parent
6a1bca74b7
commit
6a89e9165d
@ -1,318 +1,318 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import sys
|
||||
import warnings
|
||||
from typing import (
|
||||
AbstractSet,
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Collection,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Mapping,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain.callbacks.manager import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain.pydantic_v1 import Field, root_validator
|
||||
from langchain.schema import Generation, LLMResult
|
||||
from langchain.schema.output import GenerationChunk
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
import os
|
||||
def get_from_dict_or_env(
|
||||
data: Dict[str, Any],
|
||||
key: str,
|
||||
env_key: str,
|
||||
default: Optional[str] = None
|
||||
) -> str:
|
||||
"""Get a value from a dictionary or an environment variable."""
|
||||
if key in data and data[key]:
|
||||
return data[key]
|
||||
else:
|
||||
return get_from_env(key, env_key, default=default)
|
||||
|
||||
|
||||
def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
|
||||
"""Get a value from a dictionary or an environment variable."""
|
||||
if env_key in os.environ and os.environ[env_key]:
|
||||
return os.environ[env_key]
|
||||
elif default is not None:
|
||||
return default
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Did not find {key}, please add an environment variable"
|
||||
f" `{env_key}` which contains it, or pass"
|
||||
f" `{key}` as a named parameter."
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
class OpenAIChat:
|
||||
"""OpenAI Chat large language models.
|
||||
|
||||
To use, you should have the ``openai`` python package installed, and the
|
||||
environment variable ``OPENAI_API_KEY`` set with your API key.
|
||||
|
||||
Any parameters that are valid to be passed to the openai.create call can be passed
|
||||
in, even if not explicitly saved on this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.llms import OpenAIChat
|
||||
openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
model_name: str = "gpt-3.5-turbo"
|
||||
"""Model name to use."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||||
openai_api_key: Optional[str] = None
|
||||
openai_api_base: Optional[str] = None
|
||||
# to support explicit proxy for OpenAI
|
||||
openai_proxy: Optional[str] = None
|
||||
max_retries: int = 6
|
||||
"""Maximum number of retries to make when generating."""
|
||||
prefix_messages: List = Field(default_factory=list)
|
||||
"""Series of messages for Chat input."""
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
|
||||
"""Set of special tokens that are allowed。"""
|
||||
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
|
||||
"""Set of special tokens that are not allowed。"""
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name not in all_required_field_names:
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
extra[field_name] = values.pop(field_name)
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
openai_api_key = get_from_dict_or_env(
|
||||
values, "openai_api_key", "OPENAI_API_KEY"
|
||||
)
|
||||
openai_api_base = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_base",
|
||||
"OPENAI_API_BASE",
|
||||
default="",
|
||||
)
|
||||
openai_proxy = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_proxy",
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
)
|
||||
openai_organization = get_from_dict_or_env(
|
||||
values, "openai_organization", "OPENAI_ORGANIZATION", default=""
|
||||
)
|
||||
try:
|
||||
import openai
|
||||
|
||||
openai.api_key = openai_api_key
|
||||
if openai_api_base:
|
||||
openai.api_base = openai_api_base
|
||||
if openai_organization:
|
||||
openai.organization = openai_organization
|
||||
if openai_proxy:
|
||||
openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
try:
|
||||
values["client"] = openai.ChatCompletion
|
||||
except AttributeError:
|
||||
raise ValueError(
|
||||
"`openai` has no `ChatCompletion` attribute, this is likely "
|
||||
"due to an old version of the openai package. Try upgrading it "
|
||||
"with `pip install --upgrade openai`."
|
||||
)
|
||||
warnings.warn(
|
||||
"You are trying to use a chat model. This way of initializing it is "
|
||||
"no longer supported. Instead, please use: "
|
||||
"`from langchain.chat_models import ChatOpenAI`"
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling OpenAI API."""
|
||||
return self.model_kwargs
|
||||
|
||||
def _get_chat_params(
|
||||
self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
) -> Tuple:
|
||||
if len(prompts) > 1:
|
||||
raise ValueError(
|
||||
f"OpenAIChat currently only supports single prompt, got {prompts}"
|
||||
)
|
||||
messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
||||
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
if params.get("max_tokens") == -1:
|
||||
# for ChatGPT api, omitting max_tokens is equivalent to having no limit
|
||||
del params["max_tokens"]
|
||||
return messages, params
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
messages, params = self._get_chat_params([prompt], stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
for stream_resp in completion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
):
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
chunk = GenerationChunk(text=token)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
messages, params = self._get_chat_params([prompt], stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
async for stream_resp in await acompletion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
):
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
chunk = GenerationChunk(text=token)
|
||||
yield chunk
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
if self.streaming:
|
||||
generation: Optional[GenerationChunk] = None
|
||||
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
generation += chunk
|
||||
assert generation is not None
|
||||
return LLMResult(generations=[[generation]])
|
||||
|
||||
messages, params = self._get_chat_params(prompts, stop)
|
||||
params = {**params, **kwargs}
|
||||
full_response = completion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
)
|
||||
llm_output = {
|
||||
"token_usage": full_response["usage"],
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
return LLMResult(
|
||||
generations=[
|
||||
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
||||
],
|
||||
llm_output=llm_output,
|
||||
)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
if self.streaming:
|
||||
generation: Optional[GenerationChunk] = None
|
||||
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
|
||||
if generation is None:
|
||||
generation = chunk
|
||||
else:
|
||||
generation += chunk
|
||||
assert generation is not None
|
||||
return LLMResult(generations=[[generation]])
|
||||
|
||||
messages, params = self._get_chat_params(prompts, stop)
|
||||
params = {**params, **kwargs}
|
||||
full_response = await acompletion_with_retry(
|
||||
self, messages=messages, run_manager=run_manager, **params
|
||||
)
|
||||
llm_output = {
|
||||
"token_usage": full_response["usage"],
|
||||
"model_name": self.model_name,
|
||||
}
|
||||
return LLMResult(
|
||||
generations=[
|
||||
[Generation(text=full_response["choices"][0]["message"]["content"])]
|
||||
],
|
||||
llm_output=llm_output,
|
||||
)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "openai-chat"
|
||||
|
||||
def get_token_ids(self, text: str) -> List[int]:
|
||||
"""Get the token IDs using the tiktoken package."""
|
||||
# tiktoken NOT supported for Python < 3.8
|
||||
if sys.version_info[1] < 8:
|
||||
return super().get_token_ids(text)
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to calculate get_num_tokens. "
|
||||
"Please install it with `pip install tiktoken`."
|
||||
)
|
||||
|
||||
enc = tiktoken.encoding_for_model(self.model_name)
|
||||
return enc.encode(
|
||||
text,
|
||||
allowed_special=self.allowed_special,
|
||||
disallowed_special=self.disallowed_special,
|
||||
)
|
||||
# from __future__ import annotations
|
||||
|
||||
# import logging
|
||||
# import sys
|
||||
# import warnings
|
||||
# from typing import (
|
||||
# AbstractSet,
|
||||
# Any,
|
||||
# AsyncIterator,
|
||||
# Collection,
|
||||
# Dict,
|
||||
# Iterator,
|
||||
# List,
|
||||
# Literal,
|
||||
# Mapping,
|
||||
# Optional,
|
||||
# Tuple,
|
||||
# Union,
|
||||
# )
|
||||
|
||||
# from langchain.callbacks.manager import (
|
||||
# AsyncCallbackManagerForLLMRun,
|
||||
# CallbackManagerForLLMRun,
|
||||
# )
|
||||
# from langchain.pydantic_v1 import Field, root_validator
|
||||
# from langchain.schema import Generation, LLMResult
|
||||
# from langchain.schema.output import GenerationChunk
|
||||
# from langchain.utils import get_from_dict_or_env
|
||||
|
||||
# logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# import os
|
||||
# def get_from_dict_or_env(
|
||||
# data: Dict[str, Any],
|
||||
# key: str,
|
||||
# env_key: str,
|
||||
# default: Optional[str] = None
|
||||
# ) -> str:
|
||||
# """Get a value from a dictionary or an environment variable."""
|
||||
# if key in data and data[key]:
|
||||
# return data[key]
|
||||
# else:
|
||||
# return get_from_env(key, env_key, default=default)
|
||||
|
||||
|
||||
# def get_from_env(key: str, env_key: str, default: Optional[str] = None) -> str:
|
||||
# """Get a value from a dictionary or an environment variable."""
|
||||
# if env_key in os.environ and os.environ[env_key]:
|
||||
# return os.environ[env_key]
|
||||
# elif default is not None:
|
||||
# return default
|
||||
# else:
|
||||
# raise ValueError(
|
||||
# f"Did not find {key}, please add an environment variable"
|
||||
# f" `{env_key}` which contains it, or pass"
|
||||
# f" `{key}` as a named parameter."
|
||||
# )
|
||||
|
||||
|
||||
|
||||
|
||||
# class OpenAIChat:
|
||||
# """OpenAI Chat large language models.
|
||||
|
||||
# To use, you should have the ``openai`` python package installed, and the
|
||||
# environment variable ``OPENAI_API_KEY`` set with your API key.
|
||||
|
||||
# Any parameters that are valid to be passed to the openai.create call can be passed
|
||||
# in, even if not explicitly saved on this class.
|
||||
|
||||
# Example:
|
||||
# .. code-block:: python
|
||||
|
||||
# from langchain.llms import OpenAIChat
|
||||
# openaichat = OpenAIChat(model_name="gpt-3.5-turbo")
|
||||
# """
|
||||
|
||||
# client: Any #: :meta private:
|
||||
# model_name: str = "gpt-3.5-turbo"
|
||||
# """Model name to use."""
|
||||
# model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
# """Holds any model parameters valid for `create` call not explicitly specified."""
|
||||
# openai_api_key: Optional[str] = None
|
||||
# openai_api_base: Optional[str] = None
|
||||
# # to support explicit proxy for OpenAI
|
||||
# openai_proxy: Optional[str] = None
|
||||
# max_retries: int = 6
|
||||
# """Maximum number of retries to make when generating."""
|
||||
# prefix_messages: List = Field(default_factory=list)
|
||||
# """Series of messages for Chat input."""
|
||||
# streaming: bool = False
|
||||
# """Whether to stream the results or not."""
|
||||
# allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
|
||||
# """Set of special tokens that are allowed。"""
|
||||
# disallowed_special: Union[Literal["all"], Collection[str]] = "all"
|
||||
# """Set of special tokens that are not allowed。"""
|
||||
|
||||
# @root_validator(pre=True)
|
||||
# def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
# """Build extra kwargs from additional params that were passed in."""
|
||||
# all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
# extra = values.get("model_kwargs", {})
|
||||
# for field_name in list(values):
|
||||
# if field_name not in all_required_field_names:
|
||||
# if field_name in extra:
|
||||
# raise ValueError(f"Found {field_name} supplied twice.")
|
||||
# extra[field_name] = values.pop(field_name)
|
||||
# values["model_kwargs"] = extra
|
||||
# return values
|
||||
|
||||
# @root_validator()
|
||||
# def validate_environment(cls, values: Dict) -> Dict:
|
||||
# """Validate that api key and python package exists in environment."""
|
||||
# openai_api_key = get_from_dict_or_env(
|
||||
# values, "openai_api_key", "OPENAI_API_KEY"
|
||||
# )
|
||||
# openai_api_base = get_from_dict_or_env(
|
||||
# values,
|
||||
# "openai_api_base",
|
||||
# "OPENAI_API_BASE",
|
||||
# default="",
|
||||
# )
|
||||
# openai_proxy = get_from_dict_or_env(
|
||||
# values,
|
||||
# "openai_proxy",
|
||||
# "OPENAI_PROXY",
|
||||
# default="",
|
||||
# )
|
||||
# openai_organization = get_from_dict_or_env(
|
||||
# values, "openai_organization", "OPENAI_ORGANIZATION", default=""
|
||||
# )
|
||||
# try:
|
||||
# import openai
|
||||
|
||||
# openai.api_key = openai_api_key
|
||||
# if openai_api_base:
|
||||
# openai.api_base = openai_api_base
|
||||
# if openai_organization:
|
||||
# openai.organization = openai_organization
|
||||
# if openai_proxy:
|
||||
# openai.proxy = {"http": openai_proxy, "https": openai_proxy} # type: ignore[assignment] # noqa: E501
|
||||
# except ImportError:
|
||||
# raise ImportError(
|
||||
# "Could not import openai python package. "
|
||||
# "Please install it with `pip install openai`."
|
||||
# )
|
||||
# try:
|
||||
# values["client"] = openai.ChatCompletion
|
||||
# except AttributeError:
|
||||
# raise ValueError(
|
||||
# "`openai` has no `ChatCompletion` attribute, this is likely "
|
||||
# "due to an old version of the openai package. Try upgrading it "
|
||||
# "with `pip install --upgrade openai`."
|
||||
# )
|
||||
# warnings.warn(
|
||||
# "You are trying to use a chat model. This way of initializing it is "
|
||||
# "no longer supported. Instead, please use: "
|
||||
# "`from langchain.chat_models import ChatOpenAI`"
|
||||
# )
|
||||
# return values
|
||||
|
||||
# @property
|
||||
# def _default_params(self) -> Dict[str, Any]:
|
||||
# """Get the default parameters for calling OpenAI API."""
|
||||
# return self.model_kwargs
|
||||
|
||||
# def _get_chat_params(
|
||||
# self, prompts: List[str], stop: Optional[List[str]] = None
|
||||
# ) -> Tuple:
|
||||
# if len(prompts) > 1:
|
||||
# raise ValueError(
|
||||
# f"OpenAIChat currently only supports single prompt, got {prompts}"
|
||||
# )
|
||||
# messages = self.prefix_messages + [{"role": "user", "content": prompts[0]}]
|
||||
# params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
|
||||
# if stop is not None:
|
||||
# if "stop" in params:
|
||||
# raise ValueError("`stop` found in both the input and default params.")
|
||||
# params["stop"] = stop
|
||||
# if params.get("max_tokens") == -1:
|
||||
# # for ChatGPT api, omitting max_tokens is equivalent to having no limit
|
||||
# del params["max_tokens"]
|
||||
# return messages, params
|
||||
|
||||
# def _stream(
|
||||
# self,
|
||||
# prompt: str,
|
||||
# stop: Optional[List[str]] = None,
|
||||
# run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
# **kwargs: Any,
|
||||
# ) -> Iterator[GenerationChunk]:
|
||||
# messages, params = self._get_chat_params([prompt], stop)
|
||||
# params = {**params, **kwargs, "stream": True}
|
||||
# for stream_resp in completion_with_retry(
|
||||
# self, messages=messages, run_manager=run_manager, **params
|
||||
# ):
|
||||
# token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
# chunk = GenerationChunk(text=token)
|
||||
# yield chunk
|
||||
# if run_manager:
|
||||
# run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
# async def _astream(
|
||||
# self,
|
||||
# prompt: str,
|
||||
# stop: Optional[List[str]] = None,
|
||||
# run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
# **kwargs: Any,
|
||||
# ) -> AsyncIterator[GenerationChunk]:
|
||||
# messages, params = self._get_chat_params([prompt], stop)
|
||||
# params = {**params, **kwargs, "stream": True}
|
||||
# async for stream_resp in await acompletion_with_retry(
|
||||
# self, messages=messages, run_manager=run_manager, **params
|
||||
# ):
|
||||
# token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
# chunk = GenerationChunk(text=token)
|
||||
# yield chunk
|
||||
# if run_manager:
|
||||
# await run_manager.on_llm_new_token(token, chunk=chunk)
|
||||
|
||||
# def _generate(
|
||||
# self,
|
||||
# prompts: List[str],
|
||||
# stop: Optional[List[str]] = None,
|
||||
# run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
# **kwargs: Any,
|
||||
# ) -> LLMResult:
|
||||
# if self.streaming:
|
||||
# generation: Optional[GenerationChunk] = None
|
||||
# for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
|
||||
# if generation is None:
|
||||
# generation = chunk
|
||||
# else:
|
||||
# generation += chunk
|
||||
# assert generation is not None
|
||||
# return LLMResult(generations=[[generation]])
|
||||
|
||||
# messages, params = self._get_chat_params(prompts, stop)
|
||||
# params = {**params, **kwargs}
|
||||
# full_response = completion_with_retry(
|
||||
# self, messages=messages, run_manager=run_manager, **params
|
||||
# )
|
||||
# llm_output = {
|
||||
# "token_usage": full_response["usage"],
|
||||
# "model_name": self.model_name,
|
||||
# }
|
||||
# return LLMResult(
|
||||
# generations=[
|
||||
# [Generation(text=full_response["choices"][0]["message"]["content"])]
|
||||
# ],
|
||||
# llm_output=llm_output,
|
||||
# )
|
||||
|
||||
# async def _agenerate(
|
||||
# self,
|
||||
# prompts: List[str],
|
||||
# stop: Optional[List[str]] = None,
|
||||
# run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
# **kwargs: Any,
|
||||
# ) -> LLMResult:
|
||||
# if self.streaming:
|
||||
# generation: Optional[GenerationChunk] = None
|
||||
# async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
|
||||
# if generation is None:
|
||||
# generation = chunk
|
||||
# else:
|
||||
# generation += chunk
|
||||
# assert generation is not None
|
||||
# return LLMResult(generations=[[generation]])
|
||||
|
||||
# messages, params = self._get_chat_params(prompts, stop)
|
||||
# params = {**params, **kwargs}
|
||||
# full_response = await acompletion_with_retry(
|
||||
# self, messages=messages, run_manager=run_manager, **params
|
||||
# )
|
||||
# llm_output = {
|
||||
# "token_usage": full_response["usage"],
|
||||
# "model_name": self.model_name,
|
||||
# }
|
||||
# return LLMResult(
|
||||
# generations=[
|
||||
# [Generation(text=full_response["choices"][0]["message"]["content"])]
|
||||
# ],
|
||||
# llm_output=llm_output,
|
||||
# )
|
||||
|
||||
# @property
|
||||
# def _identifying_params(self) -> Mapping[str, Any]:
|
||||
# """Get the identifying parameters."""
|
||||
# return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
# @property
|
||||
# def _llm_type(self) -> str:
|
||||
# """Return type of llm."""
|
||||
# return "openai-chat"
|
||||
|
||||
# def get_token_ids(self, text: str) -> List[int]:
|
||||
# """Get the token IDs using the tiktoken package."""
|
||||
# # tiktoken NOT supported for Python < 3.8
|
||||
# if sys.version_info[1] < 8:
|
||||
# return super().get_token_ids(text)
|
||||
# try:
|
||||
# import tiktoken
|
||||
# except ImportError:
|
||||
# raise ImportError(
|
||||
# "Could not import tiktoken python package. "
|
||||
# "This is needed in order to calculate get_num_tokens. "
|
||||
# "Please install it with `pip install tiktoken`."
|
||||
# )
|
||||
|
||||
# enc = tiktoken.encoding_for_model(self.model_name)
|
||||
# return enc.encode(
|
||||
# text,
|
||||
# allowed_special=self.allowed_special,
|
||||
# disallowed_special=self.disallowed_special,
|
||||
# )
|
Loading…
Reference in new issue