Former-commit-id: ae6d22d5e4
group-chat
Kye 1 year ago
parent 22829d0e42
commit 71d206028d

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "1.5.7"
version = "1.6.1"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]

@ -5,7 +5,7 @@
# from swarms.workers.worker_node import WorkerNode
#boss
from swarms.boss.boss_node import BossNode
from swarms.boss.boss_node import Boss
#models
from swarms.models.anthropic import Anthropic
@ -17,3 +17,6 @@ from swarms.workers.worker import Worker
#from swarms.models.openai import OpenAIChat
#workflows
from swarms.structs.workflow import Workflow

@ -19,7 +19,7 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
class Boss:
"""
The BossNode class is responsible for creating and executing tasks using the BabyAGI model.
The Bose class is responsible for creating and executing tasks using the BabyAGI model.
It takes a language model (llm), a vectorstore for memory, an agent_executor for task execution, and a maximum number of iterations for the BabyAGI model.
# Setup
@ -29,15 +29,15 @@ class Boss:
# Objective for the Boss
objective = "Analyze website user behavior patterns over the past month."
# Create a BossNode instance
boss = BossNode(
# Create a Bose instance
boss = Bose(
objective=objective,
boss_system_prompt="You are the main controller of a data analysis swarm...",
api_key=api_key,
worker_node=WorkerNode
)
# Run the BossNode to process the objective
# Run the Bose to process the objective
boss.run()
"""
def __init__(

@ -1,5 +1,5 @@
from swarms.models.anthropic import Anthropic
from swarms.models.huggingface import HuggingFaceLLM
from swarms.models.huggingface import HFLLM
# from swarms.models.palm import GooglePalm
from swarms.models.petals import Petals
#from swarms.models.openai import OpenAIChat

@ -7,7 +7,7 @@ from abc import ABC, abstractmethod
from enum import Enum
from typing import Any, Optional
from artifacts.main import Artifact
from swarms.artifacts.main import Artifact
from pydantic import BaseModel, Field, StrictStr, conlist
from swarms.artifacts.error_artifact import ErrorArtifact

@ -1,152 +1,10 @@
# from __future__ import annotations
# import concurrent.futures as futures
# import logging
# import uuid
# from abc import ABC, abstractmethod
# from graphlib import TopologicalSorter
# from logging import Logger
# from typing import Optional, Union
# from rich.logging import RichHandler
# # from swarms.artifacts.error_artifact import ErrorArtifact
# from swarms.artifacts.main import Artifact as ErrorArtifact
# from swarms.structs.task import BaseTask
# #@shapeless
# class Workflow(ABC):
# def __init__(
# self,
# id: str = uuid.uuid4().hex,
# model = None,
# custom_logger: Optional[Logger] = None,
# logger_level: int = logging.INFO,
# futures_executor: futures.Executor = futures.ThreadPoolExecutor()
# ):
# self.id = id
# self.model = model
# self.custom_logger = custom_logger
# self.logger_level = logger_level
# self.futures_executor = futures_executor
# self._execution_args = ()
# self._logger = None
# [task.preprocess(self) for task in self.tasks]
# self.model.structure = self
# @property
# def execution_args(self) -> tuple:
# return self._execution_args
# @property
# def logger(self) -> Logger:
# if self.custom_logger:
# return self.custom_logger
# else:
# if self._logger is None:
# self._logger = logging.getLogger(self.LOGGER_NAME)
# self._logger.propagate = False
# self._logger.level = self.logger_level
# self._logger.handlers = [
# RichHandler(
# show_time=True,
# show_path=False
# )
# ]
# return self._logger
# def is_finished(self) -> bool:
# return all(s.is_finished() for s in self.tasks)
# def is_executing(self) -> bool:
# return any(s for s in self.tasks if s.is_executing())
# def find_task(self, task_id: str) -> Optional[BaseTask]:
# return next((task for task in self.tasks if task.id == task_id), None)
# def add_tasks(self, *tasks: BaseTask) -> list[BaseTask]:
# return [self.add_task(s) for s in tasks]
# def context(self, task: BaseTask) -> dict[str, any]:
# return {
# "args": self.execution_args,
# "structure": self,
# }
# @abstractmethod
# def add(self, task: BaseTask) -> BaseTask:
# task.preprocess(self)
# self.tasks.append(task)
# return task
# @abstractmethod
# def run(self, *args) -> Union[BaseTask, list[BaseTask]]:
# self._execution_args = args
# ordered_tasks = self.order_tasks()
# exit_loop = False
# while not self.is_finished() and not exit_loop:
# futures_list = {}
# for task in ordered_tasks:
# if task.can_execute():
# future = self.futures_executor.submit(task.execute)
# futures_list[future] = task
# # Wait for all tasks to complete
# for future in futures.as_completed(futures_list):
# if isinstance(future.result(), ErrorArtifact):
# exit_loop = True
# break
# self._execution_args = ()
# return self.output_tasks()
# def context(self, task: BaseTask) -> dict[str, any]:
# context = super().context(task)
# context.update(
# {
# "parent_outputs": {parent.id: parent.output.to_text() if parent.output else "" for parent in task.parents},
# "parents": {parent.id: parent for parent in task.parents},
# "children": {child.id: child for child in task.children}
# }
# )
# return context
# def output_tasks(self) -> list[BaseTask]:
# return [task for task in self.tasks if not task.children]
# def to_graph(self) -> dict[str, set[str]]:
# graph: dict[str, set[str]] = {}
# for key_task in self.tasks:
# graph[key_task.id] = set()
# for value_task in self.tasks:
# if key_task.id in value_task.child_ids:
# graph[key_task.id].add(value_task.id)
# return graph
# def order_tasks(self) -> list[BaseTask]:
# return [self.find_task(task_id) for task_id in TopologicalSorter(self.to_graph()).static_order()]
from __future__ import annotations
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Union
from swarms.artifacts.error_artifacts import ErrorArtifact
from swarms.structs.task import BaseTask
import concurrent.futures
class StringTask(BaseTask):
def __init__(
@ -186,10 +44,13 @@ class Workflow:
"""
def __init__(
self,
llm
llm,
parallel: bool = False
):
self.llm = llm
self.tasks: List[BaseTask] = []
self.parallel = parallel
def add(
self,
@ -215,6 +76,10 @@ class Workflow:
[task.reset() for task in self.tasks]
if self.parallel:
with concurrent.futures.ThreadPoolExecutor() as executor:
list(executor.map(self.__run_from_task, [self.first_task]))
else:
self.__run_from_task(self.first_task())
self._execution_args = ()
@ -245,4 +110,3 @@ class Workflow:
else:
self.__run_from_task(next(iter(task.children), None))

Loading…
Cancel
Save