@ -1,13 +1,16 @@
# Agentic Structured Outputs
# :material-code-json: Agentic Structured Outputs
Structured outputs help ensure that your agents return data in a consistent, predictable format that can be easily parsed and processed by your application. This is particularly useful when building complex applications that require standardized data handling.
!!! abstract "Overview"
Structured outputs help ensure that your agents return data in a consistent, predictable format that can be easily parsed and processed by your application. This is particularly useful when building complex applications that require standardized data handling.
## Schema Definition
## :material-file-document-outline: Schema Definition
Structured outputs are defined using JSON Schema format. Here's the basic structure:
```python
tools = [
=== "Basic Schema"
```python title="Basic Tool Schema"
tools = [
{
"type": "function",
"function": {
@ -24,25 +27,68 @@ tools = [
}
}
}
]
```
]
```
### Parameter Types
=== "Advanced Schema"
```python title="Advanced Tool Schema with Multiple Parameters"
tools = [
{
"type": "function",
"function": {
"name": "advanced_function",
"description": "Advanced function with multiple parameter types",
"parameters": {
"type": "object",
"properties": {
"text_param": {
"type": "string",
"description": "A text parameter"
},
"number_param": {
"type": "number",
"description": "A numeric parameter"
},
"boolean_param": {
"type": "boolean",
"description": "A boolean parameter"
},
"array_param": {
"type": "array",
"items": {"type": "string"},
"description": "An array of strings"
}
},
"required": ["text_param", "number_param"]
}
}
}
]
```
### :material-format-list-bulleted-type: Parameter Types
The following parameter types are supported:
- `string` : Text values
- `number` : Numeric values
- `boolean` : True/False values
- `object` : Nested objects
- `array` : Lists or arrays
- `null` : Null values
| Type | Description | Example |
|------|-------------|---------|
| `string` | Text values | `"Hello World"` |
| `number` | Numeric values | `42` , `3.14` |
| `boolean` | True/False values | `true` , `false` |
| `object` | Nested objects | `{"key": "value"}` |
| `array` | Lists or arrays | `[1, 2, 3]` |
| `null` | Null values | `null` |
## Implementation Steps
## :material-cog: Implementation Steps
1. **Define Your Schema**
```python
tools = [
!!! tip "Quick Start Guide"
Follow these steps to implement structured outputs in your agent:
### Step 1: Define Your Schema
```python
tools = [
{
"type": "function",
"function": {
@ -55,53 +101,62 @@ The following parameter types are supported:
"type": "string",
"description": "Stock ticker symbol"
},
# Add more parameters as needed
"include_volume": {
"type": "boolean",
"description": "Include trading volume data"
}
},
"required": ["ticker"]
}
}
}
]
```
]
```
2. **Initialize the Agent**
```python
from swarms import Agent
### Step 2: Initialize the Agent
agent = Agent(
```
from swarms import Agent
agent = Agent(
agent_name="Your-Agent-Name",
agent_description="Agent description",
system_prompt="Your system prompt",
tools_list_dictionary=tools
)
```
3. **Run the Agent**
```python
response = agent.run("Your query here")
```
4. **Parse the Output**
```python
from swarms.utils.str_to_dict import str_to_dict
)
```
parsed_output = str_to_dict(response)
```
### Step 3: Run the Agent
## Example Usage
```python
response = agent.run("Your query here")
```
Here's a complete example using a financial agent:
### Step 4: Parse the Output
```python
from dotenv import load_dotenv
from swarms import Agent
from swarms.utils.str_to_dict import str_to_dict
# Load environment variables
load_dotenv()
parsed_output = str_to_dict(response)
```
## :material-code-braces: Example Usage
# Define tools with structured output schema
tools = [
!!! example "Complete Financial Agent Example"
Here's a comprehensive example using a financial analysis agent:
=== "Python Implementation"
```python
from dotenv import load_dotenv
from swarms import Agent
from swarms.utils.str_to_dict import str_to_dict
# Load environment variables
load_dotenv()
# Define tools with structured output schema
tools = [
{
"type": "function",
"function": {
@ -112,74 +167,167 @@ tools = [
"properties": {
"ticker": {
"type": "string",
"description": "Stock ticker symbol"
"description": "Stock ticker symbol (e.g., AAPL, GOOGL) "
},
"include_history": {
"type": "boolean",
"description": "Include historical data"
"description": "Include historical data in the response "
},
"time": {
"type": "string",
"format": "date-time",
"description": "Time for stock data "
"description": "Specific time for stock data (ISO format) "
}
},
"required": ["ticker", "include_history", "time"]
}
}
}
]
]
# Initialize agent
agent = Agent(
# Initialize agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
agent_description="Personal finance advisor agent",
system_prompt="Your system prompt here ",
system_prompt="You are a helpful financial analysis assistant. ",
max_loops=1,
tools_list_dictionary=tools
)
)
# Run agent
response = agent.run("What is the current stock price for AAPL?")
# Run agent
response = agent.run("What is the current stock price for AAPL?")
# Parse structured output
parsed_data = str_to_dict(response)
```
# Parse structured output
parsed_data = str_to_dict(response)
print(f"Parsed response: {parsed_data}")
```
=== "Expected Output"
```json
{
"function_calls": [
{
"name": "get_stock_price",
"arguments": {
"ticker": "AAPL",
"include_history": true,
"time": "2024-01-15T10:30:00Z"
}
}
]
}
```
## :material-check-circle: Best Practices
!!! success "Schema Design"
- **Keep it simple** : Design schemas that are as simple as possible while meeting your needs
- **Clear naming** : Use descriptive parameter names that clearly indicate their purpose
- **Detailed descriptions** : Include comprehensive descriptions for each parameter
- **Required fields** : Explicitly specify all required parameters
!!! info "Error Handling"
- **Validate output** : Always validate the output format before processing
- **Exception handling** : Implement proper error handling for parsing failures
- **Safety first** : Use try-except blocks when converting strings to dictionaries
!!! performance "Performance Tips"
- **Minimize requirements** : Keep the number of required parameters to a minimum
## Best Practices
- **Appropriate types** : Use the most appropriate data types for each parameter
1. **Schema Design**
- Keep schemas as simple as possible while meeting your needs
- Use clear, descriptive parameter names
- Include detailed descriptions for each parameter
- Specify all required parameters explicitly
- **Caching** : Consider caching parsed results if they're used frequently
2. **Error Handling**
- Always validate the output format
- Implement proper error handling for parsing failures
- Use try-except blocks when converting strings to dictionaries
## :material-alert-circle: Troubleshooting
3. **Performance**
- Minimize the number of required parameters
- Use appropriate data types for each parameter
- Consider caching parsed results if used frequently
!!! warning "Common Issues"
## Troubleshooting
### Invalid Output Format
Common issues and solutions:
!!! failure "Problem"
The agent returns data in an unexpected format
1. **Invalid Output Format**
- Ensure your schema matches the expected output
- Verify all required fields are present
- Check for proper JSON formatting
!!! success "Solution"
2. **Parsing Errors**
- Use `str_to_dict()` for reliable string-to-dictionary conversion
- Validate input strings before parsing
- Handle potential parsing exceptions
- Ensure your schema matches the expected output structure
3. **Missing Fields**
- Verify all required fields are present in the response
- Check for proper JSON formatting in the output
### Parsing Errors
!!! failure "Problem"
Errors occur when trying to parse the agent's response
!!! success "Solution"
```python
from swarms.utils.str_to_dict import str_to_dict
try:
parsed_data = str_to_dict(response)
except Exception as e:
print(f"Parsing error: {e}")
# Handle the error appropriately
```
### Missing Fields
!!! failure "Problem"
Required fields are missing from the output
!!! success "Solution"
- Verify all required fields are defined in the schema
- Check if the agent is properly configured
- Review the system prompt for clarity
- Check if the agent is properly configured with the tools
- Review the system prompt for clarity and completeness
## :material-lightbulb: Advanced Features
!!! note "Pro Tips"
=== "Nested Objects"
```python title="nested_schema.py"
"properties": {
"user_info": {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "number"},
"preferences": {
"type": "array",
"items": {"type": "string"}
}
}
}
}
```
=== "Conditional Fields"
```python title="conditional_schema.py"
"properties": {
"data_type": {
"type": "string",
"enum": ["stock", "crypto", "forex"]
},
"symbol": {"type": "string"},
"exchange": {
"type": "string",
"description": "Required for crypto and forex"
}
}
```
---