[DEMO][DEMOO]

pull/472/head
Kye 8 months ago
parent b9cd77fbdd
commit 61790fc40d

5
.gitignore vendored

@ -6,6 +6,7 @@ __pycache__/
image/
audio/
video/
artifacts_three
dataframe/
static/generated
@ -13,6 +14,8 @@ runs
chroma
Unit Testing Agent_state.json
Devin_state.json
Medical Image Diagnostic Agent_state.json
D_state.json
swarms/__pycache__
artifacts
transcript_generator.json
@ -21,9 +24,11 @@ venv
Cargo.lock
.DS_STORE
Cargo.lock
Medical Treatment Recommendation Agent_state.json
swarms/agents/.DS_Store
artifacts_two
logs
T_state.json
_build
conversation.txt
t1_state.json

@ -1,68 +0,0 @@
from pydantic import BaseModel, Field
from swarms import Agent
from swarms.models.popular_llms import Anthropic
from swarms.tools.openai_tool_creator_decorator import tool
# Importing the search API tool
@tool
def search_api(query: str) -> str:
"""
This tool searches the web for information about COVID-19 symptoms.
"""
return f"Search API tool called with query: {query}"
print(search_api("COVID-19 symptoms"))
# Initialize the schema for the person's information
class Schema(BaseModel):
name: str = Field(..., title="Name of the person")
agent: int = Field(..., title="Age of the person")
is_student: bool = Field(..., title="Whether the person is a student")
courses: list[str] = Field(
..., title="List of courses the person is taking"
)
# Convert the schema to a JSON string
tool_schema = Schema(
name="Tool Name",
agent=1,
is_student=True,
courses=["Course1", "Course2"],
)
# Define the task to generate a person's information
task = "Generate a person's information based on the following schema:"
# Initialize the agent
agent = Agent(
agent_name="WeatherMan Agent",
# Set the tool schema to the JSON string -- this is the key difference
tool_schema=tool_schema,
llm=Anthropic(),
max_loops=3,
autosave=True,
dashboard=False,
streaming_on=True,
tools=[], # or list of tools
verbose=True,
interactive=True,
# Set the output type to the tool schema which is a BaseModel
output_type=tool_schema, # or dict, or str
metadata_output_type="json",
# List of schemas that the agent can handle
list_tool_schemas=[tool_schema],
function_calling_format_type="OpenAI",
function_calling_type="json", # or soon yaml
execute_tool=True,
)
# Run the agent to generate the person's information
generated_data = agent.run(task)
# Print the generated data
print(f"Generated data: {generated_data}")

@ -1,11 +1,35 @@
from swarms.models.gpt4v import GPT4Vision
import os # Import the os module for working with the operating system
gpt4vision = GPT4Vision(openai_api_key="")
from dotenv import (
load_dotenv, # Import the load_dotenv function from the dotenv module
)
img = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/VFPt_Solenoid_correct2.svg/640px-VFPt_Solenoid_correct2.svg.png"
from swarms import (
GPT4VisionAPI, # Import the GPT4VisionAPI class from the swarms module
)
# Load the environment variables
load_dotenv()
# Get the API key from the environment variables
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the GPT4VisionAPI class with the API key and model name
gpt4vision = GPT4VisionAPI(
openai_api_key=api_key,
model_name="gpt-4o",
max_tokens=1000,
openai_proxy="https://api.openai.com/v1/chat/completions",
)
# Define the URL of the image to analyze
img = "ear.png"
# Define the task to perform on the image
task = "What is this image"
answer = gpt4vision.run(task, img)
# Run the GPT4VisionAPI on the image with the specified task
answer = gpt4vision.run(task, img, return_json=True)
# Print the answer
print(answer)

@ -0,0 +1,31 @@
from dotenv import load_dotenv
from openai import OpenAI
import os
load_dotenv()
openai_api_key = os.getenv("SWARMS_API_KEY")
openai_api_base = "https://api.swarms.world"
model = "gpt-4o"
client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
# Note that this model expects the image to come before the main text
chat_response = client.chat.completions.create(
model=model,
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://home-cdn.reolink.us/wp-content/uploads/2022/04/010345091648784709.4253.jpg",
},
},
{"type": "text", "text": "What's in this image?"},
],
}
],
temperature=0.1,
)
print("Chat response:", chat_response)

File diff suppressed because it is too large Load Diff

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "5.0.0"
version = "5.0.2"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -48,7 +48,7 @@ Pillow = "10.3.0"
psutil = "*"
sentry-sdk = "*"
python-dotenv = "*"
accelerate = "0.28.0"
# accelerate = "0.28.0"
opencv-python = "^4.9.0.80"
PyYAML = "*"
docstring_parser = "0.16"

@ -0,0 +1,145 @@
import os
from dotenv import load_dotenv
from pydantic import BaseModel, Field
from swarms import Agent
from swarms.models import Anthropic
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs.rearrange import AgentRearrange
# Load the environment variables
load_dotenv()
def DIAGNOSIS_SYSTEM_PROMPT() -> str:
return """
**System Prompt for Medical Image Diagnostic Agent**
Welcome, Diagnostic Agent. Your primary function is to assist medical doctors by providing preliminary analyses of medical images. You are equipped with state-of-the-art image recognition capabilities that can identify patterns and anomalies associated with various medical conditions. Your role is to process the images, suggest potential diagnoses, and highlight areas of interest that require the doctors attention.
**Guidelines:**
1. **Comprehensive Analysis:** When analyzing an image, consider all possible conditions that could explain the observed patterns. Do not jump to conclusions based on limited data. Instead, list potential diagnoses ranked by likelihood based on the image features.
2. **Explain Your Reasoning:** For each potential diagnosis, explain the specific image features and patterns that led to your conclusion. This explanation should be detailed enough for the doctor to understand your thought process and evaluate the relevance of each suggested diagnosis.
5. **Adaptability:** Be prepared to adjust your analysis based on additional information provided by the doctor or further diagnostic tests. Your ability to integrate new data and refine your assessments is crucial.
**Objective:**
Your goal is to enhance the diagnostic process by providing accurate, insightful, and comprehensible information that aids the doctor in making informed decisions. Remember, your analysis is a tool to support, not replace, the expertise of medical professionals.
---
"""
def TREATMENT_PLAN_SYSTEM_PROMPT() -> str:
return """
**System Prompt for Medical Treatment Recommendation Agent**
Welcome, Treatment Recommendation Agent. You are tasked with assisting medical professionals by suggesting possible treatment options based on patient-specific data. Your capabilities include accessing a comprehensive database of medical treatments, understanding patient histories, and integrating the latest research to inform your recommendations.
**Guidelines:**
1. **Patient-Centric Recommendations:** Tailor your treatment suggestions to the specific needs and medical history of the patient. Consider factors such as age, pre-existing conditions, allergies, and any other relevant personal health information.
2. **Evidence-Based Suggestions:** Base your recommendations on the latest clinical guidelines and peer-reviewed research. Clearly cite the evidence supporting each suggested treatment to help the medical professional make informed decisions.
3. **Range of Options:** Provide a range of treatment possibilities that include mainstream medical practices as well as any viable alternative therapies. Classify these suggestions by effectiveness, risks, and suitability for the patients condition.
4. **Interdisciplinary Approach:** Encourage consideration of multidisciplinary treatment plans when appropriate. This may include combining pharmacological treatments with physical therapy, dietary changes, or psychological counseling.
5. **Clarity and Precision:** Deliver your recommendations clearly and concisely. Use plain language to describe treatment options and their implications to ensure that they are easily understood by non-specialists.
6. **Adaptability and Feedback Incorporation:** Be adaptable to feedback from the medical professionals. Use any new insights to refine future recommendations, ensuring that your system evolves in response to real-world outcomes and professional critique.
**Objective:**
Your primary goal is to support medical professionals by providing comprehensive, evidence-based, and personalized treatment recommendations. You serve to enhance the decision-making process, ensuring that all suggested treatments are aligned with the best interests of the patient.
"""
class DiagnosisSchema(BaseModel):
image_name: str = Field(
...,
title="Image Name",
description="The name of the image to be diagnosed",
)
task: str = Field(
...,
title="Task",
description="The task to be performed on the image",
)
diagnosis: str = Field(
..., title="Diagnosis", description="The diagnosis of the image"
)
class TreatMentSchema(BaseModel):
image_name: str = Field(
...,
title="Image Name",
description="The name of the image to be treated",
)
task: str = Field(
...,
title="Task",
description="The task to be performed on the image",
)
treatment: str = Field(
..., title="Treatment", description="The treatment of the image"
)
# LLM
llm = GPT4VisionAPI(
openai_api_key=os.getenv("OPENAI_API_KEY"),
model_name="gpt-4o",
max_tokens=1000,
)
# Anthropic
anthropic = Anthropic(
anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"),
)
# Diagnoser agent
diagnoser = Agent(
# agent_name="Medical Image Diagnostic Agent",
agent_name="D",
system_prompt=DIAGNOSIS_SYSTEM_PROMPT(),
llm=llm,
max_loops=1,
autosave=True,
dashboard=True,
)
# Agent 2 the treatment plan provider
treatment_plan_provider = Agent(
# agent_name="Medical Treatment Recommendation Agent",
agent_name="T",
system_prompt=TREATMENT_PLAN_SYSTEM_PROMPT(),
llm=anthropic,
max_loops=1,
autosave=True,
dashboard=True,
)
# Agent 3 the re-arranger
rearranger = AgentRearrange(
agents=[diagnoser, treatment_plan_provider],
flow="D -> T",
max_loops=1,
verbose=True,
)
# image = "ear.png"
# Run the rearranger
out = rearranger(
"Diagnose the image and provide a treatment plan for the patient",
# image,
)
print(out)

@ -8,7 +8,7 @@ import aiohttp
import requests
from dotenv import load_dotenv
from termcolor import colored
from swarms.utils.loguru_logger import logger
from swarms.models.base_multimodal_model import BaseMultiModalModel
try:
@ -120,7 +120,15 @@ class GPT4VisionAPI(BaseMultiModalModel):
return base64.b64encode(response.content).decode("utf-8")
# Function to handle vision tasks
def run(self, task: str = None, img: str = None, *args, **kwargs):
def run(
self,
task: str = None,
img: str = None,
multi_imgs: list = None,
return_json: bool = False,
*args,
**kwargs,
):
"""Run the model."""
try:
base64_image = self.encode_image(img)
@ -149,31 +157,27 @@ class GPT4VisionAPI(BaseMultiModalModel):
},
],
"max_tokens": self.max_tokens,
**kwargs,
}
response = requests.post(
self.openai_proxy, headers=headers, json=payload
)
out = response.json()
if "choices" in out and out["choices"]:
content = (
out["choices"][0]
.get("message", {})
.get("content", None)
)
if self.streaming_enabled:
content = self.stream_response(content)
return content
# Get the response as a JSON object
response_json = response.json()
# Return the JSON object if return_json is True
if return_json is True:
return response_json
else:
print("No valid response in 'choices'")
return None
return response_json["choices"][0]["message"]["content"]
except Exception as error:
print(
logger.error(
f"Error with the request: {error}, make sure you"
" double check input types and positions"
)
return None
raise error
def video_prompt(self, frames):
"""

@ -1,5 +1,7 @@
from swarms.structs.agent import Agent
from typing import List
from swarms.memory.base_vectordb import BaseVectorDatabase
from swarms.structs.agent import Agent
from swarms.structs.base_swarm import BaseSwarm
from swarms.utils.loguru_logger import logger
@ -27,6 +29,9 @@ class AgentRearrange(BaseSwarm):
flow: str = None,
max_loops: int = 1,
verbose: bool = True,
memory_system: BaseVectorDatabase = None,
*args,
**kwargs,
):
"""
Initializes the AgentRearrange object.
@ -40,9 +45,15 @@ class AgentRearrange(BaseSwarm):
self.verbose = verbose
self.max_loops = max_loops
# Verbose is True
if verbose is True:
logger.add("agent_rearrange.log")
# Memory system
if memory_system is not None:
for agent in self.agents.values():
agent.long_term_memory = memory_system
def add_agent(self, agent: Agent):
"""
Adds an agent to the swarm.
@ -106,7 +117,7 @@ class AgentRearrange(BaseSwarm):
print("Flow is valid.")
return True
def run(self, task: str, *args, **kwargs):
def run(self, task: str = None, img: str = None, *args, **kwargs):
"""
Runs the swarm to rearrange the tasks.
@ -123,26 +134,37 @@ class AgentRearrange(BaseSwarm):
tasks = self.flow.split("->")
current_task = task
for task in tasks:
agent_names = [name.strip() for name in task.split(",")]
if len(agent_names) > 1:
# Parallel processing
logger.info(
f"Running agents in parallel: {agent_names}"
)
results = []
for agent_name in agent_names:
agent = self.agents[agent_name]
result = agent.run(current_task, *args, **kwargs)
results.append(result)
current_task = "; ".join(results)
else:
# Sequential processing
logger.info(
f"Running agents sequentially: {agent_names}"
)
agent = self.agents[agent_names[0]]
current_task = agent.run(current_task, *args, **kwargs)
loop_count = 0
while loop_count < self.max_loops:
for task in tasks:
agent_names = [
name.strip() for name in task.split(",")
]
if len(agent_names) > 1:
# Parallel processing
logger.info(
f"Running agents in parallel: {agent_names}"
)
results = []
for agent_name in agent_names:
agent = self.agents[agent_name]
result = agent.run(
current_task, img, *args, **kwargs
)
results.append(result)
current_task = "; ".join(results)
else:
# Sequential processing
logger.info(
f"Running agents sequentially: {agent_names}"
)
agent = self.agents[agent_names[0]]
current_task = agent.run(
current_task, img, *args, **kwargs
)
loop_count += 1
return current_task
except Exception as e:
@ -151,7 +173,11 @@ class AgentRearrange(BaseSwarm):
def rearrange(
agents: List[Agent], flow: str, task: str = None, *args, **kwargs
agents: List[Agent] = None,
flow: str = None,
task: str = None,
*args,
**kwargs,
):
"""
Rearranges the given list of agents based on the specified flow.

@ -67,7 +67,9 @@ class RoundRobinSwarm(BaseSwarm):
for _ in range(n):
current_agent = self.agents[self.index]
try:
logger.info(f"Running Agent {current_agent.agent_name} on task {result}")
logger.info(
f"Running Agent {current_agent.agent_name} on task {result}"
)
result = current_agent.run(result, *args, **kwargs)
except Exception as e:
logger.error(
@ -79,7 +81,9 @@ class RoundRobinSwarm(BaseSwarm):
self.index + 1
) % n # Increment and wrap around the index
if self.callback:
logger.info(f"Calling the callback function for loop {loop}")
logger.info(
f"Calling the callback function for loop {loop}"
)
self.callback(loop, result)
return result
except Exception as e:

@ -2,17 +2,20 @@ import pytest
from swarms.structs.round_robin import RoundRobinSwarm
from swarms.structs.agent import Agent
@pytest.fixture
def round_robin_swarm():
agents = [Agent(name=f"Agent{i}") for i in range(3)]
return RoundRobinSwarm(agents=agents, verbose=True, max_loops=2)
def test_init(round_robin_swarm):
assert isinstance(round_robin_swarm, RoundRobinSwarm)
assert round_robin_swarm.verbose == True
assert round_robin_swarm.verbose is True
assert round_robin_swarm.max_loops == 2
assert len(round_robin_swarm.agents) == 3
def test_run(round_robin_swarm):
task = "test_task"
result = round_robin_swarm.run(task)

Loading…
Cancel
Save