
|
|
|
|
|
stream (bool, optional): _description_. Defaults to False.
|
|
|
|
|
|
|
|
candidate_count (int, optional): _description_. Defaults to 1.
|
|
|
|
|
|
|
|
stop_sequence ([type], optional): _description_. Defaults to ['x'].
|
|
|
|
|
|
|
|
max_output_tokens (int, optional): _description_. Defaults to 100.
|
|
|
|
|
|
|
|
temperature (float, optional): _description_. Defaults to 0.9.
|
|
|
|
|
|
|
|
|
|
|
|
Methods:
|
|
|
|
Methods:
|
|
|
|
run: run the Gemini model
|
|
|
|
run: Run the Gemini model
|
|
|
|
process_img: process the image
|
|
|
|
process_img: Process the image
|
|
|
|
|
|
|
|
chat: Chat with the Gemini model
|
|
|
|
|
|
|
|
list_models: List the Gemini models
|
|
|
|
|
|
|
|
stream_tokens: Stream the tokens
|
|
|
|
|
|
|
|
process_img_pil: Process img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
Examples:
|
|
|
@ -59,20 +73,67 @@ class Gemini(BaseMultiModalModel):
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
model_name: str = "gemini-pro",
|
|
|
|
model_name: str = "gemini-pro-vision",
|
|
|
|
gemini_api_key: str = get_gemini_api_key_env,
|
|
|
|
gemini_api_key: str = None,
|
|
|
|
|
|
|
|
return_safety: bool = False,
|
|
|
|
|
|
|
|
candidates: bool = False,
|
|
|
|
|
|
|
|
stream: bool = False,
|
|
|
|
|
|
|
|
candidate_count: int = 1,
|
|
|
|
|
|
|
|
stop_sequence=["x"],
|
|
|
|
|
|
|
|
max_output_tokens: int = 100,
|
|
|
|
|
|
|
|
temperature: float = 0.9,
|
|
|
|
*args,
|
|
|
|
*args,
|
|
|
|
**kwargs,
|
|
|
|
**kwargs,
|
|
|
|
):
|
|
|
|
):
|
|
|
|
super().__init__(model_name, *args, **kwargs)
|
|
|
|
super().__init__(model_name, *args, **kwargs)
|
|
|
|
self.model_name = model_name
|
|
|
|
self.model_name = model_name
|
|
|
|
self.gemini_api_key = gemini_api_key
|
|
|
|
self.gemini_api_key = gemini_api_key
|
|
|
|
|
|
|
|
self.safety = return_safety
|
|
|
|
|
|
|
|
self.candidates = candidates
|
|
|
|
|
|
|
|
self.stream = stream
|
|
|
|
|
|
|
|
self.candidate_count = candidate_count
|
|
|
|
|
|
|
|
self.stop_sequence = stop_sequence
|
|
|
|
|
|
|
|
self.max_output_tokens = max_output_tokens
|
|
|
|
|
|
|
|
self.temperature = temperature
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Prepare the generation config
|
|
|
|
|
|
|
|
self.generation_config = GenerationConfig(
|
|
|
|
|
|
|
|
candidate_count=candidate_count,
|
|
|
|
|
|
|
|
# stop_sequence=stop_sequence,
|
|
|
|
|
|
|
|
max_output_tokens=max_output_tokens,
|
|
|
|
|
|
|
|
temperature=temperature,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Initialize the model
|
|
|
|
# Initialize the model
|
|
|
|
self.model = genai.GenerativeModel(
|
|
|
|
self.model = genai.GenerativeModel(
|
|
|
|
model_name, *args, **kwargs
|
|
|
|
model_name, *args, **kwargs
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Check for the key
|
|
|
|
|
|
|
|
if self.gemini_api_key is None:
|
|
|
|
|
|
|
|
raise ValueError("Please provide a Gemini API key")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def system_prompt(
|
|
|
|
|
|
|
|
self,
|
|
|
|
|
|
|
|
system_prompt: str = None,
|
|
|
|
|
|
|
|
task: str = None,
|
|
|
|
|
|
|
|
*args,
|
|
|
|
|
|
|
|
**kwargs,
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
"""System prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
system_prompt (str, optional): _description_. Defaults to None.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
PROMPT = f"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{system_prompt}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{task}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
return PROMPT
|
|
|
|
|
|
|
|
|
|
|
|
def run(
|
|
|
|
def run(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
|
task: str = None,
|
|
|
|
task: str = None,
|
|
|
@ -91,18 +152,33 @@ class Gemini(BaseMultiModalModel):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
if img:
|
|
|
|
if img:
|
|
|
|
process_img = self.process_img(img, *args, **kwargs)
|
|
|
|
# process_img = self.process_img(img, *args, **kwargs)
|
|
|
|
|
|
|
|
process_img = self.process_img_pil(img)
|
|
|
|
response = self.model.generate_content(
|
|
|
|
response = self.model.generate_content(
|
|
|
|
content=[task, process_img], *args, **kwargs
|
|
|
|
contents=[task, process_img],
|
|
|
|
|
|
|
|
generation_config=self.generation_config,
|
|
|
|
|
|
|
|
stream=self.stream,
|
|
|
|
|
|
|
|
*args,
|
|
|
|
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# if self.candidates:
|
|
|
|
|
|
|
|
# return response.candidates
|
|
|
|
|
|
|
|
# elif self.safety:
|
|
|
|
|
|
|
|
# return response.safety
|
|
|
|
|
|
|
|
# else:
|
|
|
|
|
|
|
|
# return response.text
|
|
|
|
|
|
|
|
|
|
|
|
return response.text
|
|
|
|
return response.text
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
response = self.model.generate_content(
|
|
|
|
response = self.model.generate_content(
|
|
|
|
task, *args, **kwargs
|
|
|
|
task, *args, **kwargs
|
|
|
|
)
|
|
|
|
)
|
|
|
|
return response
|
|
|
|
return response.text
|
|
|
|
except Exception as error:
|
|
|
|
except Exception as error:
|
|
|
|
print(f"Error running Gemini model: {error}")
|
|
|
|
print(f"Error running Gemini model: {error}")
|
|
|
|
|
|
|
|
print(f"Please check the task and image: {task}, {img}")
|
|
|
|
|
|
|
|
raise error
|
|
|
|
|
|
|
|
|
|
|
|
def process_img(
|
|
|
|
def process_img(
|
|
|
|
self,
|
|
|
|
self,
|
|
|
@ -158,3 +234,35 @@ class Gemini(BaseMultiModalModel):
|
|
|
|
response1 = response.text
|
|
|
|
response1 = response.text
|
|
|
|
print(response1)
|
|
|
|
print(response1)
|
|
|
|
response = chat.send_message(img, *args, **kwargs)
|
|
|
|
response = chat.send_message(img, *args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def list_models(self) -> str:
|
|
|
|
|
|
|
|
"""List the Gemini models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
str: _description_
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
for m in genai.list_models():
|
|
|
|
|
|
|
|
if "generateContent" in m.supported_generation_methods:
|
|
|
|
|
|
|
|
print(m.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def stream_tokens(self, content: str = None):
|
|
|
|
|
|
|
|
"""Stream the tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
content (t, optional): _description_. Defaults to None.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
for chunk in content:
|
|
|
|
|
|
|
|
print(chunk.text)
|
|
|
|
|
|
|
|
print("_" * 80)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_img_pil(self, img: str = None):
|
|
|
|
|
|
|
|
"""Process img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
img (str, optional): _description_. Defaults to None.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
_type_: _description_
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
img = Image.open(img)
|
|
|
|
|
|
|
|
return img
|
|
|
|