|
|
|
@ -134,45 +134,44 @@ print("Execution results:", results)
|
|
|
|
|
Below is a comprehensive example demonstrating the creation and execution of a workflow graph:
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from swarms import Agent, Edge, GraphWorkflow, Node, NodeType
|
|
|
|
|
|
|
|
|
|
from swarm_models import OpenAIChat
|
|
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
|
api_key = os.environ.get("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
|
|
llm = OpenAIChat(
|
|
|
|
|
temperature=0.5, openai_api_key=api_key, max_tokens=4000
|
|
|
|
|
# Initialize two agents with GPT-4o-mini model and desired parameters
|
|
|
|
|
agent1 = Agent(
|
|
|
|
|
model_name="gpt-4o-mini",
|
|
|
|
|
temperature=0.5,
|
|
|
|
|
max_tokens=4000,
|
|
|
|
|
max_loops=1,
|
|
|
|
|
autosave=True,
|
|
|
|
|
dashboard=True,
|
|
|
|
|
)
|
|
|
|
|
agent2 = Agent(
|
|
|
|
|
model_name="gpt-4o-mini",
|
|
|
|
|
temperature=0.5,
|
|
|
|
|
max_tokens=4000,
|
|
|
|
|
max_loops=1,
|
|
|
|
|
autosave=True,
|
|
|
|
|
dashboard=True,
|
|
|
|
|
)
|
|
|
|
|
agent1 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
|
|
|
|
|
agent2 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
|
|
|
|
|
|
|
|
|
|
def sample_task():
|
|
|
|
|
print("Running sample task")
|
|
|
|
|
return "Task completed"
|
|
|
|
|
|
|
|
|
|
# Build workflow graph
|
|
|
|
|
wf_graph = GraphWorkflow()
|
|
|
|
|
wf_graph.add_node(Node(id="agent1", type=NodeType.AGENT, agent=agent1))
|
|
|
|
|
wf_graph.add_node(Node(id="agent2", type=NodeType.AGENT, agent=agent2))
|
|
|
|
|
wf_graph.add_node(
|
|
|
|
|
Node(id="task1", type=NodeType.TASK, callable=sample_task)
|
|
|
|
|
)
|
|
|
|
|
wf_graph.add_node(Node(id="task1", type=NodeType.TASK, callable=sample_task))
|
|
|
|
|
|
|
|
|
|
wf_graph.add_edge(Edge(source="agent1", target="task1"))
|
|
|
|
|
wf_graph.add_edge(Edge(source="agent2", target="task1"))
|
|
|
|
|
|
|
|
|
|
wf_graph.set_entry_points(["agent1", "agent2"])
|
|
|
|
|
wf_graph.set_end_points(["task1"])
|
|
|
|
|
|
|
|
|
|
# Visualize and run
|
|
|
|
|
print(wf_graph.visualize())
|
|
|
|
|
|
|
|
|
|
# Run the workflow
|
|
|
|
|
results = wf_graph.run()
|
|
|
|
|
print("Execution results:", results)
|
|
|
|
|
|
|
|
|
|