Former-commit-id: c9e08780f2
group-chat
Kye 1 year ago
parent 1fb272d791
commit 78d6a164fc

@ -21,6 +21,9 @@ agent-protocol
chromadb
exxa
open-interpreter
tabulate
colored
mkdocs

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.2 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 286 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 555 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 373 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 354 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 472 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 456 KiB

@ -1,146 +0,0 @@
# IDE
.idea/
.vscode/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# vscode
.vscode/
output/
outputs/
subs/
logs/
grounding/config/configs
grounding/version.py
vis/
tmp/

@ -1,201 +0,0 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2023 - present, IDEA Research.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

@ -1,327 +0,0 @@
<div align="center">
<img src="./.asset/grounding_dino_logo.png" width="30%">
</div>
# :sauropod: Grounding DINO
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
**[IDEA-CVR, IDEA-Research](https://github.com/IDEA-Research)**
[Shilong Liu](http://www.lsl.zone/), [Zhaoyang Zeng](https://scholar.google.com/citations?user=U_cvvUwAAAAJ&hl=zh-CN&oi=ao), [Tianhe Ren](https://rentainhe.github.io/), [Feng Li](https://scholar.google.com/citations?user=ybRe9GcAAAAJ&hl=zh-CN), [Hao Zhang](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=zh-CN), [Jie Yang](https://github.com/yangjie-cv), [Chunyuan Li](https://scholar.google.com/citations?user=Zd7WmXUAAAAJ&hl=zh-CN&oi=ao), [Jianwei Yang](https://jwyang.github.io/), [Hang Su](https://scholar.google.com/citations?hl=en&user=dxN1_X0AAAAJ&view_op=list_works&sortby=pubdate), [Jun Zhu](https://scholar.google.com/citations?hl=en&user=axsP38wAAAAJ), [Lei Zhang](https://www.leizhang.org/)<sup>:email:</sup>.
[[`Paper`](https://arxiv.org/abs/2303.05499)] [[`Demo`](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)] [[`BibTex`](#black_nib-citation)]
PyTorch implementation and pretrained models for Grounding DINO. For details, see the paper **[Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)**.
## :sun_with_face: Helpful Tutorial
- :grapes: [[Read our arXiv Paper](https://arxiv.org/abs/2303.05499)]
- :apple: [[Watch our simple introduction video on YouTube](https://youtu.be/wxWDt5UiwY8)]
- :blossom: &nbsp;[[Try the Colab Demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)]
- :sunflower: [[Try our Official Huggingface Demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)]
- :maple_leaf: [[Watch the Step by Step Tutorial about GroundingDINO by Roboflow AI](https://youtu.be/cMa77r3YrDk)]
- :mushroom: [[GroundingDINO: Automated Dataset Annotation and Evaluation by Roboflow AI](https://youtu.be/C4NqaRBz_Kw)]
- :hibiscus: [[Accelerate Image Annotation with SAM and GroundingDINO by Roboflow AI](https://youtu.be/oEQYStnF2l8)]
- :white_flower: [[Autodistill: Train YOLOv8 with ZERO Annotations based on Grounding-DINO and Grounded-SAM by Roboflow AI](https://github.com/autodistill/autodistill)]
<!-- Grounding DINO Methods |
[![arXiv](https://img.shields.io/badge/arXiv-2303.05499-b31b1b.svg)](https://arxiv.org/abs/2303.05499)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/wxWDt5UiwY8) -->
<!-- Grounding DINO Demos |
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) -->
<!-- [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/cMa77r3YrDk)
[![HuggingFace space](https://img.shields.io/badge/🤗-HuggingFace%20Space-cyan.svg)](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/oEQYStnF2l8)
[![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/C4NqaRBz_Kw) -->
## :sparkles: Highlight Projects
- [DetGPT: Detect What You Need via Reasoning](https://github.com/OptimalScale/DetGPT)
- [Grounded-SAM: Marrying Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)
- [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb)
- [Grounding DINO with GLIGEN for Controllable Image Editing](demo/image_editing_with_groundingdino_gligen.ipynb)
- [OpenSeeD: A Simple and Strong Openset Segmentation Model](https://github.com/IDEA-Research/OpenSeeD)
- [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
- [X-GPT: Conversational Visual Agent supported by X-Decoder](https://github.com/microsoft/X-Decoder/tree/xgpt)
- [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://github.com/gligen/GLIGEN)
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
<!-- Extensions | [Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything); [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb); [Grounding DINO with GLIGEN](demo/image_editing_with_groundingdino_gligen.ipynb) -->
<!-- Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! -->
## :bulb: Highlight
- **Open-Set Detection.** Detect **everything** with language!
- **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
- **Flexible.** Collaboration with Stable Diffusion for Image Editting.
## :fire: News
- **`2023/06/17`**: We provide an example to evaluate Grounding DINO on COCO zero-shot performance.
- **`2023/04/15`**: Refer to [CV in the Wild Readings](https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings) for those who are interested in open-set recognition!
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
- **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
- **`2023/04/06`**: We build a new demo by marrying GroundingDINO with [Segment-Anything](https://github.com/facebookresearch/segment-anything) named **[Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)** aims to support segmentation in GroundingDINO.
- **`2023/03/28`**: A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)]
- **`2023/03/28`**: Add a [demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space!
- **`2023/03/27`**: Support CPU-only mode. Now the model can run on machines without GPUs.
- **`2023/03/25`**: A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)]
- **`2023/03/22`**: Code is available Now!
<details open>
<summary><font size="4">
Description
</font></summary>
<a href="https://arxiv.org/abs/2303.05499">Paper</a> introduction.
<img src=".asset/hero_figure.png" alt="ODinW" width="100%">
Marrying <a href="https://github.com/IDEA-Research/GroundingDINO">Grounding DINO</a> and <a href="https://github.com/gligen/GLIGEN">GLIGEN</a>
<img src="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GD_GLIGEN.png" alt="gd_gligen" width="100%">
</details>
## :star: Explanations/Tips for Grounding DINO Inputs and Outputs
- Grounding DINO accepts an `(image, text)` pair as inputs.
- It outputs `900` (by default) object boxes. Each box has similarity scores across all input words. (as shown in Figures below.)
- We defaultly choose the boxes whose highest similarities are higher than a `box_threshold`.
- We extract the words whose similarities are higher than the `text_threshold` as predicted labels.
- If you want to obtain objects of specific phrases, like the `dogs` in the sentence `two dogs with a stick.`, you can select the boxes with highest text similarities with `dogs` as final outputs.
- Note that each word can be split to **more than one** tokens with different tokenlizers. The number of words in a sentence may not equal to the number of text tokens.
- We suggest separating different category names with `.` for Grounding DINO.
![model_explain1](.asset/model_explan1.PNG)
![model_explain2](.asset/model_explan2.PNG)
## :label: TODO
- [x] Release inference code and demo.
- [x] Release checkpoints.
- [x] Grounding DINO with Stable Diffusion and GLIGEN demos.
- [ ] Release training codes.
## :hammer_and_wrench: Install
**Note:**
If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available.
**Installation:**
Clone the GroundingDINO repository from GitHub.
```bash
git clone https://github.com/IDEA-Research/GroundingDINO.git
```
Change the current directory to the GroundingDINO folder.
```bash
cd GroundingDINO/
```
Install the required dependencies in the current directory.
```bash
pip install -e .
```
Download pre-trained model weights.
```bash
mkdir weights
cd weights
wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
cd ..
```
## :arrow_forward: Demo
Check your GPU ID (only if you're using a GPU)
```bash
nvidia-smi
```
Replace `{GPU ID}`, `image_you_want_to_detect.jpg`, and `"dir you want to save the output"` with appropriate values in the following command
```bash
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p weights/groundingdino_swint_ogc.pth \
-i image_you_want_to_detect.jpg \
-o "dir you want to save the output" \
-t "chair"
[--cpu-only] # open it for cpu mode
```
If you would like to specify the phrases to detect, here is a demo:
```bash
CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p ./groundingdino_swint_ogc.pth \
-i .asset/cat_dog.jpeg \
-o logs/1111 \
-t "There is a cat and a dog in the image ." \
--token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]"
[--cpu-only] # open it for cpu mode
```
The token_spans specify the start and end positions of a phrases. For example, the first phrase is `[[9, 10], [11, 14]]`. `"There is a cat and a dog in the image ."[9:10] = 'a'`, `"There is a cat and a dog in the image ."[11:14] = 'cat'`. Hence it refers to the phrase `a cat` . Similarly, the `[[19, 20], [21, 24]]` refers to the phrase `a dog`.
See the `demo/inference_on_a_image.py` for more details.
**Running with Python:**
```python
from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2
model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
IMAGE_PATH = "weights/dog-3.jpeg"
TEXT_PROMPT = "chair . person . dog ."
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25
image_source, image = load_image(IMAGE_PATH)
boxes, logits, phrases = predict(
model=model,
image=image,
caption=TEXT_PROMPT,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD
)
annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
cv2.imwrite("annotated_image.jpg", annotated_frame)
```
**Web UI**
We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.
**Notebooks**
- We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
- We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
## COCO Zero-shot Evaluations
We provide an example to evaluate Grounding DINO zero-shot performance on COCO. The results should be **48.5**.
```bash
CUDA_VISIBLE_DEVICES=0 \
python demo/test_ap_on_coco.py \
-c groundingdino/config/GroundingDINO_SwinT_OGC.py \
-p weights/groundingdino_swint_ogc.pth \
--anno_path /path/to/annoataions/ie/instances_val2017.json \
--image_dir /path/to/imagedir/ie/val2017
```
## :luggage: Checkpoints
<!-- insert a table -->
<table>
<thead>
<tr style="text-align: right;">
<th></th>
<th>name</th>
<th>backbone</th>
<th>Data</th>
<th>box AP on COCO</th>
<th>Checkpoint</th>
<th>Config</th>
</tr>
</thead>
<tbody>
<tr>
<th>1</th>
<td>GroundingDINO-T</td>
<td>Swin-T</td>
<td>O365,GoldG,Cap4M</td>
<td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth">HF link</a></td>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
</tr>
<tr>
<th>2</th>
<td>GroundingDINO-B</td>
<td>Swin-B</td>
<td>COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO</td>
<td>56.7 </td>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth">HF link</a>
<td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinB.cfg.py">link</a></td>
</tr>
</tbody>
</table>
## :medal_military: Results
<details open>
<summary><font size="4">
COCO Object Detection Results
</font></summary>
<img src=".asset/COCO.png" alt="COCO" width="100%">
</details>
<details open>
<summary><font size="4">
ODinW Object Detection Results
</font></summary>
<img src=".asset/ODinW.png" alt="ODinW" width="100%">
</details>
<details open>
<summary><font size="4">
Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
</font></summary>
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_stablediffusion.ipynb">notebook</a> for more details.
<img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
</details>
<details open>
<summary><font size="4">
Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing.
</font></summary>
See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_gligen.ipynb">notebook</a> for more details.
<img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
</details>
## :sauropod: Model: Grounding DINO
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
![arch](.asset/arch.png)
## :hearts: Acknowledgement
Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.
Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
## :black_nib: Citation
If you find our work helpful for your research, please consider citing the following BibTeX entry.
```bibtex
@article{liu2023grounding,
title={Grounding dino: Marrying dino with grounded pre-training for open-set object detection},
author={Liu, Shilong and Zeng, Zhaoyang and Ren, Tianhe and Li, Feng and Zhang, Hao and Yang, Jie and Li, Chunyuan and Yang, Jianwei and Su, Hang and Zhu, Jun and others},
journal={arXiv preprint arXiv:2303.05499},
year={2023}
}
```

@ -1,81 +0,0 @@
import typer
from groundingdino.util.inference import load_model, load_image, predict
from tqdm import tqdm
import torchvision
import fiftyone as fo
def main(
image_directory: str = 'test_grounding_dino',
text_prompt: str = 'bus, car',
box_threshold: float = 0.15,
text_threshold: float = 0.10,
export_dataset: bool = False,
view_dataset: bool = False,
export_annotated_images: bool = True,
weights_path : str = "groundingdino_swint_ogc.pth",
config_path: str = "../../GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py",
subsample: int = None,
):
model = load_model(config_path, weights_path)
dataset = fo.Dataset.from_images_dir(image_directory)
if subsample is not None:
if subsample < len(dataset):
dataset = dataset.take(subsample).clone()
for sample in tqdm(dataset):
image_source, image = load_image(sample.filepath)
boxes, logits, phrases = predict(
model=model,
image=image,
caption=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold,
)
detections = []
for box, logit, phrase in zip(boxes, logits, phrases):
rel_box = torchvision.ops.box_convert(box, 'cxcywh', 'xywh')
detections.append(
fo.Detection(
label=phrase,
bounding_box=rel_box,
confidence=logit,
))
# Store detections in a field name of your choice
sample["detections"] = fo.Detections(detections=detections)
sample.save()
# loads the voxel fiftyone UI ready for viewing the dataset.
if view_dataset:
session = fo.launch_app(dataset)
session.wait()
# exports COCO dataset ready for training
if export_dataset:
dataset.export(
'coco_dataset',
dataset_type=fo.types.COCODetectionDataset,
)
# saves bounding boxes plotted on the input images to disk
if export_annotated_images:
dataset.draw_labels(
'images_with_bounding_boxes',
label_fields=['detections']
)
if __name__ == '__main__':
typer.run(main)

@ -1,120 +0,0 @@
import argparse
import cv2
import os
from PIL import Image
import numpy as np
import warnings
import torch
# prepare the environment
os.system("python setup.py build develop --user")
os.system("pip install packaging==21.3")
os.system("pip install gradio")
warnings.filterwarnings("ignore")
import gradio as gr
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict
from groundingdino.util.inference import annotate, predict
import groundingdino.datasets.transforms as T
from huggingface_hub import hf_hub_download
# Use this command for evaluate the Grounding DINO model
config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def image_transform_grounding(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image, _ = transform(init_image, None) # 3, h, w
return init_image, image
def image_transform_grounding_for_vis(init_image):
transform = T.Compose([
T.RandomResize([800], max_size=1333),
])
image, _ = transform(init_image, None) # 3, h, w
return image
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
init_image = input_image.convert("RGB")
_, image_tensor = image_transform_grounding(init_image)
image_pil: Image = image_transform_grounding_for_vis(init_image)
# run grounidng
boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cpu')
annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
return image_with_box
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
block = gr.Blocks().queue()
with block:
gr.Markdown("# [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO)")
gr.Markdown("### Open-World Detection with Grounding DINO")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
grounding_caption = gr.Textbox(label="Detection Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
# label="grounding results"
).style(full_width=True, full_height=True)
# gallery = gr.Gallery(label="Generated images", show_label=False).style(
# grid=[1], height="auto", container=True, full_width=True, full_height=True)
run_button.click(fn=run_grounding, inputs=[
input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery])
block.launch(server_name='0.0.0.0', server_port=7579, debug=args.debug, share=args.share)

File diff suppressed because one or more lines are too long

@ -1,212 +0,0 @@
import argparse
import os
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
from groundingdino.util.vl_utils import create_positive_map_from_span
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, cpu_only=False):
args = SLConfig.fromfile(model_config_path)
args.device = "cuda" if not cpu_only else "cpu"
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None):
assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!"
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
device = "cuda" if not cpu_only else "cpu"
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"][0] # (nq, 4)
# filter output
if token_spans is None:
logits_filt = logits.cpu().clone()
boxes_filt = boxes.cpu().clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
else:
# given-phrase mode
positive_maps = create_positive_map_from_span(
model.tokenizer(text_prompt),
token_span=token_spans
).to(image.device) # n_phrase, 256
logits_for_phrases = positive_maps @ logits.T # n_phrase, nq
all_logits = []
all_phrases = []
all_boxes = []
for (token_span, logit_phr) in zip(token_spans, logits_for_phrases):
# get phrase
phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span])
# get mask
filt_mask = logit_phr > box_threshold
# filt box
all_boxes.append(boxes[filt_mask])
# filt logits
all_logits.append(logit_phr[filt_mask])
if with_logits:
logit_phr_num = logit_phr[filt_mask]
all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num])
else:
all_phrases.extend([phrase for _ in range(len(filt_mask))])
boxes_filt = torch.cat(all_boxes, dim=0).cpu()
pred_phrases = all_phrases
return boxes_filt, pred_phrases
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounding DINO example", add_help=True)
parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file")
parser.add_argument(
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file")
parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--token_spans", type=str, default=None, help=
"The positions of start and end positions of phrases of interest. \
For example, a caption is 'a cat and a dog', \
if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \
if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \
")
parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False")
args = parser.parse_args()
# cfg
config_file = args.config_file # change the path of the model config file
checkpoint_path = args.checkpoint_path # change the path of the model
image_path = args.image_path
text_prompt = args.text_prompt
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
token_spans = args.token_spans
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, checkpoint_path, cpu_only=args.cpu_only)
# visualize raw image
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# set the text_threshold to None if token_spans is set.
if token_spans is not None:
text_threshold = None
print("Using token_spans. Set the text_threshold to None.")
# run model
boxes_filt, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, cpu_only=args.cpu_only, token_spans=eval(token_spans)
)
# visualize pred
size = image_pil.size
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,
}
# import ipdb; ipdb.set_trace()
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
image_with_box.save(os.path.join(output_dir, "pred.jpg"))

@ -1,230 +0,0 @@
import argparse
import time
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from groundingdino.models import build_model
import groundingdino.datasets.transforms as T
from groundingdino.util import box_ops, get_tokenlizer
from groundingdino.util.misc import clean_state_dict, collate_fn
from groundingdino.util.slconfig import SLConfig
# from torchvision.datasets import CocoDetection
import torchvision
from groundingdino.util.vl_utils import build_captions_and_token_span, create_positive_map_from_span
from groundingdino.datasets.cocogrounding_eval import CocoGroundingEvaluator
def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["ema_model"]), strict=False)
model.eval()
return model
class CocoDetection(torchvision.datasets.CocoDetection):
def __init__(self, img_folder, ann_file, transforms):
super().__init__(img_folder, ann_file)
self._transforms = transforms
def __getitem__(self, idx):
img, target = super().__getitem__(idx) # target: list
# import ipdb; ipdb.set_trace()
w, h = img.size
boxes = [obj["bbox"] for obj in target]
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2] # xywh -> xyxy
boxes[:, 0::2].clamp_(min=0, max=w)
boxes[:, 1::2].clamp_(min=0, max=h)
# filt invalid boxes/masks/keypoints
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
target_new = {}
image_id = self.ids[idx]
target_new["image_id"] = image_id
target_new["boxes"] = boxes
target_new["orig_size"] = torch.as_tensor([int(h), int(w)])
if self._transforms is not None:
img, target = self._transforms(img, target_new)
return img, target
class PostProcessCocoGrounding(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
def __init__(self, num_select=300, coco_api=None, tokenlizer=None) -> None:
super().__init__()
self.num_select = num_select
assert coco_api is not None
category_dict = coco_api.dataset['categories']
cat_list = [item['name'] for item in category_dict]
captions, cat2tokenspan = build_captions_and_token_span(cat_list, True)
tokenspanlist = [cat2tokenspan[cat] for cat in cat_list]
positive_map = create_positive_map_from_span(
tokenlizer(captions), tokenspanlist) # 80, 256. normed
id_map = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 13, 12: 14, 13: 15, 14: 16, 15: 17, 16: 18, 17: 19, 18: 20, 19: 21, 20: 22, 21: 23, 22: 24, 23: 25, 24: 27, 25: 28, 26: 31, 27: 32, 28: 33, 29: 34, 30: 35, 31: 36, 32: 37, 33: 38, 34: 39, 35: 40, 36: 41, 37: 42, 38: 43, 39: 44, 40: 46,
41: 47, 42: 48, 43: 49, 44: 50, 45: 51, 46: 52, 47: 53, 48: 54, 49: 55, 50: 56, 51: 57, 52: 58, 53: 59, 54: 60, 55: 61, 56: 62, 57: 63, 58: 64, 59: 65, 60: 67, 61: 70, 62: 72, 63: 73, 64: 74, 65: 75, 66: 76, 67: 77, 68: 78, 69: 79, 70: 80, 71: 81, 72: 82, 73: 84, 74: 85, 75: 86, 76: 87, 77: 88, 78: 89, 79: 90}
# build a mapping from label_id to pos_map
new_pos_map = torch.zeros((91, 256))
for k, v in id_map.items():
new_pos_map[v] = positive_map[k]
self.positive_map = new_pos_map
@torch.no_grad()
def forward(self, outputs, target_sizes, not_to_xyxy=False):
""" Perform the computation
Parameters:
outputs: raw outputs of the model
target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch
For evaluation, this must be the original image size (before any data augmentation)
For visualization, this should be the image size after data augment, but before padding
"""
num_select = self.num_select
out_logits, out_bbox = outputs['pred_logits'], outputs['pred_boxes']
# pos map to logit
prob_to_token = out_logits.sigmoid() # bs, 100, 256
pos_maps = self.positive_map.to(prob_to_token.device)
# (bs, 100, 256) @ (91, 256).T -> (bs, 100, 91)
prob_to_label = prob_to_token @ pos_maps.T
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
assert len(out_logits) == len(target_sizes)
assert target_sizes.shape[1] == 2
prob = prob_to_label
topk_values, topk_indexes = torch.topk(
prob.view(out_logits.shape[0], -1), num_select, dim=1)
scores = topk_values
topk_boxes = topk_indexes // prob.shape[2]
labels = topk_indexes % prob.shape[2]
if not_to_xyxy:
boxes = out_bbox
else:
boxes = box_ops.box_cxcywh_to_xyxy(out_bbox)
boxes = torch.gather(
boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{'scores': s, 'labels': l, 'boxes': b}
for s, l, b in zip(scores, labels, boxes)]
return results
def main(args):
# config
cfg = SLConfig.fromfile(args.config_file)
# build model
model = load_model(args.config_file, args.checkpoint_path)
model = model.to(args.device)
model = model.eval()
# build dataloader
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
dataset = CocoDetection(
args.image_dir, args.anno_path, transforms=transform)
data_loader = DataLoader(
dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, collate_fn=collate_fn)
# build post processor
tokenlizer = get_tokenlizer.get_tokenlizer(cfg.text_encoder_type)
postprocessor = PostProcessCocoGrounding(
coco_api=dataset.coco, tokenlizer=tokenlizer)
# build evaluator
evaluator = CocoGroundingEvaluator(
dataset.coco, iou_types=("bbox",), useCats=True)
# build captions
category_dict = dataset.coco.dataset['categories']
cat_list = [item['name'] for item in category_dict]
caption = " . ".join(cat_list) + ' .'
print("Input text prompt:", caption)
# run inference
start = time.time()
for i, (images, targets) in enumerate(data_loader):
# get images and captions
images = images.tensors.to(args.device)
bs = images.shape[0]
input_captions = [caption] * bs
# feed to the model
outputs = model(images, captions=input_captions)
orig_target_sizes = torch.stack(
[t["orig_size"] for t in targets], dim=0).to(images.device)
results = postprocessor(outputs, orig_target_sizes)
cocogrounding_res = {
target["image_id"]: output for target, output in zip(targets, results)}
evaluator.update(cocogrounding_res)
if (i+1) % 30 == 0:
used_time = time.time() - start
eta = len(data_loader) / (i+1e-5) * used_time - used_time
print(
f"processed {i}/{len(data_loader)} images. time: {used_time:.2f}s, ETA: {eta:.2f}s")
evaluator.synchronize_between_processes()
evaluator.accumulate()
evaluator.summarize()
print("Final results:", evaluator.coco_eval["bbox"].stats.tolist())
if __name__ == "__main__":
parser = argparse.ArgumentParser(
"Grounding DINO eval on COCO", add_help=True)
# load model
parser.add_argument("--config_file", "-c", type=str,
required=True, help="path to config file")
parser.add_argument(
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--device", type=str, default="cuda",
help="running device (default: cuda)")
# post processing
parser.add_argument("--num_select", type=int, default=300,
help="number of topk to select")
# coco info
parser.add_argument("--anno_path", type=str,
required=True, help="coco root")
parser.add_argument("--image_dir", type=str,
required=True, help="coco image dir")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers for dataloader")
args = parser.parse_args()
main(args)

@ -1,10 +0,0 @@
torch
torchvision
transformers
addict
yapf
timm
numpy
opencv-python
supervision==0.6.0
pycocotools

@ -1,208 +0,0 @@
# coding=utf-8
# Copyright 2022 The IDEA Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ------------------------------------------------------------------------------------------------
# Modified from
# https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/setup.py
# https://github.com/facebookresearch/detectron2/blob/main/setup.py
# https://github.com/open-mmlab/mmdetection/blob/master/setup.py
# https://github.com/Oneflow-Inc/libai/blob/main/setup.py
# ------------------------------------------------------------------------------------------------
import glob
import os
import subprocess
import torch
from setuptools import find_packages, setup
from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
# groundingdino version info
version = "0.1.0"
package_name = "groundingdino"
cwd = os.path.dirname(os.path.abspath(__file__))
sha = "Unknown"
try:
sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip()
except Exception:
pass
def write_version_file():
version_path = os.path.join(cwd, "groundingdino", "version.py")
with open(version_path, "w") as f:
f.write(f"__version__ = '{version}'\n")
# f.write(f"git_version = {repr(sha)}\n")
requirements = ["torch", "torchvision"]
torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, "groundingdino", "models", "GroundingDINO", "csrc")
main_source = os.path.join(extensions_dir, "vision.cpp")
sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob(
os.path.join(extensions_dir, "*.cu")
)
sources = [main_source] + sources
extension = CppExtension
extra_compile_args = {"cxx": []}
define_macros = []
if CUDA_HOME is not None and (torch.cuda.is_available() or "TORCH_CUDA_ARCH_LIST" in os.environ):
print("Compiling with CUDA")
extension = CUDAExtension
sources += source_cuda
define_macros += [("WITH_CUDA", None)]
extra_compile_args["nvcc"] = [
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
]
else:
print("Compiling without CUDA")
define_macros += [("WITH_HIP", None)]
extra_compile_args["nvcc"] = []
return None
sources = [os.path.join(extensions_dir, s) for s in sources]
include_dirs = [extensions_dir]
ext_modules = [
extension(
"groundingdino._C",
sources,
include_dirs=include_dirs,
define_macros=define_macros,
extra_compile_args=extra_compile_args,
)
]
return ext_modules
def parse_requirements(fname="requirements.txt", with_version=True):
"""Parse the package dependencies listed in a requirements file but strips
specific versioning information.
Args:
fname (str): path to requirements file
with_version (bool, default=False): if True include version specs
Returns:
List[str]: list of requirements items
CommandLine:
python -c "import setup; print(setup.parse_requirements())"
"""
import re
import sys
from os.path import exists
require_fpath = fname
def parse_line(line):
"""Parse information from a line in a requirements text file."""
if line.startswith("-r "):
# Allow specifying requirements in other files
target = line.split(" ")[1]
for info in parse_require_file(target):
yield info
else:
info = {"line": line}
if line.startswith("-e "):
info["package"] = line.split("#egg=")[1]
elif "@git+" in line:
info["package"] = line
else:
# Remove versioning from the package
pat = "(" + "|".join([">=", "==", ">"]) + ")"
parts = re.split(pat, line, maxsplit=1)
parts = [p.strip() for p in parts]
info["package"] = parts[0]
if len(parts) > 1:
op, rest = parts[1:]
if ";" in rest:
# Handle platform specific dependencies
# http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
version, platform_deps = map(str.strip, rest.split(";"))
info["platform_deps"] = platform_deps
else:
version = rest # NOQA
info["version"] = (op, version)
yield info
def parse_require_file(fpath):
with open(fpath, "r") as f:
for line in f.readlines():
line = line.strip()
if line and not line.startswith("#"):
for info in parse_line(line):
yield info
def gen_packages_items():
if exists(require_fpath):
for info in parse_require_file(require_fpath):
parts = [info["package"]]
if with_version and "version" in info:
parts.extend(info["version"])
if not sys.version.startswith("3.4"):
# apparently package_deps are broken in 3.4
platform_deps = info.get("platform_deps")
if platform_deps is not None:
parts.append(";" + platform_deps)
item = "".join(parts)
yield item
packages = list(gen_packages_items())
return packages
if __name__ == "__main__":
print(f"Building wheel {package_name}-{version}")
with open("LICENSE", "r", encoding="utf-8") as f:
license = f.read()
write_version_file()
setup(
name="groundingdino",
version="0.1.0",
author="International Digital Economy Academy, Shilong Liu",
url="https://github.com/IDEA-Research/GroundingDINO",
description="open-set object detector",
license=license,
install_requires=parse_requirements("requirements.txt"),
packages=find_packages(
exclude=(
"configs",
"tests",
)
),
ext_modules=get_extensions(),
cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
)

@ -35,12 +35,15 @@ from swarms.agents.models.groundingdino.util.slconfig import SLConfig
from swarms.agents.models.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
from swarms.agents.models.segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
import cv2
import numpy as np
import matplotlib.pyplot as plt
import wget
#prompts
VISUAL_AGENT_PREFIX = """
Worker Multi-Modal Agent is designed to be able to assist with
a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics.

Loading…
Cancel
Save