remove-unused-params from agent.py

pull/1028/head
Kye Gomez 2 weeks ago
parent bb46bd9f94
commit 67b380dc8a

@ -30,6 +30,7 @@ try:
WikipediaPersonalityScraper,
MEPPersonalityProfile,
)
WIKIPEDIA_PERSONALITY_AVAILABLE = True
except ImportError:
WIKIPEDIA_PERSONALITY_AVAILABLE = False

@ -5,23 +5,19 @@ This script demonstrates the comprehensive democratic functionality of the EuroS
including bill introduction, committee work, parliamentary debates, and democratic voting.
"""
import json
import time
from datetime import datetime
# Import directly from the file
from euroswarm_parliament import (
EuroSwarmParliament,
VoteType,
ParliamentaryRole,
ParliamentaryMember
)
def demonstrate_parliament_initialization():
"""Demonstrate parliament initialization and basic functionality with cost optimization."""
print("\nEUROSWARM PARLIAMENT INITIALIZATION DEMONSTRATION (COST OPTIMIZED)")
print(
"\nEUROSWARM PARLIAMENT INITIALIZATION DEMONSTRATION (COST OPTIMIZED)"
)
print("=" * 60)
# Initialize the parliament with cost optimization
@ -35,7 +31,7 @@ def demonstrate_parliament_initialization():
enable_caching=True, # NEW: Enable response caching
batch_size=25, # NEW: Batch size for concurrent execution
budget_limit=100.0, # NEW: Budget limit in dollars
verbose=True
verbose=True,
)
print(f"Parliament initialized with {len(parliament.meps)} MEPs")
@ -43,26 +39,32 @@ def demonstrate_parliament_initialization():
# Show parliament composition with cost stats
composition = parliament.get_parliament_composition()
print(f"\nPARLIAMENT COMPOSITION:")
print("\nPARLIAMENT COMPOSITION:")
print(f"Total MEPs: {composition['total_meps']}")
print(f"Loaded MEPs: {composition['loaded_meps']} (lazy loading active)")
print(
f"Loaded MEPs: {composition['loaded_meps']} (lazy loading active)"
)
print(f"\nCOST OPTIMIZATION:")
cost_stats = composition['cost_stats']
print(f"Budget Limit: ${cost_stats['budget_remaining'] + cost_stats['total_cost']:.2f}")
print("\nCOST OPTIMIZATION:")
cost_stats = composition["cost_stats"]
print(
f"Budget Limit: ${cost_stats['budget_remaining'] + cost_stats['total_cost']:.2f}"
)
print(f"Budget Used: ${cost_stats['total_cost']:.2f}")
print(f"Budget Remaining: ${cost_stats['budget_remaining']:.2f}")
print(f"Cache Hit Rate: {cost_stats['cache_hit_rate']:.1%}")
print(f"\nPOLITICAL GROUP DISTRIBUTION:")
for group, data in composition['political_groups'].items():
count = data['count']
percentage = data['percentage']
print("\nPOLITICAL GROUP DISTRIBUTION:")
for group, data in composition["political_groups"].items():
count = data["count"]
percentage = data["percentage"]
print(f" {group}: {count} MEPs ({percentage:.1f}%)")
print(f"\nCOMMITTEE LEADERSHIP:")
for committee_name, committee_data in composition['committees'].items():
chair = committee_data['chair']
print("\nCOMMITTEE LEADERSHIP:")
for committee_name, committee_data in composition[
"committees"
].items():
chair = committee_data["chair"]
if chair:
print(f" {committee_name}: {chair}")
@ -95,7 +97,11 @@ def demonstrate_individual_mep_interaction(parliament):
try:
response = sample_mep.agent.run(test_prompt)
print(response[:500] + "..." if len(response) > 500 else response)
print(
response[:500] + "..."
if len(response) > 500
else response
)
except Exception as e:
print(f"Error getting MEP response: {e}")
@ -115,7 +121,7 @@ def demonstrate_committee_work(parliament):
description="Comprehensive legislation to strengthen digital rights, enhance privacy protection, and establish clear guidelines for data handling across the European Union.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Legal Affairs",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Bill: {bill.title}")
@ -123,15 +129,25 @@ def demonstrate_committee_work(parliament):
print(f"Sponsor: {bill.sponsor}")
# Conduct committee hearing
print(f"\nCONDUCTING COMMITTEE HEARING...")
hearing_result = parliament.conduct_committee_hearing(bill.committee, bill)
print("\nCONDUCTING COMMITTEE HEARING...")
hearing_result = parliament.conduct_committee_hearing(
bill.committee, bill
)
print(f"Committee: {hearing_result['committee']}")
print(f"Participants: {len(hearing_result['participants'])} MEPs")
print(f"Recommendation: {hearing_result['recommendations']['recommendation']}")
print(f"Support: {hearing_result['recommendations']['support_percentage']:.1f}%")
print(f"Oppose: {hearing_result['recommendations']['oppose_percentage']:.1f}%")
print(f"Amend: {hearing_result['recommendations']['amend_percentage']:.1f}%")
print(
f"Recommendation: {hearing_result['recommendations']['recommendation']}"
)
print(
f"Support: {hearing_result['recommendations']['support_percentage']:.1f}%"
)
print(
f"Oppose: {hearing_result['recommendations']['oppose_percentage']:.1f}%"
)
print(
f"Amend: {hearing_result['recommendations']['amend_percentage']:.1f}%"
)
def demonstrate_parliamentary_debate(parliament):
@ -149,21 +165,31 @@ def demonstrate_parliamentary_debate(parliament):
description="Legislation to implement the European Green Deal, including carbon neutrality targets, renewable energy investments, and sustainable development measures.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Environment, Public Health and Food Safety",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Bill: {bill.title}")
print(f"Description: {bill.description}")
# Conduct parliamentary debate
print(f"\nCONDUCTING PARLIAMENTARY DEBATE...")
debate_result = parliament.conduct_parliamentary_debate(bill, max_speakers=10)
print("\nCONDUCTING PARLIAMENTARY DEBATE...")
debate_result = parliament.conduct_parliamentary_debate(
bill, max_speakers=10
)
print(f"Debate Participants: {len(debate_result['participants'])} MEPs")
print(f"Debate Analysis:")
print(f" Support: {debate_result['analysis']['support_count']} speakers ({debate_result['analysis']['support_percentage']:.1f}%)")
print(f" Oppose: {debate_result['analysis']['oppose_count']} speakers ({debate_result['analysis']['oppose_percentage']:.1f}%)")
print(f" Neutral: {debate_result['analysis']['neutral_count']} speakers ({debate_result['analysis']['neutral_percentage']:.1f}%)")
print(
f"Debate Participants: {len(debate_result['participants'])} MEPs"
)
print("Debate Analysis:")
print(
f" Support: {debate_result['analysis']['support_count']} speakers ({debate_result['analysis']['support_percentage']:.1f}%)"
)
print(
f" Oppose: {debate_result['analysis']['oppose_count']} speakers ({debate_result['analysis']['oppose_percentage']:.1f}%)"
)
print(
f" Neutral: {debate_result['analysis']['neutral_count']} speakers ({debate_result['analysis']['neutral_percentage']:.1f}%)"
)
def demonstrate_democratic_voting(parliament):
@ -181,36 +207,65 @@ def demonstrate_democratic_voting(parliament):
description="Legislation to strengthen social rights, improve labor conditions, and ensure fair treatment of workers across the European Union.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Employment and Social Affairs",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Bill: {bill.title}")
print(f"Sponsor: {bill.sponsor}")
# Conduct democratic vote
print(f"\nCONDUCTING DEMOCRATIC VOTE...")
print("\nCONDUCTING DEMOCRATIC VOTE...")
vote_result = parliament.conduct_democratic_vote(bill)
# Calculate percentages
total_votes = vote_result.votes_for + vote_result.votes_against + vote_result.abstentions
in_favor_percentage = (vote_result.votes_for / total_votes * 100) if total_votes > 0 else 0
against_percentage = (vote_result.votes_against / total_votes * 100) if total_votes > 0 else 0
abstentions_percentage = (vote_result.abstentions / total_votes * 100) if total_votes > 0 else 0
total_votes = (
vote_result.votes_for
+ vote_result.votes_against
+ vote_result.abstentions
)
in_favor_percentage = (
(vote_result.votes_for / total_votes * 100)
if total_votes > 0
else 0
)
against_percentage = (
(vote_result.votes_against / total_votes * 100)
if total_votes > 0
else 0
)
abstentions_percentage = (
(vote_result.abstentions / total_votes * 100)
if total_votes > 0
else 0
)
print(f"Vote Results:")
print("Vote Results:")
print(f" Total Votes: {total_votes}")
print(f" In Favor: {vote_result.votes_for} ({in_favor_percentage:.1f}%)")
print(f" Against: {vote_result.votes_against} ({against_percentage:.1f}%)")
print(f" Abstentions: {vote_result.abstentions} ({abstentions_percentage:.1f}%)")
print(
f" In Favor: {vote_result.votes_for} ({in_favor_percentage:.1f}%)"
)
print(
f" Against: {vote_result.votes_against} ({against_percentage:.1f}%)"
)
print(
f" Abstentions: {vote_result.abstentions} ({abstentions_percentage:.1f}%)"
)
print(f" Result: {vote_result.result.value}")
# Show political group breakdown if available
if hasattr(vote_result, 'group_votes') and vote_result.group_votes:
print(f"\nPOLITICAL GROUP BREAKDOWN:")
if (
hasattr(vote_result, "group_votes")
and vote_result.group_votes
):
print("\nPOLITICAL GROUP BREAKDOWN:")
for group, votes in vote_result.group_votes.items():
print(f" {group}: {votes['in_favor']}/{votes['total']} in favor ({votes['percentage']:.1f}%)")
print(
f" {group}: {votes['in_favor']}/{votes['total']} in favor ({votes['percentage']:.1f}%)"
)
else:
print(f"\nIndividual votes recorded: {len(vote_result.individual_votes)} MEPs")
print(
f"\nIndividual votes recorded: {len(vote_result.individual_votes)} MEPs"
)
def demonstrate_complete_democratic_session(parliament):
@ -228,15 +283,21 @@ def demonstrate_complete_democratic_session(parliament):
bill_description="Comprehensive legislation to promote innovation, support technology startups, and establish Europe as a global leader in digital transformation and technological advancement.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Industry, Research and Energy",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Session Results:")
print("Session Results:")
print(f" Bill: {session_result['bill'].title}")
print(f" Committee Hearing: {session_result['hearing']['recommendations']['recommendation']}")
print(f" Debate Participants: {len(session_result['debate']['participants'])} MEPs")
print(
f" Committee Hearing: {session_result['hearing']['recommendations']['recommendation']}"
)
print(
f" Debate Participants: {len(session_result['debate']['participants'])} MEPs"
)
print(f" Final Vote: {session_result['vote']['result']}")
print(f" Vote Margin: {session_result['vote']['in_favor_percentage']:.1f}% in favor")
print(
f" Vote Margin: {session_result['vote']['in_favor_percentage']:.1f}% in favor"
)
def demonstrate_political_analysis(parliament):
@ -254,7 +315,7 @@ def demonstrate_political_analysis(parliament):
description="Comprehensive climate action legislation including carbon pricing, renewable energy targets, and sustainable development measures.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Environment, Public Health and Food Safety",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Bill: {bill.title}")
@ -263,14 +324,16 @@ def demonstrate_political_analysis(parliament):
# Analyze political landscape
analysis = parliament.analyze_political_landscape(bill)
print(f"\nPOLITICAL LANDSCAPE ANALYSIS:")
print("\nPOLITICAL LANDSCAPE ANALYSIS:")
print(f" Overall Support: {analysis['overall_support']:.1f}%")
print(f" Opposition: {analysis['opposition']:.1f}%")
print(f" Uncertainty: {analysis['uncertainty']:.1f}%")
print(f"\nPOLITICAL GROUP ANALYSIS:")
for group, data in analysis['group_analysis'].items():
print(f" {group}: {data['support']:.1f}% support, {data['opposition']:.1f}% opposition")
print("\nPOLITICAL GROUP ANALYSIS:")
for group, data in analysis["group_analysis"].items():
print(
f" {group}: {data['support']:.1f}% support, {data['opposition']:.1f}% opposition"
)
def demonstrate_hierarchical_democratic_voting(parliament):
@ -288,25 +351,35 @@ def demonstrate_hierarchical_democratic_voting(parliament):
description="Comprehensive climate action legislation including carbon pricing, renewable energy targets, and sustainable development measures.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Environment, Public Health and Food Safety",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Bill: {bill.title}")
print(f"Sponsor: {bill.sponsor}")
# Conduct hierarchical vote
print(f"\nCONDUCTING HIERARCHICAL DEMOCRATIC VOTE...")
hierarchical_result = parliament.conduct_hierarchical_democratic_vote(bill)
print("\nCONDUCTING HIERARCHICAL DEMOCRATIC VOTE...")
hierarchical_result = (
parliament.conduct_hierarchical_democratic_vote(bill)
)
print(f"Hierarchical Vote Results:")
print("Hierarchical Vote Results:")
print(f" Total Votes: {hierarchical_result['total_votes']}")
print(f" In Favor: {hierarchical_result['in_favor']} ({hierarchical_result['in_favor_percentage']:.1f}%)")
print(f" Against: {hierarchical_result['against']} ({hierarchical_result['against_percentage']:.1f}%)")
print(
f" In Favor: {hierarchical_result['in_favor']} ({hierarchical_result['in_favor_percentage']:.1f}%)"
)
print(
f" Against: {hierarchical_result['against']} ({hierarchical_result['against_percentage']:.1f}%)"
)
print(f" Result: {hierarchical_result['result']}")
print(f"\nPOLITICAL GROUP BOARD DECISIONS:")
for group, decision in hierarchical_result['group_decisions'].items():
print(f" {group}: {decision['decision']} ({decision['confidence']:.1f}% confidence)")
print("\nPOLITICAL GROUP BOARD DECISIONS:")
for group, decision in hierarchical_result[
"group_decisions"
].items():
print(
f" {group}: {decision['decision']} ({decision['confidence']:.1f}% confidence)"
)
def demonstrate_complete_hierarchical_session(parliament):
@ -324,15 +397,21 @@ def demonstrate_complete_hierarchical_session(parliament):
bill_description="Comprehensive climate action legislation including carbon pricing, renewable energy targets, and sustainable development measures.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Environment, Public Health and Food Safety",
sponsor=sponsor
sponsor=sponsor,
)
print(f"Hierarchical Session Results:")
print("Hierarchical Session Results:")
print(f" Bill: {session_result['bill'].title}")
print(f" Committee Hearing: {session_result['hearing']['recommendations']['recommendation']}")
print(f" Debate Participants: {len(session_result['debate']['participants'])} MEPs")
print(
f" Committee Hearing: {session_result['hearing']['recommendations']['recommendation']}"
)
print(
f" Debate Participants: {len(session_result['debate']['participants'])} MEPs"
)
print(f" Final Vote: {session_result['vote']['result']}")
print(f" Vote Margin: {session_result['vote']['in_favor_percentage']:.1f}% in favor")
print(
f" Vote Margin: {session_result['vote']['in_favor_percentage']:.1f}% in favor"
)
def demonstrate_wikipedia_personalities(parliament):
@ -344,14 +423,18 @@ def demonstrate_wikipedia_personalities(parliament):
# Check if Wikipedia personalities are available
if not parliament.enable_wikipedia_personalities:
print("Wikipedia personality system not available")
print("To enable: Install required dependencies and run Wikipedia scraper")
print(
"To enable: Install required dependencies and run Wikipedia scraper"
)
return
print(f"Wikipedia personality system enabled")
print(f"Loaded {len(parliament.personality_profiles)} personality profiles")
print("Wikipedia personality system enabled")
print(
f"Loaded {len(parliament.personality_profiles)} personality profiles"
)
# Show sample personality profiles
print(f"\nSAMPLE PERSONALITY PROFILES:")
print("\nSAMPLE PERSONALITY PROFILES:")
print("-" * 40)
sample_count = 0
@ -360,17 +443,35 @@ def demonstrate_wikipedia_personalities(parliament):
break
print(f"\n{mep_name}")
print(f" Wikipedia URL: {profile.wikipedia_url if profile.wikipedia_url else 'Not available'}")
print(f" Summary: {profile.summary[:200]}..." if profile.summary else "No summary available")
print(f" Political Views: {profile.political_views[:150]}..." if profile.political_views else "Based on party alignment")
print(f" Policy Focus: {profile.policy_focus[:150]}..." if profile.policy_focus else "General parliamentary work")
print(f" Achievements: {profile.achievements[:150]}..." if profile.achievements else "Parliamentary service")
print(
f" Wikipedia URL: {profile.wikipedia_url if profile.wikipedia_url else 'Not available'}"
)
print(
f" Summary: {profile.summary[:200]}..."
if profile.summary
else "No summary available"
)
print(
f" Political Views: {profile.political_views[:150]}..."
if profile.political_views
else "Based on party alignment"
)
print(
f" Policy Focus: {profile.policy_focus[:150]}..."
if profile.policy_focus
else "General parliamentary work"
)
print(
f" Achievements: {profile.achievements[:150]}..."
if profile.achievements
else "Parliamentary service"
)
print(f" Last Updated: {profile.last_updated}")
sample_count += 1
# Demonstrate personality-driven voting
print(f"\nPERSONALITY-DRIVEN VOTING DEMONSTRATION:")
print("\nPERSONALITY-DRIVEN VOTING DEMONSTRATION:")
print("-" * 50)
# Create a test bill that would trigger different personality responses
@ -379,14 +480,14 @@ def demonstrate_wikipedia_personalities(parliament):
description="Comprehensive legislation to accelerate Europe's transition to renewable energy, including massive investments in green technology, carbon pricing mechanisms, and support for affected industries and workers.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Environment",
sponsor="Climate Action Leader"
sponsor="Climate Action Leader",
)
print(f"Bill: {bill.title}")
print(f"Description: {bill.description}")
# Show how different MEPs with Wikipedia personalities would respond
print(f"\nPERSONALITY-BASED RESPONSES:")
print("\nPERSONALITY-BASED RESPONSES:")
print("-" * 40)
sample_meps = list(parliament.personality_profiles.keys())[:3]
@ -400,38 +501,58 @@ def demonstrate_wikipedia_personalities(parliament):
# Show personality influence
if profile.political_views:
print(f" Political Views: {profile.political_views[:100]}...")
print(
f" Political Views: {profile.political_views[:100]}..."
)
if profile.policy_focus:
print(f" Policy Focus: {profile.policy_focus[:100]}...")
print(
f" Policy Focus: {profile.policy_focus[:100]}..."
)
# Predict voting behavior based on personality
if "environment" in profile.policy_focus.lower() or "climate" in profile.political_views.lower():
if (
"environment" in profile.policy_focus.lower()
or "climate" in profile.political_views.lower()
):
predicted_vote = "LIKELY SUPPORT"
reasoning = "Environmental policy focus and climate advocacy"
elif "economic" in profile.policy_focus.lower() or "business" in profile.political_views.lower():
reasoning = (
"Environmental policy focus and climate advocacy"
)
elif (
"economic" in profile.policy_focus.lower()
or "business" in profile.political_views.lower()
):
predicted_vote = "LIKELY OPPOSE"
reasoning = "Economic concerns about investment costs"
else:
predicted_vote = "UNCERTAIN"
reasoning = "Mixed considerations based on party alignment"
reasoning = (
"Mixed considerations based on party alignment"
)
print(f" Predicted Vote: {predicted_vote}")
print(f" Reasoning: {reasoning}")
# Demonstrate scraping functionality
print(f"\nWIKIPEDIA SCRAPING CAPABILITIES:")
print("\nWIKIPEDIA SCRAPING CAPABILITIES:")
print("-" * 50)
print("Can scrape Wikipedia data for all 717 MEPs")
print("Extracts political views, career history, and achievements")
print(
"Extracts political views, career history, and achievements"
)
print("Creates detailed personality profiles in JSON format")
print("Integrates real personality data into AI agent system prompts")
print(
"Integrates real personality data into AI agent system prompts"
)
print("Enables realistic, personality-driven voting behavior")
print("Respectful API usage with configurable delays")
print(f"\nTo scrape all MEP personalities:")
print("\nTo scrape all MEP personalities:")
print(" parliament.scrape_wikipedia_personalities(delay=1.0)")
print(" # This will create personality profiles for all 717 MEPs")
print(
" # This will create personality profiles for all 717 MEPs"
)
print(" # Profiles are saved in 'mep_personalities/' directory")
@ -447,23 +568,33 @@ def demonstrate_optimized_parliamentary_session(parliament):
bill_description="Comprehensive legislation to strengthen digital rights, enhance privacy protection, and establish clear guidelines for data handling across the European Union.",
bill_type=VoteType.ORDINARY_LEGISLATIVE_PROCEDURE,
committee="Legal Affairs",
max_cost=25.0 # Max $25 for this session
max_cost=25.0, # Max $25 for this session
)
print(f"Session Results:")
print(f" Bill: {session_result['session_summary']['bill_title']}")
print(f" Final Outcome: {session_result['session_summary']['final_outcome']}")
print(f" Total Cost: ${session_result['session_summary']['total_cost']:.2f}")
print(f" Budget Remaining: ${session_result['cost_stats']['budget_remaining']:.2f}")
print("Session Results:")
print(
f" Bill: {session_result['session_summary']['bill_title']}"
)
print(
f" Final Outcome: {session_result['session_summary']['final_outcome']}"
)
print(
f" Total Cost: ${session_result['session_summary']['total_cost']:.2f}"
)
print(
f" Budget Remaining: ${session_result['cost_stats']['budget_remaining']:.2f}"
)
# Show detailed cost statistics
cost_stats = parliament.get_cost_statistics()
print(f"\nDETAILED COST STATISTICS:")
print("\nDETAILED COST STATISTICS:")
print(f" Total Tokens Used: {cost_stats['total_tokens']:,}")
print(f" Requests Made: {cost_stats['requests_made']}")
print(f" Cache Hits: {cost_stats['cache_hits']}")
print(f" Cache Hit Rate: {cost_stats['cache_hit_rate']:.1%}")
print(f" Loading Efficiency: {cost_stats['loading_efficiency']:.1%}")
print(
f" Loading Efficiency: {cost_stats['loading_efficiency']:.1%}"
)
print(f" Cache Size: {cost_stats['cache_size']} entries")
return session_result
@ -474,7 +605,9 @@ def main():
print("EUROSWARM PARLIAMENT - COST OPTIMIZED DEMONSTRATION")
print("=" * 60)
print("This demonstration shows the EuroSwarm Parliament with cost optimization features:")
print(
"This demonstration shows the EuroSwarm Parliament with cost optimization features:"
)
print("• Lazy loading of MEP agents (only create when needed)")
print("• Response caching (avoid repeated API calls)")
print("• Batch processing (control memory and cost)")
@ -504,17 +637,25 @@ def main():
# Show final cost statistics
final_stats = parliament.get_cost_statistics()
print(f"\nFINAL COST STATISTICS:")
print("\nFINAL COST STATISTICS:")
print(f"Total Cost: ${final_stats['total_cost']:.2f}")
print(f"Budget Remaining: ${final_stats['budget_remaining']:.2f}")
print(f"Cache Hit Rate: {final_stats['cache_hit_rate']:.1%}")
print(f"Loading Efficiency: {final_stats['loading_efficiency']:.1%}")
print(
f"Loading Efficiency: {final_stats['loading_efficiency']:.1%}"
)
print(f"\n✅ COST OPTIMIZATION DEMONSTRATION COMPLETED!")
print(f"✅ EuroSwarm Parliament now supports cost-effective large-scale simulations")
print(f"✅ Lazy loading: {final_stats['loaded_meps']}/{final_stats['total_meps']} MEPs loaded")
print("\n✅ COST OPTIMIZATION DEMONSTRATION COMPLETED!")
print(
"✅ EuroSwarm Parliament now supports cost-effective large-scale simulations"
)
print(
f"✅ Lazy loading: {final_stats['loaded_meps']}/{final_stats['total_meps']} MEPs loaded"
)
print(f"✅ Caching: {final_stats['cache_hit_rate']:.1%} hit rate")
print(f"✅ Budget control: ${final_stats['total_cost']:.2f} spent of ${final_stats['budget_remaining'] + final_stats['total_cost']:.2f} budget")
print(
f"✅ Budget control: ${final_stats['total_cost']:.2f} spent of ${final_stats['budget_remaining'] + final_stats['total_cost']:.2f} budget"
)
if __name__ == "__main__":

@ -17,13 +17,10 @@ Key Features:
import os
import random
import json
import time
import hashlib
from typing import Dict, List, Optional, Union, Any, Set
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
from functools import lru_cache
from swarms import Agent
from swarms.structs.multi_agent_exec import run_agents_concurrently
@ -31,10 +28,6 @@ from swarms.structs.board_of_directors_swarm import (
BoardOfDirectorsSwarm,
BoardMember,
BoardMemberRole,
BoardDecisionType,
BoardSpec,
BoardOrder,
BoardDecision,
enable_board_feature,
)
from swarms.utils.loguru_logger import initialize_logger
@ -136,7 +129,9 @@ class CostTracker:
def add_tokens(self, tokens: int):
"""Add tokens used and calculate cost."""
self.total_tokens_used += tokens
self.total_cost_estimate = (self.total_tokens_used / 1_000_000) * self.token_cost_per_1m
self.total_cost_estimate = (
self.total_tokens_used / 1_000_000
) * self.token_cost_per_1m
self.requests_made += 1
def add_cache_hit(self):
@ -154,8 +149,11 @@ class CostTracker:
"total_cost": self.total_cost_estimate,
"requests_made": self.requests_made,
"cache_hits": self.cache_hits,
"cache_hit_rate": self.cache_hits / max(1, self.requests_made + self.cache_hits),
"budget_remaining": max(0, self.budget_limit - self.total_cost_estimate)
"cache_hit_rate": self.cache_hits
/ max(1, self.requests_made + self.cache_hits),
"budget_remaining": max(
0, self.budget_limit - self.total_cost_estimate
),
}
@ -195,7 +193,9 @@ class MassAgentTemplate:
"""
self.data_source = data_source
self.agent_count = agent_count
self.enable_hierarchical_organization = enable_hierarchical_organization
self.enable_hierarchical_organization = (
enable_hierarchical_organization
)
self.enable_group_swarms = enable_group_swarms
self.enable_lazy_loading = enable_lazy_loading
self.enable_caching = enable_caching
@ -220,9 +220,15 @@ class MassAgentTemplate:
self._organize_agents()
if self.verbose:
logger.info(f"Mass Agent Template initialized with {len(self.agents)} agent profiles")
logger.info(f"Lazy loading: {self.enable_lazy_loading}, Caching: {self.enable_caching}")
logger.info(f"Budget limit: ${budget_limit}, Batch size: {batch_size}")
logger.info(
f"Mass Agent Template initialized with {len(self.agents)} agent profiles"
)
logger.info(
f"Lazy loading: {self.enable_lazy_loading}, Caching: {self.enable_caching}"
)
logger.info(
f"Budget limit: ${budget_limit}, Batch size: {batch_size}"
)
def _load_agent_profiles(self) -> List[Dict[str, Any]]:
"""
@ -238,15 +244,20 @@ class MassAgentTemplate:
if self.data_source and os.path.exists(self.data_source):
# Load from file - customize based on your data format
try:
if self.data_source.endswith('.json'):
with open(self.data_source, 'r', encoding='utf-8') as f:
if self.data_source.endswith(".json"):
with open(
self.data_source, "r", encoding="utf-8"
) as f:
agent_data = json.load(f)
elif self.data_source.endswith('.csv'):
elif self.data_source.endswith(".csv"):
import pandas as pd
df = pd.read_csv(self.data_source)
agent_data = df.to_dict('records')
agent_data = df.to_dict("records")
else:
logger.warning(f"Unsupported data format: {self.data_source}")
logger.warning(
f"Unsupported data format: {self.data_source}"
)
except Exception as e:
logger.error(f"Error loading agent data: {e}")
@ -265,7 +276,7 @@ class MassAgentTemplate:
skills=data["skills"],
experience_level=data["experience_level"],
agent=None, # Will be created on demand
is_loaded=False
is_loaded=False,
)
self.agents[data["name"]] = agent_profile
@ -300,7 +311,9 @@ class MassAgentTemplate:
return profile.agent
def _load_agents_batch(self, agent_names: List[str]) -> List[Agent]:
def _load_agents_batch(
self, agent_names: List[str]
) -> List[Agent]:
"""
Load multiple agents in a batch.
@ -319,7 +332,9 @@ class MassAgentTemplate:
return loaded_agents
def _get_cache_key(self, task: str, agent_names: List[str]) -> str:
def _get_cache_key(
self, task: str, agent_names: List[str]
) -> str:
"""
Generate a cache key for a task and agent combination.
@ -367,7 +382,9 @@ class MassAgentTemplate:
if self.enable_caching:
self.response_cache[cache_key] = response
if self.verbose:
logger.info(f"Cached response for key: {cache_key[:20]}...")
logger.info(
f"Cached response for key: {cache_key[:20]}..."
)
def _generate_synthetic_data(self) -> List[Dict[str, Any]]:
"""
@ -384,47 +401,107 @@ class MassAgentTemplate:
"name": "Alex_Developer",
"role": AgentRole.SPECIALIST,
"category": AgentCategory.TECHNICAL,
"specialization": ["Python", "Machine Learning", "API Development"],
"personality_traits": ["analytical", "detail-oriented", "problem-solver"],
"skills": ["Python", "TensorFlow", "FastAPI", "Docker"],
"experience_level": "senior"
"specialization": [
"Python",
"Machine Learning",
"API Development",
],
"personality_traits": [
"analytical",
"detail-oriented",
"problem-solver",
],
"skills": [
"Python",
"TensorFlow",
"FastAPI",
"Docker",
],
"experience_level": "senior",
},
{
"name": "Sarah_Designer",
"role": AgentRole.CREATOR,
"category": AgentCategory.CREATIVE,
"specialization": ["UI/UX Design", "Visual Design", "Brand Identity"],
"personality_traits": ["creative", "user-focused", "aesthetic"],
"skills": ["Figma", "Adobe Creative Suite", "User Research", "Prototyping"],
"experience_level": "senior"
"specialization": [
"UI/UX Design",
"Visual Design",
"Brand Identity",
],
"personality_traits": [
"creative",
"user-focused",
"aesthetic",
],
"skills": [
"Figma",
"Adobe Creative Suite",
"User Research",
"Prototyping",
],
"experience_level": "senior",
},
{
"name": "Mike_Analyst",
"role": AgentRole.ANALYST,
"category": AgentCategory.ANALYTICAL,
"specialization": ["Data Analysis", "Business Intelligence", "Market Research"],
"personality_traits": ["data-driven", "curious", "insightful"],
"specialization": [
"Data Analysis",
"Business Intelligence",
"Market Research",
],
"personality_traits": [
"data-driven",
"curious",
"insightful",
],
"skills": ["SQL", "Python", "Tableau", "Statistics"],
"experience_level": "expert"
"experience_level": "expert",
},
{
"name": "Lisa_Manager",
"role": AgentRole.MANAGER,
"category": AgentCategory.STRATEGIC,
"specialization": ["Project Management", "Team Leadership", "Strategic Planning"],
"personality_traits": ["organized", "leadership", "strategic"],
"skills": ["Agile", "Scrum", "Risk Management", "Stakeholder Communication"],
"experience_level": "senior"
"specialization": [
"Project Management",
"Team Leadership",
"Strategic Planning",
],
"personality_traits": [
"organized",
"leadership",
"strategic",
],
"skills": [
"Agile",
"Scrum",
"Risk Management",
"Stakeholder Communication",
],
"experience_level": "senior",
},
{
"name": "Tom_Coordinator",
"role": AgentRole.COORDINATOR,
"category": AgentCategory.OPERATIONAL,
"specialization": ["Process Optimization", "Workflow Management", "Resource Allocation"],
"personality_traits": ["efficient", "coordinated", "systematic"],
"skills": ["Process Mapping", "Automation", "Resource Planning", "Quality Assurance"],
"experience_level": "senior"
}
"specialization": [
"Process Optimization",
"Workflow Management",
"Resource Allocation",
],
"personality_traits": [
"efficient",
"coordinated",
"systematic",
],
"skills": [
"Process Mapping",
"Automation",
"Resource Planning",
"Quality Assurance",
],
"experience_level": "senior",
},
]
# Generate the specified number of agents
@ -437,14 +514,18 @@ class MassAgentTemplate:
"role": template["role"],
"category": template["category"],
"specialization": template["specialization"].copy(),
"personality_traits": template["personality_traits"].copy(),
"personality_traits": template[
"personality_traits"
].copy(),
"skills": template["skills"].copy(),
"experience_level": template["experience_level"]
"experience_level": template["experience_level"],
}
# Add some randomization for variety
if random.random() < 0.3:
agent_data["experience_level"] = random.choice(["junior", "senior", "expert"])
agent_data["experience_level"] = random.choice(
["junior", "senior", "expert"]
)
synthetic_data.append(agent_data)
@ -470,7 +551,9 @@ class MassAgentTemplate:
verbose=self.verbose,
)
def _generate_agent_system_prompt(self, profile: AgentProfile) -> str:
def _generate_agent_system_prompt(
self, profile: AgentProfile
) -> str:
"""
Generate a comprehensive system prompt for an agent.
@ -526,58 +609,54 @@ Remember: You are part of a large multi-agent system. Your unique combination of
- Report progress and any issues encountered
- Maintain quality standards in all work
- Collaborate with team members as needed""",
AgentRole.MANAGER: """
- Oversee team activities and coordinate efforts
- Set priorities and allocate resources
- Monitor progress and ensure deadlines are met
- Provide guidance and support to team members
- Make strategic decisions for the team""",
AgentRole.SPECIALIST: """
- Provide expert knowledge in specific domains
- Solve complex technical problems
- Mentor other agents in your area of expertise
- Stay updated on latest developments in your field
- Contribute specialized insights to projects""",
AgentRole.COORDINATOR: """
- Facilitate communication between different groups
- Ensure smooth workflow and process optimization
- Manage dependencies and resource allocation
- Track project timelines and milestones
- Resolve conflicts and bottlenecks""",
AgentRole.ANALYST: """
- Analyze data and extract meaningful insights
- Identify patterns and trends
- Provide evidence-based recommendations
- Create reports and visualizations
- Support decision-making with data""",
AgentRole.CREATOR: """
- Generate innovative ideas and solutions
- Design and develop new content or products
- Think creatively and outside the box
- Prototype and iterate on concepts
- Inspire and motivate other team members""",
AgentRole.VALIDATOR: """
- Review and validate work quality
- Ensure compliance with standards and requirements
- Provide constructive feedback
- Identify potential issues and risks
- Maintain quality assurance processes""",
AgentRole.EXECUTOR: """
- Implement plans and strategies
- Execute tasks with precision and efficiency
- Adapt to changing circumstances
- Ensure successful completion of objectives
- Maintain focus on results and outcomes"""
- Maintain focus on results and outcomes""",
}
return responsibilities.get(role, "Execute tasks according to your role and expertise.")
return responsibilities.get(
role,
"Execute tasks according to your role and expertise.",
)
def _organize_agents(self):
"""Organize agents into groups and categories."""
@ -601,13 +680,15 @@ Remember: You are part of a large multi-agent system. Your unique combination of
category=category,
agents=agent_names,
leader=leader,
total_agents=len(agent_names)
total_agents=len(agent_names),
)
self.groups[group_name] = group
if self.verbose:
logger.info(f"Organized agents into {len(self.groups)} groups")
logger.info(
f"Organized agents into {len(self.groups)} groups"
)
def _create_group_swarms(self):
"""Create Board of Directors swarms for each group."""
@ -623,28 +704,41 @@ Remember: You are part of a large multi-agent system. Your unique combination of
if group.leader and group.leader in self.agents:
leader_profile = self.agents[group.leader]
if leader_profile.agent:
board_members.append(BoardMember(
agent=leader_profile.agent,
role=BoardMemberRole.CHAIRMAN,
voting_weight=1.0,
expertise_areas=leader_profile.specialization
))
board_members.append(
BoardMember(
agent=leader_profile.agent,
role=BoardMemberRole.CHAIRMAN,
voting_weight=1.0,
expertise_areas=leader_profile.specialization,
)
)
# Add other agents as board members
for agent_name in group.agents[:5]: # Limit to 5 board members
if agent_name != group.leader and agent_name in self.agents:
for agent_name in group.agents[
:5
]: # Limit to 5 board members
if (
agent_name != group.leader
and agent_name in self.agents
):
profile = self.agents[agent_name]
if profile.agent:
board_members.append(BoardMember(
agent=profile.agent,
role=BoardMemberRole.EXECUTIVE_DIRECTOR,
voting_weight=0.8,
expertise_areas=profile.specialization
))
board_members.append(
BoardMember(
agent=profile.agent,
role=BoardMemberRole.EXECUTIVE_DIRECTOR,
voting_weight=0.8,
expertise_areas=profile.specialization,
)
)
# Create Board of Directors swarm
if board_members:
agents = [member.agent for member in board_members if member.agent is not None]
agents = [
member.agent
for member in board_members
if member.agent is not None
]
group.group_swarm = BoardOfDirectorsSwarm(
name=group_name,
@ -655,11 +749,13 @@ Remember: You are part of a large multi-agent system. Your unique combination of
verbose=self.verbose,
decision_threshold=0.6,
enable_voting=True,
enable_consensus=True
enable_consensus=True,
)
if self.verbose:
logger.info(f"Created {len([g for g in self.groups.values() if g.group_swarm])} group swarms")
logger.info(
f"Created {len([g for g in self.groups.values() if g.group_swarm])} group swarms"
)
def get_agent(self, agent_name: str) -> Optional[AgentProfile]:
"""
@ -685,7 +781,9 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"""
return self.groups.get(group_name)
def get_agents_by_category(self, category: AgentCategory) -> List[str]:
def get_agents_by_category(
self, category: AgentCategory
) -> List[str]:
"""
Get all agents in a specific category.
@ -707,9 +805,15 @@ Remember: You are part of a large multi-agent system. Your unique combination of
Returns:
List[str]: List of agent names with the role
"""
return [name for name, profile in self.agents.items() if profile.role == role]
return [
name
for name, profile in self.agents.items()
if profile.role == role
]
def run_mass_task(self, task: str, agent_count: int = 10) -> Dict[str, Any]:
def run_mass_task(
self, task: str, agent_count: int = 10
) -> Dict[str, Any]:
"""
Run a task with multiple agents working in parallel with cost optimization.
@ -722,10 +826,16 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"""
# Check budget before starting
if not self.cost_tracker.check_budget():
return {"error": "Budget exceeded", "cost_stats": self.cost_tracker.get_stats()}
return {
"error": "Budget exceeded",
"cost_stats": self.cost_tracker.get_stats(),
}
# Select random agents
selected_agent_names = random.sample(list(self.agents.keys()), min(agent_count, len(self.agents)))
selected_agent_names = random.sample(
list(self.agents.keys()),
min(agent_count, len(self.agents)),
)
# Check cache first
cache_key = self._get_cache_key(task, selected_agent_names)
@ -737,7 +847,7 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"results": cached_result,
"total_agents": len(selected_agent_names),
"cached": True,
"cost_stats": self.cost_tracker.get_stats()
"cost_stats": self.cost_tracker.get_stats(),
}
# Process in batches to control memory and cost
@ -745,12 +855,18 @@ Remember: You are part of a large multi-agent system. Your unique combination of
total_processed = 0
for i in range(0, len(selected_agent_names), self.batch_size):
batch_names = selected_agent_names[i:i + self.batch_size]
batch_names = selected_agent_names[
i : i + self.batch_size
]
# Check budget for this batch
if not self.cost_tracker.check_budget():
logger.warning(f"Budget exceeded after processing {total_processed} agents")
logger.warning(f"Current cost: ${self.cost_tracker.total_cost_estimate:.4f}, Budget: ${self.cost_tracker.budget_limit:.2f}")
logger.warning(
f"Budget exceeded after processing {total_processed} agents"
)
logger.warning(
f"Current cost: ${self.cost_tracker.total_cost_estimate:.4f}, Budget: ${self.cost_tracker.budget_limit:.2f}"
)
break
# Load agents for this batch
@ -761,20 +877,30 @@ Remember: You are part of a large multi-agent system. Your unique combination of
# Run batch
try:
batch_results = run_agents_concurrently(batch_agents, task)
batch_results = run_agents_concurrently(
batch_agents, task
)
all_results.extend(batch_results)
total_processed += len(batch_agents)
# Estimate tokens used (more realistic approximation)
# Include both input tokens (task) and output tokens (response)
task_tokens = len(task.split()) * 1.3 # ~1.3 tokens per word
response_tokens = len(batch_agents) * 200 # ~200 tokens per response
task_tokens = (
len(task.split()) * 1.3
) # ~1.3 tokens per word
response_tokens = (
len(batch_agents) * 200
) # ~200 tokens per response
total_tokens = int(task_tokens + response_tokens)
self.cost_tracker.add_tokens(total_tokens)
if self.verbose:
logger.info(f"Processed batch {i//self.batch_size + 1}: {len(batch_agents)} agents")
logger.info(f"Current cost: ${self.cost_tracker.total_cost_estimate:.4f}, Budget remaining: ${self.cost_tracker.budget_limit - self.cost_tracker.total_cost_estimate:.2f}")
logger.info(
f"Processed batch {i//self.batch_size + 1}: {len(batch_agents)} agents"
)
logger.info(
f"Current cost: ${self.cost_tracker.total_cost_estimate:.4f}, Budget remaining: ${self.cost_tracker.budget_limit - self.cost_tracker.total_cost_estimate:.2f}"
)
except Exception as e:
logger.error(f"Error processing batch: {e}")
@ -790,11 +916,15 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"results": all_results,
"total_agents": total_processed,
"cached": False,
"cost_stats": self.cost_tracker.get_stats()
"cost_stats": self.cost_tracker.get_stats(),
}
def run_mass_task_optimized(self, task: str, agent_count: int = 1000,
max_cost: float = 10.0) -> Dict[str, Any]:
def run_mass_task_optimized(
self,
task: str,
agent_count: int = 1000,
max_cost: float = 10.0,
) -> Dict[str, Any]:
"""
Run a task with cost-optimized mass execution for large-scale operations.
@ -816,7 +946,9 @@ Remember: You are part of a large multi-agent system. Your unique combination of
self.cost_tracker.budget_limit = max_cost
# Use smaller batches for better cost control
self.batch_size = min(25, self.batch_size) # Smaller batches for cost control
self.batch_size = min(
25, self.batch_size
) # Smaller batches for cost control
result = self.run_mass_task(task, agent_count)
@ -827,7 +959,9 @@ Remember: You are part of a large multi-agent system. Your unique combination of
self.cost_tracker.budget_limit = original_budget
self.batch_size = original_batch_size
def run_group_task(self, group_name: str, task: str) -> Dict[str, Any]:
def run_group_task(
self, group_name: str, task: str
) -> Dict[str, Any]:
"""
Run a task with a specific group using their Board of Directors swarm.
@ -840,7 +974,9 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"""
group = self.groups.get(group_name)
if not group or not group.group_swarm:
return {"error": f"Group {group_name} not found or no swarm available"}
return {
"error": f"Group {group_name} not found or no swarm available"
}
# Run task with group swarm
result = group.group_swarm.run(task)
@ -849,7 +985,7 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"group": group_name,
"task": task,
"result": result,
"agents_involved": group.agents
"agents_involved": group.agents,
}
def get_system_stats(self) -> Dict[str, Any]:
@ -862,7 +998,9 @@ Remember: You are part of a large multi-agent system. Your unique combination of
stats = {
"total_agents": len(self.agents),
"total_groups": len(self.groups),
"loaded_agents": len([a for a in self.agents.values() if a.is_loaded]),
"loaded_agents": len(
[a for a in self.agents.values() if a.is_loaded]
),
"categories": {},
"roles": {},
"experience_levels": {},
@ -871,23 +1009,29 @@ Remember: You are part of a large multi-agent system. Your unique combination of
"lazy_loading": self.enable_lazy_loading,
"caching": self.enable_caching,
"batch_size": self.batch_size,
"budget_limit": self.cost_tracker.budget_limit
}
"budget_limit": self.cost_tracker.budget_limit,
},
}
# Category breakdown
for category in AgentCategory:
stats["categories"][category.value] = len(self.get_agents_by_category(category))
stats["categories"][category.value] = len(
self.get_agents_by_category(category)
)
# Role breakdown
for role in AgentRole:
stats["roles"][role.value] = len(self.get_agents_by_role(role))
stats["roles"][role.value] = len(
self.get_agents_by_role(role)
)
# Experience level breakdown
experience_counts = {}
for profile in self.agents.values():
level = profile.experience_level
experience_counts[level] = experience_counts.get(level, 0) + 1
experience_counts[level] = (
experience_counts.get(level, 0) + 1
)
stats["experience_levels"] = experience_counts
return stats
@ -909,89 +1053,113 @@ def demonstrate_mass_agent_template():
enable_caching=True,
batch_size=25,
budget_limit=50.0, # $50 budget limit
verbose=True
verbose=True,
)
# Show system statistics
stats = template.get_system_stats()
print(f"\nSYSTEM STATISTICS:")
print("\nSYSTEM STATISTICS:")
print(f"Total Agents: {stats['total_agents']}")
print(f"Loaded Agents: {stats['loaded_agents']} (lazy loading active)")
print(
f"Loaded Agents: {stats['loaded_agents']} (lazy loading active)"
)
print(f"Total Groups: {stats['total_groups']}")
print(f"\nCOST OPTIMIZATION:")
cost_stats = stats['cost_stats']
print(f"Budget Limit: ${cost_stats['budget_remaining'] + cost_stats['total_cost']:.2f}")
print("\nCOST OPTIMIZATION:")
cost_stats = stats["cost_stats"]
print(
f"Budget Limit: ${cost_stats['budget_remaining'] + cost_stats['total_cost']:.2f}"
)
print(f"Budget Used: ${cost_stats['total_cost']:.2f}")
print(f"Budget Remaining: ${cost_stats['budget_remaining']:.2f}")
print(f"Cache Hit Rate: {cost_stats['cache_hit_rate']:.1%}")
print(f"\nCATEGORY BREAKDOWN:")
for category, count in stats['categories'].items():
print("\nCATEGORY BREAKDOWN:")
for category, count in stats["categories"].items():
print(f" {category}: {count} agents")
print(f"\nROLE BREAKDOWN:")
for role, count in stats['roles'].items():
print("\nROLE BREAKDOWN:")
for role, count in stats["roles"].items():
print(f" {role}: {count} agents")
print(f"\nEXPERIENCE LEVEL BREAKDOWN:")
for level, count in stats['experience_levels'].items():
print("\nEXPERIENCE LEVEL BREAKDOWN:")
for level, count in stats["experience_levels"].items():
print(f" {level}: {count} agents")
# Demonstrate cost-optimized mass task execution
print(f"\nCOST-OPTIMIZED MASS TASK DEMONSTRATION:")
print("\nCOST-OPTIMIZED MASS TASK DEMONSTRATION:")
print("-" * 40)
# Small task first (low cost)
small_result = template.run_mass_task(
"What is the most important skill for a software developer?",
agent_count=5
agent_count=5,
)
print(f"Small Task Results:")
print("Small Task Results:")
print(f" Agents Used: {len(small_result['agents_used'])}")
print(f" Cached: {small_result.get('cached', False)}")
print(f" Cost: ${small_result['cost_stats']['total_cost']:.2f}")
# Large task to demonstrate full capability
print(f"\nLarge Task Demonstration (Full Capability):")
print("\nLarge Task Demonstration (Full Capability):")
large_result = template.run_mass_task(
"Analyze the benefits of cloud computing for small businesses",
agent_count=200 # Use more agents to show capability
agent_count=200, # Use more agents to show capability
)
print(f" Agents Used: {len(large_result['agents_used'])}")
print(f" Cached: {large_result.get('cached', False)}")
print(f" Cost: ${large_result['cost_stats']['total_cost']:.2f}")
print(f" Budget Remaining: ${large_result['cost_stats']['budget_remaining']:.2f}")
print(
f" Budget Remaining: ${large_result['cost_stats']['budget_remaining']:.2f}"
)
# Show what happens with cost limits
print(f"\nCost-Limited Task Demonstration:")
print("\nCost-Limited Task Demonstration:")
cost_limited_result = template.run_mass_task_optimized(
"What are the key principles of agile development?",
agent_count=100,
max_cost=2.0 # Show cost limiting in action
max_cost=2.0, # Show cost limiting in action
)
print(f" Agents Used: {len(cost_limited_result['agents_used'])}")
print(f" Cached: {cost_limited_result.get('cached', False)}")
print(f" Cost: ${cost_limited_result['cost_stats']['total_cost']:.2f}")
print(f" Budget Remaining: ${cost_limited_result['cost_stats']['budget_remaining']:.2f}")
print(
f" Cost: ${cost_limited_result['cost_stats']['total_cost']:.2f}"
)
print(
f" Budget Remaining: ${cost_limited_result['cost_stats']['budget_remaining']:.2f}"
)
# Show final cost statistics
final_stats = template.get_system_stats()
print(f"\nFINAL COST STATISTICS:")
print(f"Total Cost: ${final_stats['cost_stats']['total_cost']:.2f}")
print(f"Budget Remaining: ${final_stats['cost_stats']['budget_remaining']:.2f}")
print(f"Cache Hit Rate: {final_stats['cost_stats']['cache_hit_rate']:.1%}")
print(f"Total Requests: {final_stats['cost_stats']['requests_made']}")
print("\nFINAL COST STATISTICS:")
print(
f"Total Cost: ${final_stats['cost_stats']['total_cost']:.2f}"
)
print(
f"Budget Remaining: ${final_stats['cost_stats']['budget_remaining']:.2f}"
)
print(
f"Cache Hit Rate: {final_stats['cost_stats']['cache_hit_rate']:.1%}"
)
print(
f"Total Requests: {final_stats['cost_stats']['requests_made']}"
)
print(f"Cache Hits: {final_stats['cost_stats']['cache_hits']}")
print(f"\nDEMONSTRATION COMPLETED SUCCESSFULLY!")
print(f"✅ Cost optimization working: ${final_stats['cost_stats']['total_cost']:.2f} spent")
print(f"✅ Lazy loading working: {final_stats['loaded_agents']}/{final_stats['total_agents']} agents loaded")
print(f"✅ Caching working: {final_stats['cost_stats']['cache_hit_rate']:.1%} hit rate")
print("\nDEMONSTRATION COMPLETED SUCCESSFULLY!")
print(
f"✅ Cost optimization working: ${final_stats['cost_stats']['total_cost']:.2f} spent"
)
print(
f"✅ Lazy loading working: {final_stats['loaded_agents']}/{final_stats['total_agents']} agents loaded"
)
print(
f"✅ Caching working: {final_stats['cost_stats']['cache_hit_rate']:.1%} hit rate"
)
if __name__ == "__main__":

@ -5,8 +5,11 @@ Test script to verify mass agent template can process more than 500 agents.
from mass_agent_template import MassAgentTemplate
def test_mass_agents():
print("Testing Mass Agent Template - Processing More Than 50 Agents")
print(
"Testing Mass Agent Template - Processing More Than 50 Agents"
)
print("=" * 60)
# Initialize template with 200 agents
@ -14,48 +17,57 @@ def test_mass_agents():
agent_count=200,
budget_limit=50.0,
batch_size=25,
verbose=True
verbose=True,
)
print(f"Initialized with {len(template.agents)} agents")
print(f"Budget limit: ${template.cost_tracker.budget_limit}")
# Test processing 100 agents
print(f"\nTesting with 100 agents...")
print("\nTesting with 100 agents...")
result = template.run_mass_task(
"What is the most important skill for your role?",
agent_count=100
agent_count=100,
)
print(f"Results:")
print("Results:")
print(f" Agents processed: {len(result['agents_used'])}")
print(f" Cost: ${result['cost_stats']['total_cost']:.4f}")
print(f" Budget remaining: ${result['cost_stats']['budget_remaining']:.2f}")
print(
f" Budget remaining: ${result['cost_stats']['budget_remaining']:.2f}"
)
print(f" Cached: {result.get('cached', False)}")
# Test processing 150 agents
print(f"\nTesting with 150 agents...")
print("\nTesting with 150 agents...")
result2 = template.run_mass_task(
"Describe your approach to problem-solving",
agent_count=150
"Describe your approach to problem-solving", agent_count=150
)
print(f"Results:")
print("Results:")
print(f" Agents processed: {len(result2['agents_used'])}")
print(f" Cost: ${result2['cost_stats']['total_cost']:.4f}")
print(f" Budget remaining: ${result2['cost_stats']['budget_remaining']:.2f}")
print(
f" Budget remaining: ${result2['cost_stats']['budget_remaining']:.2f}"
)
print(f" Cached: {result2.get('cached', False)}")
# Show final stats
final_stats = template.get_system_stats()
print(f"\nFinal Statistics:")
print("\nFinal Statistics:")
print(f" Total agents: {final_stats['total_agents']}")
print(f" Loaded agents: {final_stats['loaded_agents']}")
print(f" Total cost: ${final_stats['cost_stats']['total_cost']:.4f}")
print(f" Budget remaining: ${final_stats['cost_stats']['budget_remaining']:.2f}")
print(
f" Total cost: ${final_stats['cost_stats']['total_cost']:.4f}"
)
print(
f" Budget remaining: ${final_stats['cost_stats']['budget_remaining']:.2f}"
)
# Success criteria
total_processed = len(result['agents_used']) + len(result2['agents_used'])
total_processed = len(result["agents_used"]) + len(
result2["agents_used"]
)
print(f"\nTotal agents processed: {total_processed}")
if total_processed > 50:
@ -63,5 +75,6 @@ def test_mass_agents():
else:
print("❌ FAILURE: Template still limited to 50 agents")
if __name__ == "__main__":
test_mass_agents()

@ -14,7 +14,6 @@ from typing import Dict, List, Optional, Any
from dataclasses import dataclass, asdict
import requests
from loguru import logger
import xml.etree.ElementTree as ET
@dataclass
@ -78,7 +77,11 @@ class WikipediaPersonalityScraper:
Scraper for gathering Wikipedia personality data for MEPs.
"""
def __init__(self, output_dir: str = "mep_personalities", verbose: bool = True):
def __init__(
self,
output_dir: str = "mep_personalities",
verbose: bool = True,
):
"""
Initialize the Wikipedia personality scraper.
@ -89,17 +92,23 @@ class WikipediaPersonalityScraper:
self.output_dir = output_dir
self.verbose = verbose
self.session = requests.Session()
self.session.headers.update({
'User-Agent': 'EuroSwarm Parliament Personality Scraper/1.0 (https://github.com/swarms-democracy)'
})
self.session.headers.update(
{
"User-Agent": "EuroSwarm Parliament Personality Scraper/1.0 (https://github.com/swarms-democracy)"
}
)
# Create output directory
os.makedirs(output_dir, exist_ok=True)
if verbose:
logger.info(f"Wikipedia Personality Scraper initialized. Output directory: {output_dir}")
logger.info(
f"Wikipedia Personality Scraper initialized. Output directory: {output_dir}"
)
def extract_mep_data_from_xml(self, xml_file: str = "EU.xml") -> List[Dict[str, str]]:
def extract_mep_data_from_xml(
self, xml_file: str = "EU.xml"
) -> List[Dict[str, str]]:
"""
Extract MEP data from EU.xml file.
@ -112,31 +121,45 @@ class WikipediaPersonalityScraper:
meps = []
try:
with open(xml_file, 'r', encoding='utf-8') as f:
with open(xml_file, "r", encoding="utf-8") as f:
content = f.read()
# Use regex to extract MEP data
mep_pattern = r'<mep>\s*<fullName>(.*?)</fullName>\s*<country>(.*?)</country>\s*<politicalGroup>(.*?)</politicalGroup>\s*<id>(.*?)</id>\s*<nationalPoliticalGroup>(.*?)</nationalPoliticalGroup>\s*</mep>'
mep_pattern = r"<mep>\s*<fullName>(.*?)</fullName>\s*<country>(.*?)</country>\s*<politicalGroup>(.*?)</politicalGroup>\s*<id>(.*?)</id>\s*<nationalPoliticalGroup>(.*?)</nationalPoliticalGroup>\s*</mep>"
mep_matches = re.findall(mep_pattern, content, re.DOTALL)
for full_name, country, political_group, mep_id, national_party in mep_matches:
meps.append({
'full_name': full_name.strip(),
'country': country.strip(),
'political_group': political_group.strip(),
'mep_id': mep_id.strip(),
'national_party': national_party.strip()
})
for (
full_name,
country,
political_group,
mep_id,
national_party,
) in mep_matches:
meps.append(
{
"full_name": full_name.strip(),
"country": country.strip(),
"political_group": political_group.strip(),
"mep_id": mep_id.strip(),
"national_party": national_party.strip(),
}
)
if self.verbose:
logger.info(f"Extracted {len(meps)} MEPs from {xml_file}")
logger.info(
f"Extracted {len(meps)} MEPs from {xml_file}"
)
except Exception as e:
logger.error(f"Error extracting MEP data from {xml_file}: {e}")
logger.error(
f"Error extracting MEP data from {xml_file}: {e}"
)
return meps
def search_wikipedia_page(self, mep_name: str, country: str) -> Optional[str]:
def search_wikipedia_page(
self, mep_name: str, country: str
) -> Optional[str]:
"""
Search for a Wikipedia page for an MEP.
@ -151,42 +174,50 @@ class WikipediaPersonalityScraper:
# Search for the MEP on Wikipedia
search_url = "https://en.wikipedia.org/w/api.php"
search_params = {
'action': 'query',
'format': 'json',
'list': 'search',
'srsearch': f'"{mep_name}" {country}',
'srlimit': 5,
'srnamespace': 0
"action": "query",
"format": "json",
"list": "search",
"srsearch": f'"{mep_name}" {country}',
"srlimit": 5,
"srnamespace": 0,
}
response = self.session.get(search_url, params=search_params)
response = self.session.get(
search_url, params=search_params
)
response.raise_for_status()
data = response.json()
search_results = data.get('query', {}).get('search', [])
search_results = data.get("query", {}).get("search", [])
if search_results:
# Return the first result
return search_results[0]['title']
return search_results[0]["title"]
# Try alternative search without quotes
search_params['srsearch'] = f'{mep_name} {country}'
response = self.session.get(search_url, params=search_params)
search_params["srsearch"] = f"{mep_name} {country}"
response = self.session.get(
search_url, params=search_params
)
response.raise_for_status()
data = response.json()
search_results = data.get('query', {}).get('search', [])
search_results = data.get("query", {}).get("search", [])
if search_results:
return search_results[0]['title']
return search_results[0]["title"]
except Exception as e:
if self.verbose:
logger.warning(f"Error searching Wikipedia for {mep_name}: {e}")
logger.warning(
f"Error searching Wikipedia for {mep_name}: {e}"
)
return None
def get_wikipedia_content(self, page_title: str) -> Optional[Dict[str, Any]]:
def get_wikipedia_content(
self, page_title: str
) -> Optional[Dict[str, Any]]:
"""
Get Wikipedia content for a specific page.
@ -200,42 +231,51 @@ class WikipediaPersonalityScraper:
# Get page content
content_url = "https://en.wikipedia.org/w/api.php"
content_params = {
'action': 'query',
'format': 'json',
'titles': page_title,
'prop': 'extracts|info|categories',
'exintro': True,
'explaintext': True,
'inprop': 'url',
'cllimit': 50
"action": "query",
"format": "json",
"titles": page_title,
"prop": "extracts|info|categories",
"exintro": True,
"explaintext": True,
"inprop": "url",
"cllimit": 50,
}
response = self.session.get(content_url, params=content_params)
response = self.session.get(
content_url, params=content_params
)
response.raise_for_status()
data = response.json()
pages = data.get('query', {}).get('pages', {})
pages = data.get("query", {}).get("pages", {})
if pages:
page_id = list(pages.keys())[0]
page_data = pages[page_id]
return {
'title': page_data.get('title', ''),
'extract': page_data.get('extract', ''),
'url': page_data.get('fullurl', ''),
'categories': [cat['title'] for cat in page_data.get('categories', [])],
'pageid': page_data.get('pageid', ''),
'length': page_data.get('length', 0)
"title": page_data.get("title", ""),
"extract": page_data.get("extract", ""),
"url": page_data.get("fullurl", ""),
"categories": [
cat["title"]
for cat in page_data.get("categories", [])
],
"pageid": page_data.get("pageid", ""),
"length": page_data.get("length", 0),
}
except Exception as e:
if self.verbose:
logger.warning(f"Error getting Wikipedia content for {page_title}: {e}")
logger.warning(
f"Error getting Wikipedia content for {page_title}: {e}"
)
return None
def parse_wikipedia_content(self, content: str, mep_name: str) -> Dict[str, str]:
def parse_wikipedia_content(
self, content: str, mep_name: str
) -> Dict[str, str]:
"""
Parse Wikipedia content to extract structured personality information.
@ -247,112 +287,136 @@ class WikipediaPersonalityScraper:
Dictionary of parsed personality information
"""
personality_data = {
'summary': '',
'early_life': '',
'political_career': '',
'political_views': '',
'policy_focus': '',
'achievements': '',
'controversies': '',
'personal_life': '',
'education': '',
'professional_background': '',
'party_affiliations': '',
'committee_experience': '',
'voting_record': '',
'public_statements': '',
'interests': '',
'languages': '',
'awards': '',
'publications': '',
'social_media': ''
"summary": "",
"early_life": "",
"political_career": "",
"political_views": "",
"policy_focus": "",
"achievements": "",
"controversies": "",
"personal_life": "",
"education": "",
"professional_background": "",
"party_affiliations": "",
"committee_experience": "",
"voting_record": "",
"public_statements": "",
"interests": "",
"languages": "",
"awards": "",
"publications": "",
"social_media": "",
}
# Extract summary (first paragraph)
paragraphs = content.split('\n\n')
paragraphs = content.split("\n\n")
if paragraphs:
personality_data['summary'] = paragraphs[0][:1000] # Limit summary length
personality_data["summary"] = paragraphs[0][
:1000
] # Limit summary length
# Look for specific sections
content_lower = content.lower()
# Early life and education
early_life_patterns = [
r'early life[^.]*\.',
r'born[^.]*\.',
r'childhood[^.]*\.',
r'grew up[^.]*\.',
r'education[^.]*\.'
r"early life[^.]*\.",
r"born[^.]*\.",
r"childhood[^.]*\.",
r"grew up[^.]*\.",
r"education[^.]*\.",
]
for pattern in early_life_patterns:
matches = re.findall(pattern, content_lower, re.IGNORECASE)
matches = re.findall(
pattern, content_lower, re.IGNORECASE
)
if matches:
personality_data['early_life'] = ' '.join(matches[:3]) # Take first 3 matches
personality_data["early_life"] = " ".join(
matches[:3]
) # Take first 3 matches
break
# Political career
political_patterns = [
r'political career[^.]*\.',
r'elected[^.]*\.',
r'parliament[^.]*\.',
r'minister[^.]*\.',
r'party[^.]*\.'
r"political career[^.]*\.",
r"elected[^.]*\.",
r"parliament[^.]*\.",
r"minister[^.]*\.",
r"party[^.]*\.",
]
for pattern in political_patterns:
matches = re.findall(pattern, content_lower, re.IGNORECASE)
matches = re.findall(
pattern, content_lower, re.IGNORECASE
)
if matches:
personality_data['political_career'] = ' '.join(matches[:5]) # Take first 5 matches
personality_data["political_career"] = " ".join(
matches[:5]
) # Take first 5 matches
break
# Political views
views_patterns = [
r'political views[^.]*\.',
r'positions[^.]*\.',
r'advocates[^.]*\.',
r'supports[^.]*\.',
r'opposes[^.]*\.'
r"political views[^.]*\.",
r"positions[^.]*\.",
r"advocates[^.]*\.",
r"supports[^.]*\.",
r"opposes[^.]*\.",
]
for pattern in views_patterns:
matches = re.findall(pattern, content_lower, re.IGNORECASE)
matches = re.findall(
pattern, content_lower, re.IGNORECASE
)
if matches:
personality_data['political_views'] = ' '.join(matches[:3])
personality_data["political_views"] = " ".join(
matches[:3]
)
break
# Policy focus
policy_patterns = [
r'policy[^.]*\.',
r'focus[^.]*\.',
r'issues[^.]*\.',
r'legislation[^.]*\.'
r"policy[^.]*\.",
r"focus[^.]*\.",
r"issues[^.]*\.",
r"legislation[^.]*\.",
]
for pattern in policy_patterns:
matches = re.findall(pattern, content_lower, re.IGNORECASE)
matches = re.findall(
pattern, content_lower, re.IGNORECASE
)
if matches:
personality_data['policy_focus'] = ' '.join(matches[:3])
personality_data["policy_focus"] = " ".join(
matches[:3]
)
break
# Achievements
achievement_patterns = [
r'achievements[^.]*\.',
r'accomplishments[^.]*\.',
r'success[^.]*\.',
r'won[^.]*\.',
r'received[^.]*\.'
r"achievements[^.]*\.",
r"accomplishments[^.]*\.",
r"success[^.]*\.",
r"won[^.]*\.",
r"received[^.]*\.",
]
for pattern in achievement_patterns:
matches = re.findall(pattern, content_lower, re.IGNORECASE)
matches = re.findall(
pattern, content_lower, re.IGNORECASE
)
if matches:
personality_data['achievements'] = ' '.join(matches[:3])
personality_data["achievements"] = " ".join(
matches[:3]
)
break
return personality_data
def create_personality_profile(self, mep_data: Dict[str, str]) -> MEPPersonalityProfile:
def create_personality_profile(
self, mep_data: Dict[str, str]
) -> MEPPersonalityProfile:
"""
Create a personality profile for an MEP.
@ -362,8 +426,8 @@ class WikipediaPersonalityScraper:
Returns:
MEPPersonalityProfile object
"""
mep_name = mep_data['full_name']
country = mep_data['country']
mep_name = mep_data["full_name"]
country = mep_data["country"]
# Search for Wikipedia page
page_title = self.search_wikipedia_page(mep_name, country)
@ -374,56 +438,76 @@ class WikipediaPersonalityScraper:
if wiki_content:
# Parse content
personality_data = self.parse_wikipedia_content(wiki_content['extract'], mep_name)
personality_data = self.parse_wikipedia_content(
wiki_content["extract"], mep_name
)
# Create profile
profile = MEPPersonalityProfile(
full_name=mep_name,
mep_id=mep_data['mep_id'],
wikipedia_url=wiki_content['url'],
summary=personality_data['summary'],
early_life=personality_data['early_life'],
political_career=personality_data['political_career'],
political_views=personality_data['political_views'],
policy_focus=personality_data['policy_focus'],
achievements=personality_data['achievements'],
controversies=personality_data['controversies'],
personal_life=personality_data['personal_life'],
education=personality_data['education'],
professional_background=personality_data['professional_background'],
party_affiliations=personality_data['party_affiliations'],
committee_experience=personality_data['committee_experience'],
voting_record=personality_data['voting_record'],
public_statements=personality_data['public_statements'],
interests=personality_data['interests'],
languages=personality_data['languages'],
awards=personality_data['awards'],
publications=personality_data['publications'],
social_media=personality_data['social_media'],
last_updated=time.strftime("%Y-%m-%d %H:%M:%S")
mep_id=mep_data["mep_id"],
wikipedia_url=wiki_content["url"],
summary=personality_data["summary"],
early_life=personality_data["early_life"],
political_career=personality_data[
"political_career"
],
political_views=personality_data[
"political_views"
],
policy_focus=personality_data["policy_focus"],
achievements=personality_data["achievements"],
controversies=personality_data["controversies"],
personal_life=personality_data["personal_life"],
education=personality_data["education"],
professional_background=personality_data[
"professional_background"
],
party_affiliations=personality_data[
"party_affiliations"
],
committee_experience=personality_data[
"committee_experience"
],
voting_record=personality_data["voting_record"],
public_statements=personality_data[
"public_statements"
],
interests=personality_data["interests"],
languages=personality_data["languages"],
awards=personality_data["awards"],
publications=personality_data["publications"],
social_media=personality_data["social_media"],
last_updated=time.strftime("%Y-%m-%d %H:%M:%S"),
)
if self.verbose:
logger.info(f"Created personality profile for {mep_name} from Wikipedia")
logger.info(
f"Created personality profile for {mep_name} from Wikipedia"
)
return profile
# Create minimal profile if no Wikipedia data found
profile = MEPPersonalityProfile(
full_name=mep_name,
mep_id=mep_data['mep_id'],
mep_id=mep_data["mep_id"],
summary=f"{mep_name} is a Member of the European Parliament representing {country}.",
political_career=f"Currently serving as MEP for {country}.",
political_views=f"Member of {mep_data['political_group']} and {mep_data['national_party']}.",
last_updated=time.strftime("%Y-%m-%d %H:%M:%S")
last_updated=time.strftime("%Y-%m-%d %H:%M:%S"),
)
if self.verbose:
logger.warning(f"No Wikipedia data found for {mep_name}, created minimal profile")
logger.warning(
f"No Wikipedia data found for {mep_name}, created minimal profile"
)
return profile
def save_personality_profile(self, profile: MEPPersonalityProfile) -> str:
def save_personality_profile(
self, profile: MEPPersonalityProfile
) -> str:
"""
Save personality profile to JSON file.
@ -434,15 +518,15 @@ class WikipediaPersonalityScraper:
Path to saved file
"""
# Create safe filename
safe_name = re.sub(r'[^\w\s-]', '', profile.full_name).strip()
safe_name = re.sub(r'[-\s]+', '_', safe_name)
safe_name = re.sub(r"[^\w\s-]", "", profile.full_name).strip()
safe_name = re.sub(r"[-\s]+", "_", safe_name)
filename = f"{safe_name}_{profile.mep_id}.json"
filepath = os.path.join(self.output_dir, filename)
# Convert to dictionary and save
profile_dict = asdict(profile)
with open(filepath, 'w', encoding='utf-8') as f:
with open(filepath, "w", encoding="utf-8") as f:
json.dump(profile_dict, f, indent=2, ensure_ascii=False)
if self.verbose:
@ -450,7 +534,9 @@ class WikipediaPersonalityScraper:
return filepath
def scrape_all_mep_personalities(self, xml_file: str = "EU.xml", delay: float = 1.0) -> Dict[str, str]:
def scrape_all_mep_personalities(
self, xml_file: str = "EU.xml", delay: float = 1.0
) -> Dict[str, str]:
"""
Scrape personality data for all MEPs.
@ -465,10 +551,12 @@ class WikipediaPersonalityScraper:
profile_files = {}
if self.verbose:
logger.info(f"Starting personality scraping for {len(meps)} MEPs")
logger.info(
f"Starting personality scraping for {len(meps)} MEPs"
)
for i, mep_data in enumerate(meps, 1):
mep_name = mep_data['full_name']
mep_name = mep_data["full_name"]
if self.verbose:
logger.info(f"Processing {i}/{len(meps)}: {mep_name}")
@ -489,11 +577,15 @@ class WikipediaPersonalityScraper:
continue
if self.verbose:
logger.info(f"Completed personality scraping. {len(profile_files)} profiles created.")
logger.info(
f"Completed personality scraping. {len(profile_files)} profiles created."
)
return profile_files
def load_personality_profile(self, filepath: str) -> MEPPersonalityProfile:
def load_personality_profile(
self, filepath: str
) -> MEPPersonalityProfile:
"""
Load personality profile from JSON file.
@ -503,12 +595,14 @@ class WikipediaPersonalityScraper:
Returns:
MEPPersonalityProfile object
"""
with open(filepath, 'r', encoding='utf-8') as f:
with open(filepath, "r", encoding="utf-8") as f:
data = json.load(f)
return MEPPersonalityProfile(**data)
def get_personality_summary(self, profile: MEPPersonalityProfile) -> str:
def get_personality_summary(
self, profile: MEPPersonalityProfile
) -> str:
"""
Generate a personality summary for use in AI agent system prompts.
@ -524,22 +618,32 @@ class WikipediaPersonalityScraper:
summary_parts.append(f"Background: {profile.summary}")
if profile.political_career:
summary_parts.append(f"Political Career: {profile.political_career}")
summary_parts.append(
f"Political Career: {profile.political_career}"
)
if profile.political_views:
summary_parts.append(f"Political Views: {profile.political_views}")
summary_parts.append(
f"Political Views: {profile.political_views}"
)
if profile.policy_focus:
summary_parts.append(f"Policy Focus: {profile.policy_focus}")
summary_parts.append(
f"Policy Focus: {profile.policy_focus}"
)
if profile.achievements:
summary_parts.append(f"Notable Achievements: {profile.achievements}")
summary_parts.append(
f"Notable Achievements: {profile.achievements}"
)
if profile.education:
summary_parts.append(f"Education: {profile.education}")
if profile.professional_background:
summary_parts.append(f"Professional Background: {profile.professional_background}")
summary_parts.append(
f"Professional Background: {profile.professional_background}"
)
return "\n".join(summary_parts)
@ -551,12 +655,14 @@ def main():
print("=" * 70)
# Initialize scraper
scraper = WikipediaPersonalityScraper(output_dir="mep_personalities", verbose=True)
scraper = WikipediaPersonalityScraper(
output_dir="mep_personalities", verbose=True
)
# Scrape all MEP personalities
profile_files = scraper.scrape_all_mep_personalities(delay=1.0)
print(f"\n✅ Scraping completed!")
print("\n✅ Scraping completed!")
print(f"📁 Profiles saved to: {scraper.output_dir}")
print(f"📊 Total profiles created: {len(profile_files)}")

@ -1,5 +1,6 @@
from swarms.structs.agent import Agent
from swarms.structs.agent_builder import AgentsBuilder
from swarms.structs.agent_rearrange import AgentRearrange, rearrange
from swarms.structs.auto_swarm_builder import AutoSwarmBuilder
from swarms.structs.base_structure import BaseStructure
from swarms.structs.base_swarm import BaseSwarm
@ -66,7 +67,6 @@ from swarms.structs.multi_agent_exec import (
run_single_agent,
)
from swarms.structs.multi_agent_router import MultiAgentRouter
from swarms.structs.agent_rearrange import AgentRearrange, rearrange
from swarms.structs.round_robin import RoundRobinSwarm
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm

@ -21,6 +21,13 @@ from typing import (
import toml
import yaml
from litellm import model_list
from litellm.utils import (
get_max_tokens,
supports_function_calling,
supports_parallel_function_calling,
supports_vision,
)
from loguru import logger
from pydantic import BaseModel
@ -45,7 +52,6 @@ from swarms.schemas.base_schemas import (
ChatMessageResponse,
)
from swarms.schemas.conversation_schema import ConversationSchema
from swarms.schemas.llm_agent_schema import ModelConfigOrigin
from swarms.schemas.mcp_schemas import (
MCPConnection,
)
@ -422,7 +428,6 @@ class Agent:
mcp_config: Optional[MCPConnection] = None,
top_p: Optional[float] = 0.90,
conversation_schema: Optional[ConversationSchema] = None,
aditional_llm_config: Optional[ModelConfigOrigin] = None,
llm_base_url: Optional[str] = None,
llm_api_key: Optional[str] = None,
rag_config: Optional[RAGConfig] = None,
@ -430,8 +435,8 @@ class Agent:
output_raw_json_from_tool_call: bool = False,
summarize_multiple_images: bool = False,
tool_retry_attempts: int = 3,
speed_mode: str = None,
reasoning_prompt_on: bool = True,
dynamic_context_window: bool = True,
*args,
**kwargs,
):
@ -562,7 +567,6 @@ class Agent:
self.mcp_config = mcp_config
self.top_p = top_p
self.conversation_schema = conversation_schema
self.aditional_llm_config = aditional_llm_config
self.llm_base_url = llm_base_url
self.llm_api_key = llm_api_key
self.rag_config = rag_config
@ -572,8 +576,8 @@ class Agent:
)
self.summarize_multiple_images = summarize_multiple_images
self.tool_retry_attempts = tool_retry_attempts
self.speed_mode = speed_mode
self.reasoning_prompt_on = reasoning_prompt_on
self.dynamic_context_window = dynamic_context_window
# Initialize the feedback
self.feedback = []
@ -676,17 +680,15 @@ class Agent:
# Initialize the short term memory
memory = Conversation(
name=f"{self.agent_name}_conversation",
system_prompt=prompt,
user=self.user_name,
rules=self.rules,
token_count=False,
message_id_on=False,
time_enabled=True,
)
# Add the system prompt to the conversation
memory.add(
role="system",
content=prompt,
dynamic_context_window=self.dynamic_context_window,
tokenizer_model_name=self.model_name,
context_length=self.context_length,
)
return memory
@ -888,11 +890,7 @@ class Agent:
Returns:
bool: True if model supports vision and image is provided, False otherwise.
"""
from litellm.utils import (
supports_function_calling,
supports_parallel_function_calling,
supports_vision,
)
# Only check vision support if an image is provided
if img is not None:
@ -1294,8 +1292,6 @@ class Agent:
self._handle_run_error(error)
def __handle_run_error(self, error: any):
import traceback
if self.autosave is True:
self.save()
log_agent_data(self.to_dict())
@ -1539,11 +1535,6 @@ class Agent:
raise
def reliability_check(self):
from litellm import model_list
from litellm.utils import (
get_max_tokens,
supports_function_calling,
)
if self.system_prompt is None:
logger.warning(

@ -1,21 +1,21 @@
import traceback
import concurrent.futures
import datetime
import inspect
import json
import os
import traceback
import uuid
from typing import (
TYPE_CHECKING,
Any,
Dict,
List,
Literal,
Optional,
Union,
Literal,
Any,
)
import yaml
import inspect
from swarms.utils.any_to_str import any_to_str
from swarms.utils.litellm_tokenizer import count_tokens
@ -26,6 +26,18 @@ if TYPE_CHECKING:
from loguru import logger
# Define available providers
providers = Literal[
"mem0",
"in-memory",
"supabase",
"redis",
"sqlite",
"duckdb",
"pulsar",
]
def generate_conversation_id():
"""Generate a unique conversation ID."""
return str(uuid.uuid4())
@ -50,18 +62,6 @@ def get_conversation_dir():
return conversation_dir
# Define available providers
providers = Literal[
"mem0",
"in-memory",
"supabase",
"redis",
"sqlite",
"duckdb",
"pulsar",
]
def _create_backend_conversation(backend: str, **kwargs):
"""
Create a backend conversation instance based on the specified backend type.
@ -183,9 +183,9 @@ class Conversation:
name: str = "conversation-test",
system_prompt: Optional[str] = None,
time_enabled: bool = False,
autosave: bool = False, # Changed default to False
autosave: bool = False,
save_filepath: str = None,
load_filepath: str = None, # New parameter to specify which file to load from
load_filepath: str = None,
context_length: int = 8192,
rules: str = None,
custom_rules_prompt: str = None,
@ -211,6 +211,8 @@ class Conversation:
redis_data_dir: Optional[str] = None,
conversations_dir: Optional[str] = None,
export_method: str = "json",
dynamic_context_window: bool = True,
caching: bool = True,
*args,
**kwargs,
):
@ -249,6 +251,8 @@ class Conversation:
self.auto_persist = auto_persist
self.redis_data_dir = redis_data_dir
self.export_method = export_method
self.dynamic_context_window = dynamic_context_window
self.caching = caching
if self.name is None:
self.name = id
@ -933,7 +937,15 @@ class Conversation:
# Fallback to in-memory implementation
pass
elif self.dynamic_context_window is True:
return self.dynamic_auto_chunking()
else:
return self._return_history_as_string_worker()
def _return_history_as_string_worker(self):
formatted_messages = []
for message in self.conversation_history:
formatted_messages.append(
f"{message['role']}: {message['content']}"
@ -1778,20 +1790,38 @@ class Conversation:
pass
self.conversation_history = []
def dynamic_auto_chunking(self):
all_tokens = self._return_history_as_string_worker()
total_tokens = count_tokens(
all_tokens, self.tokenizer_model_name
)
if total_tokens > self.context_length:
# Get the difference between the count_tokens and the context_length
difference = total_tokens - self.context_length
# Slice the first difference number of messages and contents from the beginning of the conversation history
new_history = all_tokens[difference:]
return new_history
# # Example usage
# # conversation = Conversation()
# conversation = Conversation(token_count=True)
# Example usage
# conversation = Conversation()
# conversation = Conversation(token_count=True, context_length=14)
# conversation.add("user", "Hello, how are you?")
# conversation.add("assistant", "I am doing well, thanks.")
# conversation.add("user", "What is the weather in Tokyo?")
# print(conversation.dynamic_auto_chunking())
# # conversation.add(
# # "assistant", {"name": "tool_1", "output": "Hello, how are you?"}
# # )
# # print(conversation.return_json())
# )
# print(conversation.return_json())
# # # print(conversation.get_last_message_as_string())
# # print(conversation.get_last_message_as_string())
# print(conversation.return_json())
# # # conversation.add("assistant", "I am doing well, thanks.")
# # # # print(conversation.to_json())
# # print(type(conversation.to_dict()))
# # print(conversation.to_yaml())
# # conversation.add("assistant", "I am doing well, thanks.")
# # # print(conversation.to_json())
# print(type(conversation.to_dict()))
# print(conversation.to_yaml())

Loading…
Cancel
Save