WIP: robust agent save/load example for conversation autosave and reload

pull/850/head
Pavan Kumar 2 weeks ago
parent d40589e720
commit 61cb4aab15

@ -1,14 +1,14 @@
""" """
Example: Fully Save and Load an Agent (Issue #640) Example: Fully Save and Load an Agent (with Conversation History)
This example demonstrates how to save and load an Agent instance such that all non-serializable properties This demonstrates how to:
(tokenizer, long_term_memory, logger_handler, agent_output, executor) are restored after loading. 1. Auto-save conversation messages to JSON
2. Save the full Agent state
This is a user-facing, production-grade demonstration for swarms. 3. Load both the Agent state and the conversation back into a fresh Agent
""" """
from swarms.structs.agent import Agent
import os import os
from swarms.structs.agent import Agent
# Helper to safely print type or None for agent properties # Helper to safely print type or None for agent properties
def print_agent_properties(agent, label): def print_agent_properties(agent, label):
@ -17,7 +17,18 @@ def print_agent_properties(agent, label):
value = getattr(agent, prop, None) value = getattr(agent, prop, None)
print(f"{prop}: {type(value)}") print(f"{prop}: {type(value)}")
# --- Setup: Create and configure an agent --- # Helper to extract the conversation history list
def get_conversation_history(agent):
conv = getattr(agent, "conversation", None) or getattr(agent, "short_memory", None)
return getattr(conv, "conversation_history", None)
# Robust helper to reload conversation from JSON into the correct attribute
def reload_conversation_from_json(agent, filepath):
conv = getattr(agent, "conversation", None) or getattr(agent, "short_memory", None)
if conv and hasattr(conv, "load_from_json"):
conv.load_from_json(filepath)
# --- 1. Setup: Create and configure an agent with auto-save conversation ---
agent = Agent( agent = Agent(
agent_name="test", agent_name="test",
user_name="test_user", user_name="test_user",
@ -29,34 +40,72 @@ agent = Agent(
artifacts_on=True, artifacts_on=True,
artifacts_output_path="test", artifacts_output_path="test",
artifacts_file_extension=".txt", artifacts_file_extension=".txt",
conversation_kwargs={
"auto_save": True,
"save_as_json_bool": True,
"save_filepath": "test_conversation_history.json"
}
) )
# Optionally, interact with the agent to populate state # --- 2. Interact to populate conversation ---
agent.run(task="hello") agent.run(task="hello")
agent.run(task="What is your purpose?")
agent.run(task="Tell me a joke.")
agent.run(task="Summarize our conversation so far.")
# Print non-serializable properties BEFORE saving # --- 3. Inspect before saving ---
print_agent_properties(agent, "BEFORE SAVE") print_agent_properties(agent, "BEFORE SAVE")
print("\nConversation history BEFORE SAVE:", get_conversation_history(agent))
# --- 4. Save the agent state (conversation JSON was auto-saved under workspace) ---
state_path = os.path.join(agent.workspace_dir, "test_state.json")
agent.save(state_path)
# Save the agent state # --- 5. Check that the conversation JSON file exists and print its contents ---
save_path = os.path.join(agent.workspace_dir, "test_state.json") json_path = os.path.join(agent.workspace_dir, "test_conversation_history.json")
agent.save(save_path) if os.path.exists(json_path):
print(f"\n[CHECK] Conversation JSON file found: {json_path}")
with open(json_path, "r") as f:
json_data = f.read()
print("[CHECK] JSON file contents:\n", json_data)
else:
print(f"[WARN] Conversation JSON file not found: {json_path}")
# Delete the agent instance to simulate a fresh load # --- 6. Simulate fresh environment ---
del agent del agent
# --- Load: Restore the agent from file --- # --- 7. Load: Restore the agent configuration ---
agent2 = Agent(agent_name="test") # Minimal init, will be overwritten by load agent2 = Agent(agent_name="test")
agent2.load(save_path) agent2.load(state_path)
# --- 8. Load: Restore the conversation history from the workspace directory into a new Conversation object ---
from swarms.structs.conversation import Conversation
conversation_loaded = Conversation()
if os.path.exists(json_path):
conversation_loaded.load_from_json(json_path)
print("\n[CHECK] Loaded conversation from JSON into new Conversation object:")
print(conversation_loaded.conversation_history)
else:
print(f"[WARN] Conversation JSON file not found for loading: {json_path}")
# --- 9. Assign loaded conversation to agent2 and check ---
if hasattr(agent2, "conversation"):
agent2.conversation = conversation_loaded
elif hasattr(agent2, "short_memory"):
agent2.short_memory = conversation_loaded
print("\n[CHECK] Agent2 conversation history after assigning loaded conversation:", get_conversation_history(agent2))
# Print non-serializable properties AFTER loading # --- 10. Inspect after loading ---
print_agent_properties(agent2, "AFTER LOAD") print_agent_properties(agent2, "AFTER LOAD")
print("\nConversation history AFTER LOAD:", get_conversation_history(agent2))
# Confirm agent2 can still run tasks and autosave # --- 11. Confirm the agent can continue ---
result = agent2.run(task="What is 2+2?") result = agent2.run(task="What is 2+2?")
print("\nAgent2 run result:", result) print("\nAgent2 run result:", result)
# Clean up test file # --- 12. Cleanup test files ---
try: for path in (state_path, json_path):
os.remove(save_path) try:
except Exception: os.remove(path)
pass except OSError:
pass

Loading…
Cancel
Save