pull/418/head
Kye 11 months ago
parent 5bce72cedc
commit 780b04925e

@ -9,6 +9,7 @@ agent = Agent(
streaming_on=True, streaming_on=True,
verbose=True, verbose=True,
stopping_token="<DONE>", stopping_token="<DONE>",
interactive=True,
) )
# Run the workflow on a task # Run the workflow on a task

@ -0,0 +1,9 @@
"""
Plan -> act in a loop until observation is met
# Tools
- Terminal
- Text Editor
- Browser
"""

@ -0,0 +1,59 @@
def test_create_graph():
"""
Tests that a graph can be created.
"""
graph = create_graph()
assert isinstance(graph, dict)
def test_weight_edges():
"""
Tests that the edges of a graph can be weighted.
"""
graph = create_graph()
weight_edges(graph)
for edge in graph.edges:
assert isinstance(edge.weight, int)
def test_create_user_list():
"""
Tests that a list of all the podcasts that the user has listened to can be created.
"""
user_list = create_user_list()
assert isinstance(user_list, list)
def test_find_most_similar_podcasts():
"""
Tests that the most similar podcasts to a given podcast can be found.
"""
graph = create_graph()
weight_edges(graph)
user_list = create_user_list()
most_similar_podcasts = find_most_similar_podcasts(
graph, user_list
)
assert isinstance(most_similar_podcasts, list)
def test_add_most_similar_podcasts():
"""
Tests that the most similar podcasts to a given podcast can be added to the user's list.
"""
graph = create_graph()
weight_edges(graph)
user_list = create_user_list()
add_most_similar_podcasts(graph, user_list)
assert len(user_list) > 0
def test_repeat_steps():
"""
Tests that steps 5-6 can be repeated until the user's list contains the desired number of podcasts.
"""
graph = create_graph()
weight_edges(graph)
user_list = create_user_list()
repeat_steps(graph, user_list)
assert len(user_list) == 10

@ -0,0 +1,46 @@
import pytest
def test_create_youtube_account():
# Arrange
# Act
# Assert
def test_install_video_editing_software():
# Arrange
# Act
# Assert
def test_write_script():
# Arrange
# Act
# Assert
def test_gather_footage():
# Arrange
# Act
# Assert
def test_edit_video():
# Arrange
# Act
# Assert
def test_export_video():
# Arrange
# Act
# Assert
def test_upload_video_to_youtube():
# Arrange
# Act
# Assert
def test_optimize_video_for_search():
# Arrange
# Act
# Assert
def test_share_video():
# Arrange
# Act
# Assert

@ -0,0 +1,253 @@
import concurrent
import csv
from swarms import Agent, OpenAIChat
from swarms.memory import ChromaDB
from dotenv import load_dotenv
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.file_processing import create_file
from swarms.utils.loguru_logger import logger
# Load ENV
load_dotenv()
# Gemini
gemini = OpenAIChat()
# memory
memory = ChromaDB(output_dir="swarm_hackathon")
def execute_concurrently(callable_functions: callable, max_workers=5):
"""
Executes callable functions concurrently using multithreading.
Parameters:
- callable_functions: A list of tuples, each containing the callable function and its arguments.
For example: [(function1, (arg1, arg2), {'kwarg1': val1}), (function2, (), {})]
- max_workers: The maximum number of threads to use.
Returns:
- results: A list of results returned by the callable functions. If an error occurs in any function,
the exception object will be placed at the corresponding index in the list.
"""
results = [None] * len(callable_functions)
def worker(fn, args, kwargs, index):
try:
result = fn(*args, **kwargs)
results[index] = result
except Exception as e:
results[index] = e
with concurrent.futures.ThreadPoolExecutor(
max_workers=max_workers
) as executor:
futures = []
for i, (fn, args, kwargs) in enumerate(callable_functions):
futures.append(
executor.submit(worker, fn, args, kwargs, i)
)
# Wait for all threads to complete
concurrent.futures.wait(futures)
return results
# Adjusting the function to extract specific column values
def extract_and_create_agents(
csv_file_path: str, target_columns: list
):
"""
Reads a CSV file, extracts "Project Name" and "Lightning Proposal" for each row,
creates an Agent for each, and adds it to the swarm network.
Parameters:
- csv_file_path: The path to the CSV file.
- target_columns: A list of column names to extract values from.
"""
try:
agents = []
with open(csv_file_path, mode="r", encoding="utf-8") as file:
reader = csv.DictReader(file)
for row in reader:
project_name = row[target_columns[0]]
lightning_proposal = row[target_columns[1]]
# Example of creating and adding an agent based on the project name and lightning proposal
agent_name = f"{project_name} agent"
print(agent_name) # For demonstration
# Create the agent
logger.info("Creating agent...")
# Design agent
logger.info("Creating design agent...")
design_agent = Agent(
llm=gemini,
agent_name="Design Agent",
max_loops=1,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Transform an app idea into step by step very"
" simple algorithmic psuedocode so it can be"
" implemented simply."
),
long_term_memory=memory,
)
# Log the agent
logger.info(
f"Code Agent created: {agent_name} with long term"
" memory"
)
agent = Agent(
llm=gemini,
agent_name=agent_name,
max_loops=1,
code_interpreter=True,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Transform an app idea into a very simple"
" python app in markdown. Return all the"
" python code in a single markdown file."
" Return only code and nothing else."
),
long_term_memory=memory,
)
# Testing agent
logger.info(f"Testing_agent agent: {agent_name}")
agent = Agent(
llm=gemini,
agent_name=agent_name + " testing",
max_loops=1,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Create unit tests using pytest based on the"
" code you see, only return unit test code in"
" python using markdown, only return the code"
" and nothing else."
),
long_term_memory=memory,
)
# Log the agent
logger.info(
f"Agent created: {agent_name} with long term"
" memory"
)
agents.append(agent)
# Design agent
design_agent_output = design_agent.run(
(
"Create the algorithmic psuedocode for the"
f" {lightning_proposal} in markdown and"
" return it"
),
None,
)
logger.info(
"Algorithmic psuedocode created:"
f" {design_agent_output}"
)
# Create the code for each project
output = agent.run(
(
"Create the code for the"
f" {lightning_proposal} in python using the"
" algorithmic psuedocode"
f" {design_agent_output} and wrap it in"
" markdown and return it"
),
None,
)
print(output)
# Parse the output
output = extract_code_from_markdown(output)
# Create the file
output = create_file(output, f"{project_name}.py")
# Testing agent
testing_agent_output = agent.run(
(
"Create the unit tests for the"
f" {lightning_proposal} in python using the"
f" code {output} and wrap it in markdown and"
" return it"
),
None,
)
print(testing_agent_output)
# Parse the output
testing_agent_output = extract_code_from_markdown(
testing_agent_output
)
# Create the file
testing_agent_output = create_file(
testing_agent_output, f"test_{project_name}.py"
)
# Log the project created
logger.info(
f"Project {project_name} created: {output} at"
f" file path {project_name}.py"
)
print(output)
# Log the unit tests created
logger.info(
f"Unit tests for {project_name} created:"
f" {testing_agent_output} at file path"
f" test_{project_name}.py"
)
print(
f"Agent {agent_name} created and added to the"
" swarm network"
)
return agents
except Exception as e:
logger.error(
"An error occurred while extracting and creating"
f" agents: {e}"
)
return None
# CSV
csv_file = "presentation.csv"
# Specific columns to extract
target_columns = ["Project Name", "Project Description"]
# Use the adjusted function
specific_column_values = extract_and_create_agents(
csv_file, target_columns
)
# Display the extracted column values
print(specific_column_values)
# Concurrently execute the function
logger.info(
"Concurrently executing the swarm for each hackathon project..."
)
output = execute_concurrently(
[
(extract_and_create_agents, (csv_file, target_columns), {}),
],
max_workers=5,
)
print(output)

@ -0,0 +1,86 @@
class MockApp:
def __init__(self):
self.running = True
self.session = None
self.slides = []
def main_menu(self):
return input("Choose option: 1. Start, 2. Load, 3. Exit ")
def start_new_talk(self, title):
self.session = title
self.slides = []
def add_slide(self, content):
self.slides.append(content)
def edit_slide(self, index, content):
self.slides[index] = content
def delete_slide(self, index):
del self.slides[index]
def reorder_slides(self, new_order):
self.slides = [self.slides[i] for i in new_order]
def get_number_of_slides(self):
return len(self.slides)
# Function to simulate user actions
def simulate_user_action(self, action):
# Placeholder function to simulate user interaction, not part of the actual app code
pass
# Testing starting a new talk
def test_start_new_talk():
app = MockApp()
app.start_new_talk("My New Talk")
assert app.session == "My New Talk"
assert app.slides == []
# Testing adding a slide
def test_add_slide():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
assert app.slides == ["Slide Content 1"]
# Testing editing a slide
def test_edit_slide():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.edit_slide(0, "Updated Slide Content 1")
assert app.slides == ["Updated Slide Content 1"]
# Testing deleting a slide
def test_delete_slide():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.add_slide("Slide Content 2")
app.delete_slide(0)
assert app.slides == ["Slide Content 2"]
# Testing reordering slides
def test_reorder_slides():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.add_slide("Slide Content 2")
app.reorder_slides([1, 0])
assert app.slides == ["Slide Content 2", "Slide Content 1"]
# Testing the number of slides
def test_slide_count():
app = MockApp()
app.start_new_talk("Talk 1")
app.add_slide("Slide Content 1")
app.add_slide("Slide Content 2")
assert app.get_number_of_slides() == 2

@ -0,0 +1,15 @@
Project Name,Team Members,Project Description,Project Link / Code,Team Twitter Handles
presentation assistant,robert nowell,live visual aid for talks,loom,@robertnowell1
Vocal,"Jeremy Nixon, Amir Gamil, Eliott Hoffenberg, Trina Chatterjee, Ruby Yeh","Educational Video Generation, Prompt -> Youtube Video",,"@jvnixon, @amirbolous, @Eliotthoff, @trina_chatt"
Podgraph ,"DC, Leo, Anupam",Graph based podcast learning,https://github.com/dcsan/kbxt ; https://www.figma.com/file/sui06ZgDGXrHOVlrJDiOD7/Untitled?type=design&node-id=0%3A1&mode=design&t=LnQCl13XroVHVbxD-1,@anupambatra_ | @dcsan
"Listen, chat and learn!!!",James,Chat with a podcast to learn things,https://react.gitwit.dev/run/zfGVjrjsa6ZKaEU1PldW,@jamesmurdza
Recall,Liam & Caden,conversation information retrieval,https://recall-97b8b27a6a92.herokuapp.com/,
VoiceStudyBot,Konrad,Personal tutor to test your knowledge of a book,,@konrad_gnat
Short Form Upskill,"Margarita, Aditya, Johnny",TikTok Scrape and Transcribe ,margro2000/Learn (github.com),https://twitter.com/Marg_Groisman
Rohan,Rohan,Rohan,,
Envision: diagram dataset,Steve,An API to translate any technical concept into diagrams,https://github.com/stephenkfrey/diagrammatic,twitter.com/stevekfrey
Arxiv2Video,Lily Su,Converts an Arxiv web url to a short video,https://github.com/LilySu/Arxiv2Video,@excelsiorpred
Dir Chat,Andy Li,Combine to power of SQL and RAG to serach courses,,@xdotli
Empathy Coach,Ji Young Lim,A chatbot that coches people to make more empathetic conversations,,@jyl1030
Aimor,Brach Burdick,Platform for assessing and monitoring the psychological wellbeing of a body of students based on conversations with an AI therapist,https://aimor-git-staging-aimor.vercel.app/admin,https://twitter.com/__brach__
Structured TA bot Generation,Wenxi,Generate structured tutorial chatbot based on video transcript and potentially videos,https://github.com/wenxichen/video2ta ,
1 Project Name Team Members Project Description Project Link / Code Team Twitter Handles
2 presentation assistant robert nowell live visual aid for talks loom @robertnowell1
3 Vocal Jeremy Nixon, Amir Gamil, Eliott Hoffenberg, Trina Chatterjee, Ruby Yeh Educational Video Generation, Prompt -> Youtube Video @jvnixon, @amirbolous, @Eliotthoff, @trina_chatt
4 Podgraph DC, Leo, Anupam Graph based podcast learning https://github.com/dcsan/kbxt ; https://www.figma.com/file/sui06ZgDGXrHOVlrJDiOD7/Untitled?type=design&node-id=0%3A1&mode=design&t=LnQCl13XroVHVbxD-1 @anupambatra_ | @dcsan
5 Listen, chat and learn!!! James Chat with a podcast to learn things https://react.gitwit.dev/run/zfGVjrjsa6ZKaEU1PldW @jamesmurdza
6 Recall Liam & Caden conversation information retrieval https://recall-97b8b27a6a92.herokuapp.com/
7 VoiceStudyBot Konrad Personal tutor to test your knowledge of a book @konrad_gnat
8 Short Form Upskill Margarita, Aditya, Johnny TikTok Scrape and Transcribe margro2000/Learn (github.com) https://twitter.com/Marg_Groisman
9 Rohan Rohan Rohan
10 Envision: diagram dataset Steve An API to translate any technical concept into diagrams https://github.com/stephenkfrey/diagrammatic twitter.com/stevekfrey
11 Arxiv2Video Lily Su Converts an Arxiv web url to a short video https://github.com/LilySu/Arxiv2Video @excelsiorpred
12 Dir Chat Andy Li Combine to power of SQL and RAG to serach courses @xdotli
13 Empathy Coach Ji Young Lim A chatbot that coches people to make more empathetic conversations @jyl1030
14 Aimor Brach Burdick Platform for assessing and monitoring the psychological wellbeing of a body of students based on conversations with an AI therapist https://aimor-git-staging-aimor.vercel.app/admin https://twitter.com/__brach__
15 Structured TA bot Generation Wenxi Generate structured tutorial chatbot based on video transcript and potentially videos https://github.com/wenxichen/video2ta

@ -0,0 +1,38 @@
from ai_acceleerated_learning.Vocal import Vocal
vocal = Vocal()
def test_pass():
assert (
vocal.generate_video(
"I love to play basketball, and I am a very good player.",
"basketball",
)
== "Successfully generated a YouTube video for your prompt: I"
" love to play basketball, and I am a very good player."
)
def test_invalid_sports():
assert (
vocal.generate_video(
"I just ate some delicious tacos", "tacos"
)
== "Invalid sports entered!! Please enter a valid sport."
)
def test_invalid_prompt():
assert (
vocal.generate_video(987, "basketball")
== "Invalid prompt entered!! Please enter a valid prompt."
)
def test_not_string():
assert (
vocal.generate_video(789, 234)
== "Invalid prompt and sports entered!! Please enter valid"
" prompt and sport."
)

@ -0,0 +1,86 @@
# test_presentation_assistant.py
import pytest
from presentation_assistant import (
PresentationAssistant,
SlideNotFoundError,
)
@pytest.fixture
def assistant():
slides = [
"Welcome to our presentation!",
"Here is the agenda for today.",
"Let's dive into the first topic.",
"Thank you for attending.",
]
return PresentationAssistant(slides)
def test_init():
slides = ["Slide 1", "Slide 2"]
pa = PresentationAssistant(slides)
assert pa.slides == slides
assert pa.current_slide == 0
def test_next_slide(assistant):
assistant.next_slide()
assert assistant.current_slide == 1
assistant.next_slide()
assert assistant.current_slide == 2
def test_previous_slide(assistant):
assistant.current_slide = 2
assistant.previous_slide()
assert assistant.current_slide == 1
assistant.previous_slide()
assert assistant.current_slide == 0
def test_next_slide_at_end(assistant):
assistant.current_slide = len(assistant.slides) - 1
with pytest.raises(SlideNotFoundError):
assistant.next_slide()
def test_previous_slide_at_start(assistant):
with pytest.raises(SlideNotFoundError):
assistant.previous_slide()
def test_go_to_slide(assistant):
assistant.go_to_slide(2)
assert assistant.current_slide == 2
def test_go_to_slide_out_of_range(assistant):
with pytest.raises(SlideNotFoundError):
assistant.go_to_slide(len(assistant.slides))
def test_go_to_slide_negative(assistant):
with pytest.raises(SlideNotFoundError):
assistant.go_to_slide(-1)
def test_current_slide_content(assistant):
content = assistant.current_slide_content()
assert content == assistant.slides[0]
assistant.next_slide()
content = assistant.current_slide_content()
assert content == assistant.slides[1]
def test_show_slide(
assistant, capsys
): # capsys is a pytest fixture to capture stdout and stderr
assistant.show_slide()
captured = capsys.readouterr()
assert captured.out.strip() == assistant.slides[0]
assistant.next_slide()
assistant.show_slide()
captured = capsys.readouterr()
assert captured.out.strip() == assistant.slides[1]

@ -0,0 +1,29 @@
from swarms import Agent
from swarms.models.base_llm import AbstractLLM
class ExampleLLM(AbstractLLM):
def __init__():
pass
def run(self, task: str, *args, **kwargs):
pass
## Initialize the workflow
agent = Agent(
llm=ExampleLLM(),
max_loops="auto",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
interactive=True,
)
# Run the workflow on a task
agent(
"Generate a transcript for a youtube video on what swarms are!"
" Output a <DONE> token when done."
)

@ -59,6 +59,7 @@ rich = "13.5.2"
sqlalchemy = "*" sqlalchemy = "*"
bitsandbytes = "*" bitsandbytes = "*"
pgvector = "*" pgvector = "*"
cohere = "*"
sentence-transformers = "*" sentence-transformers = "*"
peft = "*" peft = "*"
psutil = "*" psutil = "*"

@ -28,6 +28,7 @@ from swarms.utils.data_to_text import data_to_text
from swarms.utils.parse_code import extract_code_from_markdown from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.pdf_to_text import pdf_to_text from swarms.utils.pdf_to_text import pdf_to_text
from swarms.utils.token_count_tiktoken import limit_tokens_from_string from swarms.utils.token_count_tiktoken import limit_tokens_from_string
from swarms.utils.execution_sandbox import execute_code_in_sandbox
# Utils # Utils
@ -625,6 +626,20 @@ class Agent:
response response
) )
# Code interpreter
if self.code_interpreter:
response = extract_code_from_markdown(
response
)
# Execute the code in the sandbox
response = execute_code_in_sandbox(
response
)
response = task + response
response = self.llm(
response, *args, **kwargs
)
# Add the response to the history # Add the response to the history
history.append(response) history.append(response)
@ -641,7 +656,6 @@ class Agent:
evaluated_response = self.evaluator( evaluated_response = self.evaluator(
response response
) )
out = ( out = (
f"Response: {response}\nEvaluated" f"Response: {response}\nEvaluated"
f" Response: {evaluated_response}" f" Response: {evaluated_response}"
@ -674,10 +688,6 @@ class Agent:
if self.parser: if self.parser:
response = self.parser(response) response = self.parser(response)
# If code interpreter is enabled then run the code
if self.code_interpreter:
self.run_code(response)
# If tools are enabled then execute the tools # If tools are enabled then execute the tools
if self.tools: if self.tools:
execute_tool_by_name( execute_tool_by_name(

@ -1,5 +1,7 @@
import asyncio
import logging import logging
import os
import subprocess
import tempfile
import traceback import traceback
from typing import Tuple from typing import Tuple
@ -51,21 +53,62 @@ async def execute_code_async(code: str) -> Tuple[str, str]:
return out, error_message return out, error_message
def execute_code_sandbox( def execute_code_in_sandbox(code: str, language: str = "python"):
code: str, async_on: bool = False
) -> Tuple[str, str]:
""" """
Executes the given code in a sandbox environment. Execute code in a specified language using subprocess and return the results or errors.
Args: Args:
code (str): The code to be executed. code (str): The code to be executed.
async_on (bool, optional): Indicates whether to execute the code asynchronously. language (str): The programming language of the code. Currently supports 'python' only.
Defaults to False.
Returns: Returns:
Tuple[str, str]: A tuple containing the stdout and stderr outputs of the code execution. dict: A dictionary containing either the result or any errors.
""" """
if async_on: result = {"output": None, "errors": None}
return asyncio.run(execute_code_async(code))
else: try:
return execute_code_async(code) if language == "python":
# Write the code to a temporary file
with tempfile.NamedTemporaryFile(
delete=False, suffix=".py", mode="w"
) as tmp:
tmp.write(code)
tmp_path = tmp.name
# Execute the code in a separate process
process = subprocess.run(
["python", tmp_path],
capture_output=True,
text=True,
timeout=10,
)
# Capture the output and errors
result["output"] = process.stdout
result["errors"] = process.stderr
else:
# Placeholder for other languages; each would need its own implementation
raise NotImplementedError(
f"Execution for {language} not implemented."
)
except subprocess.TimeoutExpired:
result["errors"] = "Execution timed out."
except Exception as e:
result["errors"] = str(e)
finally:
# Ensure the temporary file is removed after execution
if "tmp_path" in locals():
os.remove(tmp_path)
return result
# # Example usage
# code_to_execute = """
# print("Hello, world!")
# """
# execution_result = execute_code(code_to_execute)
# print(json.dumps(execution_result, indent=4))

Loading…
Cancel
Save