[OPTIMIZE YOUR LLM STACK DEMO]

pull/286/head
Kye 1 year ago
parent a199e95ed7
commit 6a9cd36a32

@ -3,34 +3,33 @@ import subprocess
from dotenv import load_dotenv
from swarms.memory import WeaviateClient
from swarms.models.vllm import vLLM
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.utils.phoenix_handler import phoenix_trace_decorator
try:
import modal
except ImportError:
print(f"modal not installed, please install it with `pip install modal`")
subprocess.run(["pip", "install", "modal"])
import modal
load_dotenv()
# Model
llm = vLLM()
llm = OpenAIChat(
openai_api_key=os.getenv("OPENAI_API_KEY"),
model_name="gpt-4",
max_tokens=4000,
)
# Modal
stub = modal.Stub(name="swarms")
# Agent
@phoenix_trace_decorator
@phoenix_trace_decorator(
"This function is an agent and is traced by Phoenix."
)
@stub.function(gpu="any")
def agent(task: str):
agent = Agent(
llm = llm,
llm=llm,
max_loops=1,
)
out = agent.run(task=task)

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "2.6.6"
version = "2.6.7"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -1,11 +1,6 @@
try:
from swarms.memory.weaviate import WeaviateClient
except ImportError:
pass
from swarms.memory.base_vectordb import VectorDatabase
__all__ = [
"WeaviateClient",
"VectorDatabase",
]

@ -1,216 +0,0 @@
"""
Weaviate API Client
"""
import os
import subprocess
from typing import Any, Dict, List, Optional
from swarms.memory.base_vectordb import VectorDatabase
try:
import weaviate
except ImportError as error:
print("pip install weaviate-client")
subprocess.run(["pip", "install", "weaviate-client"])
class WeaviateClient(VectorDatabase):
"""
Weaviate API Client
Interface to Weaviate, a vector database with a GraphQL API.
Args:
http_host (str): The HTTP host of the Weaviate server.
http_port (str): The HTTP port of the Weaviate server.
http_secure (bool): Whether to use HTTPS.
grpc_host (Optional[str]): The gRPC host of the Weaviate server.
grpc_port (Optional[str]): The gRPC port of the Weaviate server.
grpc_secure (Optional[bool]): Whether to use gRPC over TLS.
auth_client_secret (Optional[Any]): The authentication client secret.
additional_headers (Optional[Dict[str, str]]): Additional headers to send with requests.
additional_config (Optional[weaviate.AdditionalConfig]): Additional configuration for the client.
Methods:
create_collection: Create a new collection in Weaviate.
add: Add an object to a specified collection.
query: Query objects from a specified collection.
update: Update an object in a specified collection.
delete: Delete an object from a specified collection.
Examples:
>>> from swarms.memory import WeaviateClient
"""
def __init__(
self,
http_host: str,
http_port: str,
http_secure: bool,
grpc_host: Optional[str] = None,
grpc_port: Optional[str] = None,
grpc_secure: Optional[bool] = None,
auth_client_secret: Optional[Any] = None,
additional_headers: Optional[Dict[str, str]] = None,
additional_config: Optional[weaviate.AdditionalConfig] = None,
connection_params: Dict[str, Any] = None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.http_host = http_host
self.http_port = http_port
self.http_secure = http_secure
self.grpc_host = grpc_host
self.grpc_port = grpc_port
self.grpc_secure = grpc_secure
self.auth_client_secret = auth_client_secret
self.additional_headers = additional_headers
self.additional_config = additional_config
self.connection_params = connection_params
# If connection_params are provided, use them to initialize the client.
connection_params = weaviate.ConnectionParams.from_params(
http_host=http_host,
http_port=http_port,
http_secure=http_secure,
grpc_host=grpc_host,
grpc_port=grpc_port,
grpc_secure=grpc_secure,
)
# If additional headers are provided, add them to the connection params.
self.client = weaviate.WeaviateClient(
connection_params=connection_params,
auth_client_secret=auth_client_secret,
additional_headers=additional_headers,
additional_config=additional_config,
)
def create_collection(
self,
name: str,
properties: List[Dict[str, Any]],
vectorizer_config: Any = None,
):
"""Create a new collection in Weaviate.
Args:
name (str): _description_
properties (List[Dict[str, Any]]): _description_
vectorizer_config (Any, optional): _description_. Defaults to None.
"""
try:
out = self.client.collections.create(
name=name,
vectorizer_config=vectorizer_config,
properties=properties,
)
print(out)
except Exception as error:
print(f"Error creating collection: {error}")
raise
def add(self, collection_name: str, properties: Dict[str, Any]):
"""Add an object to a specified collection.
Args:
collection_name (str): _description_
properties (Dict[str, Any]): _description_
Returns:
_type_: _description_
"""
try:
collection = self.client.collections.get(collection_name)
return collection.data.insert(properties)
except Exception as error:
print(f"Error adding object: {error}")
raise
def query(
self, collection_name: str, query: str, limit: int = 10
):
"""Query objects from a specified collection.
Args:
collection_name (str): _description_
query (str): _description_
limit (int, optional): _description_. Defaults to 10.
Returns:
_type_: _description_
"""
try:
collection = self.client.collections.get(collection_name)
response = collection.query.bm25(query=query, limit=limit)
return [o.properties for o in response.objects]
except Exception as error:
print(f"Error querying objects: {error}")
raise
def update(
self,
collection_name: str,
object_id: str,
properties: Dict[str, Any],
):
"""UPdate an object in a specified collection.
Args:
collection_name (str): _description_
object_id (str): _description_
properties (Dict[str, Any]): _description_
"""
try:
collection = self.client.collections.get(collection_name)
collection.data.update(object_id, properties)
except Exception as error:
print(f"Error updating object: {error}")
raise
def delete(self, collection_name: str, object_id: str):
"""Delete an object from a specified collection.
Args:
collection_name (str): _description_
object_id (str): _description_
"""
try:
collection = self.client.collections.get(collection_name)
collection.data.delete_by_id(object_id)
except Exception as error:
print(f"Error deleting object: {error}")
raise
# # Example usage
# connection_params = {
# "http_host": "YOUR_HTTP_HOST",
# "http_port": "YOUR_HTTP_PORT",
# "http_secure": True,
# "grpc_host": "YOUR_gRPC_HOST",
# "grpc_port": "YOUR_gRPC_PORT",
# "grpc_secure": True,
# "auth_client_secret": weaviate.AuthApiKey("YOUR_APIKEY"),
# "additional_headers": {"X-OpenAI-Api-Key": "YOUR_OPENAI_APIKEY"},
# "additional_config": weaviate.AdditionalConfig(
# startup_period=10, timeout=(5, 15)
# ),
# }
# weaviate_client = WeaviateClient(connection_params)
# # Example usage
# weaviate_client = WeaviateClient(
# http_host="YOUR_HTTP_HOST",
# http_port="YOUR_HTTP_PORT",
# http_secure=True,
# grpc_host="YOUR_gRPC_HOST",
# grpc_port="YOUR_gRPC_PORT",
# grpc_secure=True,
# auth_client_secret=weaviate.AuthApiKey("YOUR_APIKEY"),
# additional_headers={"X-OpenAI-Api-Key": "YOUR_OPENAI_APIKEY"},
# additional_config=weaviate.AdditionalConfig(startup_period=10, timeout=(5, 15))
# )

@ -9,10 +9,10 @@ from swarms.models.openai_models import (
OpenAIChat,
) # noqa: E402
try:
from swarms.models.vllm import vLLM # noqa: E402
except ImportError:
pass
# try:
# from swarms.models.vllm import vLLM # noqa: E402
# except ImportError:
# pass
# from swarms.models.zephyr import Zephyr # noqa: E402
from swarms.models.biogpt import BioGPT # noqa: E402
@ -64,5 +64,5 @@ __all__ = [
# "Dalle3",
# "DistilWhisperModel",
"GPT4VisionAPI",
"vLLM",
# "vLLM",
]

@ -15,5 +15,5 @@ __all__ = [
"SubprocessCodeInterpreter",
"extract_code_in_backticks_in_string",
"pdf_to_text",
"phoenix_trace_decorator"
"phoenix_trace_decorator",
]

@ -3,14 +3,7 @@ import sys
import traceback
import functools
try:
import phoenix as px
except Exception as error:
print(f"Error importing phoenix: {error}")
print("Please install phoenix: pip install phoenix")
subprocess.run(
[sys.executable, "-m", "pip", "install", "arize-mlflow"]
)
import phoenix as px
def phoenix_trace_decorator(doc_string):

Loading…
Cancel
Save