parent
36b022ed41
commit
63236dbee3
@ -0,0 +1,39 @@
|
||||
from swarms import Conversation, AbstractLLM
|
||||
|
||||
|
||||
# Run the language model in a loop for n iterations
|
||||
def SimpleAgent(
|
||||
llm: AbstractLLM = None, iters: int = 10, *args, **kwargs
|
||||
):
|
||||
"""Simple agent conversation
|
||||
|
||||
Args:
|
||||
llm (_type_): _description_
|
||||
iters (int, optional): _description_. Defaults to 10.
|
||||
"""
|
||||
try:
|
||||
conv = Conversation(*args, **kwargs)
|
||||
for i in range(iters):
|
||||
user_input = input("User: ")
|
||||
conv.add("user", user_input)
|
||||
if user_input.lower() == "quit":
|
||||
break
|
||||
task = (
|
||||
conv.return_history_as_string()
|
||||
) # Get the conversation history
|
||||
out = llm(task)
|
||||
conv.add("assistant", out)
|
||||
print(
|
||||
f"Assistant: {out}",
|
||||
)
|
||||
conv.display_conversation()
|
||||
conv.export_conversation("conversation.txt")
|
||||
|
||||
except Exception as error:
|
||||
print(f"[ERROR][SimpleAgentConversation] {error}")
|
||||
raise error
|
||||
|
||||
except KeyboardInterrupt:
|
||||
print("[INFO][SimpleAgentConversation] Keyboard interrupt")
|
||||
conv.export_conversation("conversation.txt")
|
||||
raise KeyboardInterrupt
|
@ -1,315 +1,107 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from transformers import (
|
||||
SamImageProcessor,
|
||||
SamModel,
|
||||
SamProcessor,
|
||||
pipeline,
|
||||
)
|
||||
|
||||
try:
|
||||
import cv2
|
||||
import supervision as sv
|
||||
except ImportError:
|
||||
print("Please install supervision and cv")
|
||||
|
||||
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class FeatureType(Enum):
|
||||
"""
|
||||
An enumeration to represent the types of features for mask adjustment in image
|
||||
segmentation.
|
||||
"""
|
||||
|
||||
ISLAND = "ISLAND"
|
||||
HOLE = "HOLE"
|
||||
import requests
|
||||
from transformers import SamModel, SamProcessor
|
||||
from typing import List
|
||||
|
||||
@classmethod
|
||||
def list(cls):
|
||||
return list(map(lambda c: c.value, cls))
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
|
||||
def compute_mask_iou_vectorized(masks: np.ndarray) -> np.ndarray:
|
||||
class SAM:
|
||||
"""
|
||||
Vectorized computation of the Intersection over Union (IoU) for all pairs of masks.
|
||||
Class representing the SAM (Segmentation and Masking) model.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array of shape `(N, N)` where each element `[i, j]` is
|
||||
the IoU between masks `i` and `j`.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the masks is found to be empty.
|
||||
"""
|
||||
if np.any(masks.sum(axis=(1, 2)) == 0):
|
||||
raise ValueError(
|
||||
"One or more masks are empty. Please filter out empty"
|
||||
" masks before using `compute_iou_vectorized` function."
|
||||
)
|
||||
|
||||
masks_bool = masks.astype(bool)
|
||||
masks_flat = masks_bool.reshape(masks.shape[0], -1)
|
||||
intersection = np.logical_and(
|
||||
masks_flat[:, None], masks_flat[None, :]
|
||||
).sum(axis=2)
|
||||
union = np.logical_or(
|
||||
masks_flat[:, None], masks_flat[None, :]
|
||||
).sum(axis=2)
|
||||
iou_matrix = intersection / union
|
||||
return iou_matrix
|
||||
|
||||
|
||||
def mask_non_max_suppression(
|
||||
masks: np.ndarray, iou_threshold: float = 0.6
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Performs Non-Max Suppression on a set of masks by prioritizing larger masks and
|
||||
removing smaller masks that overlap significantly.
|
||||
Args:
|
||||
model_name (str): The name of the pre-trained SAM model. Default is "facebook/sam-vit-huge".
|
||||
device (torch.device): The device to run the model on. Default is the current device.
|
||||
input_points (List[List[int]]): The 2D location of a window in the image to segment. Default is [[450, 600]].
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
When the IoU between two masks exceeds the specified threshold, the smaller mask
|
||||
(in terms of area) is discarded. This process is repeated for each pair of masks,
|
||||
effectively filtering out masks that are significantly overlapped by larger ones.
|
||||
Attributes:
|
||||
model_name (str): The name of the pre-trained SAM model.
|
||||
device (torch.device): The device to run the model on.
|
||||
input_points (List[List[int]]): The 2D location of a window in the image to segment.
|
||||
model (SamModel): The pre-trained SAM model.
|
||||
processor (SamProcessor): The processor for the SAM model.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
iou_threshold (float): The IoU threshold for determining significant overlap.
|
||||
Methods:
|
||||
run(task=None, img=None, *args, **kwargs): Runs the SAM model on the given image and returns the segmentation scores and masks.
|
||||
process_img(img: str = None, *args, **kwargs): Processes the input image and returns the processed image.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array of filtered masks.
|
||||
"""
|
||||
num_masks = masks.shape[0]
|
||||
areas = masks.sum(axis=(1, 2))
|
||||
sorted_idx = np.argsort(-areas)
|
||||
keep_mask = np.ones(num_masks, dtype=bool)
|
||||
iou_matrix = compute_mask_iou_vectorized(masks)
|
||||
for i in range(num_masks):
|
||||
if not keep_mask[sorted_idx[i]]:
|
||||
continue
|
||||
|
||||
overlapping_masks = iou_matrix[sorted_idx[i]] > iou_threshold
|
||||
overlapping_masks[sorted_idx[i]] = False
|
||||
keep_mask[sorted_idx] = np.logical_and(
|
||||
keep_mask[sorted_idx], ~overlapping_masks
|
||||
)
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "facebook/sam-vit-huge",
|
||||
device=device,
|
||||
input_points: List[List[int]] = [[450, 600]],
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
self.model_name = model_name
|
||||
self.device = device
|
||||
self.input_points = input_points
|
||||
|
||||
return masks[keep_mask]
|
||||
self.model = SamModel.from_pretrained(
|
||||
model_name, *args, **kwargs
|
||||
).to(device)
|
||||
|
||||
self.processor = SamProcessor.from_pretrained(model_name)
|
||||
|
||||
def filter_masks_by_relative_area(
|
||||
masks: np.ndarray,
|
||||
minimum_area: float = 0.01,
|
||||
maximum_area: float = 1.0,
|
||||
) -> np.ndarray:
|
||||
def run(self, task=None, img=None, *args, **kwargs):
|
||||
"""
|
||||
Filters masks based on their relative area within the total area of each mask.
|
||||
Runs the SAM model on the given image and returns the segmentation scores and masks.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
minimum_area (float): The minimum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
maximum_area (float): The maximum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
Args:
|
||||
task: The task to perform. Not used in this method.
|
||||
img: The input image to segment.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array containing masks that fall within the specified
|
||||
relative area range.
|
||||
|
||||
Raises:
|
||||
ValueError: If `minimum_area` or `maximum_area` are outside the `0` to `1`
|
||||
range, or if `minimum_area` is greater than `maximum_area`.
|
||||
"""
|
||||
|
||||
if not (isinstance(masks, np.ndarray) and masks.ndim == 3):
|
||||
raise ValueError("Input must be a 3D numpy array.")
|
||||
|
||||
if not (0 <= minimum_area <= 1) or not (0 <= maximum_area <= 1):
|
||||
raise ValueError(
|
||||
"`minimum_area` and `maximum_area` must be between 0"
|
||||
" and 1."
|
||||
)
|
||||
|
||||
if minimum_area > maximum_area:
|
||||
raise ValueError(
|
||||
"`minimum_area` must be less than or equal to"
|
||||
" `maximum_area`."
|
||||
)
|
||||
|
||||
total_area = masks.shape[1] * masks.shape[2]
|
||||
relative_areas = masks.sum(axis=(1, 2)) / total_area
|
||||
return masks[
|
||||
(relative_areas >= minimum_area)
|
||||
& (relative_areas <= maximum_area)
|
||||
]
|
||||
|
||||
|
||||
def adjust_mask_features_by_relative_area(
|
||||
mask: np.ndarray,
|
||||
area_threshold: float,
|
||||
feature_type: FeatureType = FeatureType.ISLAND,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Adjusts a mask by removing small islands or filling small holes based on a relative
|
||||
area threshold.
|
||||
|
||||
!!! warning
|
||||
|
||||
Running this function on a mask with small islands may result in empty masks.
|
||||
Tuple: A tuple containing the segmentation scores and masks.
|
||||
|
||||
Parameters:
|
||||
mask (np.ndarray): A 2D numpy array with shape `(H, W)`, where `H` is the
|
||||
height, and `W` is the width.
|
||||
area_threshold (float): Threshold for relative area to remove or fill features.
|
||||
feature_type (FeatureType): Type of feature to adjust (`ISLAND` for removing
|
||||
islands, `HOLE` for filling holes).
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array containing mask.
|
||||
"""
|
||||
height, width = mask.shape
|
||||
total_area = width * height
|
||||
|
||||
mask = np.uint8(mask * 255)
|
||||
operation = (
|
||||
cv2.RETR_EXTERNAL
|
||||
if feature_type == FeatureType.ISLAND
|
||||
else cv2.RETR_CCOMP
|
||||
)
|
||||
contours, _ = cv2.findContours(
|
||||
mask, operation, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
|
||||
for contour in contours:
|
||||
area = cv2.contourArea(contour)
|
||||
relative_area = area / total_area
|
||||
if relative_area < area_threshold:
|
||||
cv2.drawContours(
|
||||
image=mask,
|
||||
contours=[contour],
|
||||
contourIdx=-1,
|
||||
color=(
|
||||
0 if feature_type == FeatureType.ISLAND else 255
|
||||
),
|
||||
thickness=-1,
|
||||
)
|
||||
return np.where(mask > 0, 1, 0).astype(bool)
|
||||
img = self.process_img(img)
|
||||
|
||||
# Specify the points of the mask to segment
|
||||
input_points = [
|
||||
self.input_points
|
||||
] # 2D location of a window in the image
|
||||
|
||||
def masks_to_marks(masks: np.ndarray) -> sv.Detections:
|
||||
"""
|
||||
Converts a set of masks to a marks (sv.Detections) object.
|
||||
# Preprocess the image
|
||||
inputs = self.processor(
|
||||
img, input_points=input_points, return_tensors="pt"
|
||||
).to(device)
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**inputs) # noqa: E999
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
return sv.Detections(
|
||||
mask=masks, xyxy=sv.mask_to_xyxy(masks=masks)
|
||||
masks = self.processor.image_processor.post_process_masks(
|
||||
outputs.pred_masks.cpu(),
|
||||
inputs["original_sizes"].cpu(),
|
||||
inputs["reshaped_input_sizes"].cpu(),
|
||||
)
|
||||
scores = outputs.iou_scores
|
||||
|
||||
return scores, masks
|
||||
|
||||
def refine_marks(
|
||||
marks: sv.Detections,
|
||||
maximum_hole_area: float = 0.01,
|
||||
maximum_island_area: float = 0.01,
|
||||
minimum_mask_area: float = 0.02,
|
||||
maximum_mask_area: float = 1.0,
|
||||
) -> sv.Detections:
|
||||
def process_img(self, img: str = None, *args, **kwargs):
|
||||
"""
|
||||
Refines a set of masks by removing small islands and holes, and filtering by mask
|
||||
area.
|
||||
Processes the input image and returns the processed image.
|
||||
|
||||
Parameters:
|
||||
marks (sv.Detections): An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
maximum_hole_area (float): The maximum relative area of holes to be filled in
|
||||
each mask.
|
||||
maximum_island_area (float): The maximum relative area of islands to be removed
|
||||
from each mask.
|
||||
minimum_mask_area (float): The minimum relative area for a mask to be retained.
|
||||
maximum_mask_area (float): The maximum relative area for a mask to be retained.
|
||||
Args:
|
||||
img (str): The URL or file path of the input image.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
result_masks = []
|
||||
for mask in marks.mask:
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_island_area,
|
||||
feature_type=FeatureType.ISLAND,
|
||||
)
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_hole_area,
|
||||
feature_type=FeatureType.HOLE,
|
||||
)
|
||||
if np.any(mask):
|
||||
result_masks.append(mask)
|
||||
result_masks = np.array(result_masks)
|
||||
result_masks = filter_masks_by_relative_area(
|
||||
masks=result_masks,
|
||||
minimum_area=minimum_mask_area,
|
||||
maximum_area=maximum_mask_area,
|
||||
)
|
||||
return sv.Detections(
|
||||
mask=result_masks, xyxy=sv.mask_to_xyxy(masks=result_masks)
|
||||
)
|
||||
Image: The processed image.
|
||||
|
||||
|
||||
class SegmentAnythingMarkGenerator:
|
||||
"""
|
||||
A class for performing image segmentation using a specified model.
|
||||
|
||||
Parameters:
|
||||
device (str): The device to run the model on (e.g., 'cpu', 'cuda').
|
||||
model_name (str): The name of the model to be loaded. Defaults to
|
||||
'facebook/sam-vit-huge'.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device: str = "cpu",
|
||||
model_name: str = "facebook/sam-vit-huge",
|
||||
):
|
||||
self.model = SamModel.from_pretrained(model_name).to(device)
|
||||
self.processor = SamProcessor.from_pretrained(model_name)
|
||||
self.image_processor = SamImageProcessor.from_pretrained(
|
||||
model_name
|
||||
)
|
||||
self.pipeline = pipeline(
|
||||
task="mask-generation",
|
||||
model=self.model,
|
||||
image_processor=self.image_processor,
|
||||
device=device,
|
||||
)
|
||||
|
||||
def run(self, image: np.ndarray) -> sv.Detections:
|
||||
"""
|
||||
Generate image segmentation marks.
|
||||
raw_image = Image.open(
|
||||
requests.get(img, stream=True, *args, **kwargs).raw
|
||||
).convert("RGB")
|
||||
|
||||
Parameters:
|
||||
image (np.ndarray): The image to be marked in BGR format.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the segmentation masks and their
|
||||
corresponding bounding box coordinates.
|
||||
"""
|
||||
image = Image.fromarray(
|
||||
cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
)
|
||||
outputs = self.pipeline(image, points_per_batch=64)
|
||||
masks = np.array(outputs["masks"])
|
||||
return masks_to_marks(masks=masks)
|
||||
return raw_image
|
||||
|
Loading…
Reference in new issue