[FIX][Alternative swarm architectures]

pull/584/head
Your Name 4 months ago
parent 83763c372e
commit 79c88e3740

@ -156,7 +156,7 @@ graph TD
# Mixture of Agents Architecture
### Mixture of Agents Architecture
```mermaid
@ -176,4 +176,415 @@ graph TD
J --> K[Final Output]
```
## Alternative Experimental Architectures
### **1. Circular Swarm**
#### Input Arguments:
- **name** (str): Name of the swarm.
- **description** (str): Description of the swarm.
- **goal** (str): Goal of the swarm.
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
- **return_full_history** (bool): Whether to return the full conversation history.
#### Functionality:
Agents pass tasks in a circular manner, where each agent works on the next task in the list.
```mermaid
graph TD
Task1 --> Agent1
Agent1 --> Agent2
Agent2 --> Agent3
Agent3 --> Task2
Task2 --> Agent1
```
---
### **2. Linear Swarm**
#### Input Arguments:
- **name** (str): Name of the swarm.
- **description** (str): Description of the swarm.
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
- **conversation** (Conversation): Conversation object.
- **return_full_history** (bool): Whether to return the full conversation history.
#### Functionality:
Agents pass tasks in a linear fashion, each agent working on one task sequentially.
```mermaid
graph LR
Task1 --> Agent1
Agent1 --> Agent2
Agent2 --> Agent3
Agent3 --> Task2
```
---
### **3. Star Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
A central agent (Agent 1) executes the tasks first, followed by the other agents working in parallel.
```mermaid
graph TD
Task1 --> Agent1
Agent1 --> Agent2
Agent1 --> Agent3
Agent1 --> Agent4
```
---
### **4. Mesh Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Each agent works on tasks randomly from a task queue, until the task queue is empty.
```mermaid
graph TD
Task1 --> Agent1
Task2 --> Agent2
Task3 --> Agent3
Task4 --> Agent4
Task5 --> Agent1
Task6 --> Agent2
```
---
### **5. Grid Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Agents are structured in a grid, and tasks are distributed accordingly.
```mermaid
graph TD
Task1 --> Agent1
Task2 --> Agent2
Task3 --> Agent3
Task4 --> Agent4
```
---
### **6. Pyramid Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Agents are arranged in a pyramid structure. Each level of agents works in sequence.
```mermaid
graph TD
Task1 --> Agent1
Agent1 --> Agent2
Agent2 --> Agent3
Agent3 --> Task2
```
---
### **7. Fibonacci Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Agents work according to the Fibonacci sequence, where the number of agents working on tasks follows this progression.
```mermaid
graph TD
Task1 --> Agent1
Agent1 --> Agent2
Agent2 --> Agent3
Task2 --> Agent5
Agent5 --> Agent8
```
---
### **8. Prime Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Agents are assigned tasks based on prime number indices in the list of agents.
```mermaid
graph TD
Task1 --> Agent2
Task2 --> Agent3
Task3 --> Agent5
Task4 --> Agent7
```
---
### **9. Power Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Agents work on tasks following powers of two.
```mermaid
graph TD
Task1 --> Agent1
Task2 --> Agent2
Task3 --> Agent4
Task4 --> Agent8
```
---
### **10. Sigmoid Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **tasks** (List[str]): List of tasks for the agents.
#### Functionality:
Agents are selected based on the sigmoid function, with higher-indexed agents handling more complex tasks.
```mermaid
graph TD
Task1 --> Agent1
Task2 --> Agent2
Task3 --> Agent3
Task4 --> Agent4
```
---
### **11. Sinusoidal Swarm**
#### Input Arguments:
- **agents** (AgentListType): List of agents involved.
- **task** (str): Task for the agents to work on.
#### Functionality:
Agents are assigned tasks based on a sinusoidal pattern.
```mermaid
graph TD
Task --> Agent1
Agent1 --> Agent2
Agent2 --> Agent3
Agent3 --> Task2
```
---
Each of these swarm architectures enables different task distribution and agent coordination strategies, making it possible to select the right architecture for specific types of agent-based problem-solving scenarios.
## Examples
```python
import asyncio
import os
from dotenv import load_dotenv
from loguru import logger
from swarm_models import OpenAIChat
from tickr_agent.main import TickrAgent
from swarms.structs.swarming_architectures import (
circular_swarm,
linear_swarm,
mesh_swarm,
pyramid_swarm,
star_swarm,
)
# Load environment variables (API keys)
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
# Initialize the OpenAI model
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4", temperature=0.1
)
# Custom Financial Agent System Prompts
STOCK_ANALYSIS_PROMPT = """
You are an expert financial analyst. Your task is to analyze stock market data for a company
and provide insights on whether to buy, hold, or sell. Analyze trends, financial ratios, and market conditions.
"""
NEWS_SUMMARIZATION_PROMPT = """
You are a financial news expert. Summarize the latest news related to a company and provide insights on
how it could impact its stock price. Be concise and focus on the key takeaways.
"""
RATIO_CALCULATION_PROMPT = """
You are a financial ratio analyst. Your task is to calculate key financial ratios for a company
based on the available data, such as P/E ratio, debt-to-equity ratio, and return on equity.
Explain what each ratio means for investors.
"""
# Example Usage
# Define stock tickers
stocks = ["AAPL", "TSLA"]
# Initialize Financial Analysis Agents
stock_analysis_agent = TickrAgent(
agent_name="Stock-Analysis-Agent",
system_prompt=STOCK_ANALYSIS_PROMPT,
stocks=stocks,
)
news_summarization_agent = TickrAgent(
agent_name="News-Summarization-Agent",
system_prompt=NEWS_SUMMARIZATION_PROMPT,
stocks=stocks,
)
ratio_calculation_agent = TickrAgent(
agent_name="Ratio-Calculation-Agent",
system_prompt=RATIO_CALCULATION_PROMPT,
stocks=stocks,
)
# Create a list of agents for swarming
agents = [
stock_analysis_agent,
news_summarization_agent,
ratio_calculation_agent,
]
# Define financial analysis tasks
tasks = [
"Analyze the stock performance of Apple (AAPL) in the last 6 months.",
"Summarize the latest financial news on Tesla (TSLA).",
"Calculate the P/E ratio and debt-to-equity ratio for Amazon (AMZN).",
]
# -------------------------------# Showcase Circular Swarm
# -------------------------------
logger.info("Starting Circular Swarm for financial analysis.")
circular_result = circular_swarm(agents, tasks)
logger.info(f"Circular Swarm Result:\n{circular_result}\n")
# -------------------------------
# Showcase Linear Swarm
# -------------------------------
logger.info("Starting Linear Swarm for financial analysis.")
linear_result = linear_swarm(agents, tasks)
logger.info(f"Linear Swarm Result:\n{linear_result}\n")
# -------------------------------
# Showcase Star Swarm
# -------------------------------
logger.info("Starting Star Swarm for financial analysis.")
star_result = star_swarm(agents, tasks)
logger.info(f"Star Swarm Result:\n{star_result}\n")
# -------------------------------
# Showcase Mesh Swarm
# -------------------------------
logger.info("Starting Mesh Swarm for financial analysis.")
mesh_result = mesh_swarm(agents, tasks)
logger.info(f"Mesh Swarm Result:\n{mesh_result}\n")
# -------------------------------
# Showcase Pyramid Swarm
# -------------------------------
logger.info("Starting Pyramid Swarm for financial analysis.")
pyramid_result = pyramid_swarm(agents, tasks)
logger.info(f"Pyramid Swarm Result:\n{pyramid_result}\n")
# -------------------------------
# Example: One-to-One Communication between Agents
# -------------------------------
logger.info(
"Starting One-to-One communication between Stock and News agents."
)
one_to_one_result = stock_analysis_agent.run(
"Analyze Apple stock performance, and then send the result to the News Summarization Agent"
)
news_summary_result = news_summarization_agent.run(one_to_one_result)
logger.info(
f"One-to-One Communication Result:\n{news_summary_result}\n"
)
# -------------------------------
# Example: Broadcasting to all agents
# -------------------------------
async def broadcast_task():
logger.info("Broadcasting task to all agents.")
task = "Summarize the overall stock market performance today."
await asyncio.gather(*[agent.run(task) for agent in agents])
asyncio.run(broadcast_task())
# -------------------------------
# Deep Comments & Explanations
# -------------------------------
"""
Explanation of Key Components:
1. **Agents**:
- We created three specialized agents for financial analysis: Stock Analysis, News Summarization, and Ratio Calculation.
- Each agent is provided with a custom system prompt that defines their unique task in analyzing stock data.
2. **Swarm Examples**:
- **Circular Swarm**: Agents take turns processing tasks in a circular manner.
- **Linear Swarm**: Tasks are processed sequentially by each agent.
- **Star Swarm**: The first agent (Stock Analysis) processes all tasks before distributing them to other agents.
- **Mesh Swarm**: Agents work on random tasks from the task queue.
- **Pyramid Swarm**: Agents are arranged in a pyramid structure, processing tasks layer by layer.
3. **One-to-One Communication**:
- This showcases how one agent can pass its result to another agent for further processing, useful for complex workflows where agents depend on each other.
4. **Broadcasting**:
- The broadcasting function demonstrates how a single task can be sent to all agents simultaneously. This can be useful for situations like summarizing daily stock market performance across multiple agents.
5. **Logging with Loguru**:
- We use `loguru` for detailed logging throughout the swarms. This helps to track the flow of information and responses from each agent.
"""
```

@ -0,0 +1,175 @@
import asyncio
import os
from dotenv import load_dotenv
from loguru import logger
from swarm_models import OpenAIChat
from tickr_agent.main import TickrAgent
from swarms.structs.swarming_architectures import (
circular_swarm,
linear_swarm,
mesh_swarm,
pyramid_swarm,
star_swarm,
)
# Load environment variables (API keys)
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
# Initialize the OpenAI model
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4", temperature=0.1
)
# Custom Financial Agent System Prompts
STOCK_ANALYSIS_PROMPT = """
You are an expert financial analyst. Your task is to analyze stock market data for a company
and provide insights on whether to buy, hold, or sell. Analyze trends, financial ratios, and market conditions.
"""
NEWS_SUMMARIZATION_PROMPT = """
You are a financial news expert. Summarize the latest news related to a company and provide insights on
how it could impact its stock price. Be concise and focus on the key takeaways.
"""
RATIO_CALCULATION_PROMPT = """
You are a financial ratio analyst. Your task is to calculate key financial ratios for a company
based on the available data, such as P/E ratio, debt-to-equity ratio, and return on equity.
Explain what each ratio means for investors.
"""
# Example Usage
# Define stock tickers
stocks = ["AAPL", "TSLA"]
# Initialize Financial Analysis Agents
stock_analysis_agent = TickrAgent(
agent_name="Stock-Analysis-Agent",
system_prompt=STOCK_ANALYSIS_PROMPT,
stocks=stocks,
)
news_summarization_agent = TickrAgent(
agent_name="News-Summarization-Agent",
system_prompt=NEWS_SUMMARIZATION_PROMPT,
stocks=stocks,
)
ratio_calculation_agent = TickrAgent(
agent_name="Ratio-Calculation-Agent",
system_prompt=RATIO_CALCULATION_PROMPT,
stocks=stocks,
)
# Create a list of agents for swarming
agents = [
stock_analysis_agent,
news_summarization_agent,
ratio_calculation_agent,
]
# Define financial analysis tasks
tasks = [
"Analyze the stock performance of Apple (AAPL) in the last 6 months.",
"Summarize the latest financial news on Tesla (TSLA).",
"Calculate the P/E ratio and debt-to-equity ratio for Amazon (AMZN).",
]
# -------------------------------# Showcase Circular Swarm
# -------------------------------
logger.info("Starting Circular Swarm for financial analysis.")
circular_result = circular_swarm(agents, tasks)
logger.info(f"Circular Swarm Result:\n{circular_result}\n")
# -------------------------------
# Showcase Linear Swarm
# -------------------------------
logger.info("Starting Linear Swarm for financial analysis.")
linear_result = linear_swarm(agents, tasks)
logger.info(f"Linear Swarm Result:\n{linear_result}\n")
# -------------------------------
# Showcase Star Swarm
# -------------------------------
logger.info("Starting Star Swarm for financial analysis.")
star_result = star_swarm(agents, tasks)
logger.info(f"Star Swarm Result:\n{star_result}\n")
# -------------------------------
# Showcase Mesh Swarm
# -------------------------------
logger.info("Starting Mesh Swarm for financial analysis.")
mesh_result = mesh_swarm(agents, tasks)
logger.info(f"Mesh Swarm Result:\n{mesh_result}\n")
# -------------------------------
# Showcase Pyramid Swarm
# -------------------------------
logger.info("Starting Pyramid Swarm for financial analysis.")
pyramid_result = pyramid_swarm(agents, tasks)
logger.info(f"Pyramid Swarm Result:\n{pyramid_result}\n")
# -------------------------------
# Example: One-to-One Communication between Agents
# -------------------------------
logger.info(
"Starting One-to-One communication between Stock and News agents."
)
one_to_one_result = stock_analysis_agent.run(
"Analyze Apple stock performance, and then send the result to the News Summarization Agent"
)
news_summary_result = news_summarization_agent.run(one_to_one_result)
logger.info(
f"One-to-One Communication Result:\n{news_summary_result}\n"
)
# -------------------------------
# Example: Broadcasting to all agents
# -------------------------------
async def broadcast_task():
logger.info("Broadcasting task to all agents.")
task = "Summarize the overall stock market performance today."
await asyncio.gather(*[agent.run(task) for agent in agents])
asyncio.run(broadcast_task())
# -------------------------------
# Deep Comments & Explanations
# -------------------------------
"""
Explanation of Key Components:
1. **Agents**:
- We created three specialized agents for financial analysis: Stock Analysis, News Summarization, and Ratio Calculation.
- Each agent is provided with a custom system prompt that defines their unique task in analyzing stock data.
2. **Swarm Examples**:
- **Circular Swarm**: Agents take turns processing tasks in a circular manner.
- **Linear Swarm**: Tasks are processed sequentially by each agent.
- **Star Swarm**: The first agent (Stock Analysis) processes all tasks before distributing them to other agents.
- **Mesh Swarm**: Agents work on random tasks from the task queue.
- **Pyramid Swarm**: Agents are arranged in a pyramid structure, processing tasks layer by layer.
3. **One-to-One Communication**:
- This showcases how one agent can pass its result to another agent for further processing, useful for complex workflows where agents depend on each other.
4. **Broadcasting**:
- The broadcasting function demonstrates how a single task can be sent to all agents simultaneously. This can be useful for situations like summarizing daily stock market performance across multiple agents.
5. **Logging with Loguru**:
- We use `loguru` for detailed logging throughout the swarms. This helps to track the flow of information and responses from each agent.
"""

@ -1,176 +1,224 @@
import asyncio
import math
from typing import List
from typing import List, Union
from loguru import logger
from pydantic import BaseModel
from swarms.structs.agent import Agent
from swarms.utils.loguru_logger import logger
from swarms.structs.conversation import Conversation
from swarms.structs.concat import concat_strings
from swarms.structs.omni_agent_types import AgentListType
# from swarms.structs.swarm_registry import swarm_registry, SwarmRegistry
# Define Pydantic schema for logging agent responses
class AgentLog(BaseModel):
agent_name: str
task: str
response: str
# @swarm_registry
def circular_swarm(
name: str = "Circular Swarm",
description: str = "A circular swarm is a type of swarm where agents pass tasks in a circular manner.",
goal: str = None,
agents: AgentListType = None,
tasks: List[str] = None,
return_full_history: bool = True,
):
if not agents:
raise ValueError("Agents list cannot be empty.")
if not tasks:
raise ValueError("Tasks list cannot be empty.")
class Conversation(BaseModel):
logs: List[AgentLog] = []
conversation = Conversation(
time_enabled=True,
)
def add_log(
self, agent_name: str, task: str, response: str
) -> None:
log_entry = AgentLog(
agent_name=agent_name, task=task, response=response
)
self.logs.append(log_entry)
logger.info(
f"Agent: {agent_name} | Task: {task} | Response: {response}"
)
def return_history(self) -> dict:
return {
"history": [
{
"agent_name": log.agent_name,
"task": log.task,
"response": log.response,
}
for log in self.logs
]
}
# Circular Swarm: Agents pass tasks in a circular manner
def circular_swarm(
agents: AgentListType,
tasks: List[str],
return_full_history: bool = True,
) -> Union[str, List[str]]:
if not agents or not tasks:
raise ValueError("Agents and tasks lists cannot be empty.")
conversation = Conversation()
responses = []
for task in tasks:
for agent in agents:
# Log the task
out = agent.run(task)
# print(f"Task: {task}, Response {out}")
# prompt = f"Task: {task}, Response {out}"
logger.info(f"Agent: {agent.agent_name} Response {out}")
conversation.add(
role=agent.agent_name,
content=out,
response = agent.run(task)
conversation.add_log(
agent_name=agent.agent_name,
task=task,
response=response,
)
responses.append(response)
# Response list
responses.append(out)
return (
conversation.return_history()
if return_full_history
else responses
)
if return_full_history:
return conversation.return_history_as_string()
else:
return responses
def grid_swarm(agents: AgentListType, tasks: List[str]):
grid_size = int(
len(agents) ** 0.5
) # Assuming agents can form a perfect square grid
for i in range(grid_size):
for j in range(grid_size):
if tasks:
task = tasks.pop(0)
agents[i * grid_size + j].run(task)
# @swarm_registry()
# Linear Swarm: Agents process tasks in a sequential linear manner
def linear_swarm(
name: str = "Linear Swarm",
description: str = "A linear swarm is a type of swarm where agents pass tasks in a linear manner.",
agents: AgentListType = None,
tasks: List[str] = None,
conversation: Conversation = None,
agents: AgentListType,
tasks: List[str],
return_full_history: bool = True,
):
if not agents:
raise ValueError("Agents list cannot be empty.")
if not tasks:
raise ValueError("Tasks list cannot be empty.")
if not conversation:
conversation = Conversation(
time_enabled=True,
)
) -> Union[str, List[str]]:
if not agents or not tasks:
raise ValueError("Agents and tasks lists cannot be empty.")
conversation = Conversation()
responses = []
for i in range(len(agents)):
for agent in agents:
if tasks:
task = tasks.pop(0)
out = agents[i].run(task)
conversation.add(
role=agents[i].agent_name,
content=f"Task: {task}, Response {out}",
response = agent.run(task)
conversation.add_log(
agent_name=agent.agent_name,
task=task,
response=response,
)
responses.append(response)
responses.append(out)
if return_full_history:
return conversation.return_history_as_string()
else:
return responses
# print(SwarmRegistry().list_swarms())
# def linear_swarm(agents: AgentListType, tasks: List[str]):
# logger.info(f"Running linear swarm with {len(agents)} agents")
# for i in range(len(agents)):
# if tasks:
# task = tasks.pop(0)
# agents[i].run(task)
def star_swarm(agents: AgentListType, tasks: List[str]) -> str:
logger.info(
f"Running star swarm with {len(agents)} agents and {len(tasks)} tasks"
return (
conversation.return_history()
if return_full_history
else responses
)
if not agents:
raise ValueError("Agents list cannot be empty.")
if not tasks:
raise ValueError("Tasks list cannot be empty.")
conversation = Conversation(time_enabled=True)
center_agent = agents[0]
# Star Swarm: A central agent first processes all tasks, followed by others
def star_swarm(
agents: AgentListType,
tasks: List[str],
return_full_history: bool = True,
) -> Union[str, List[str]]:
if not agents or not tasks:
raise ValueError("Agents and tasks lists cannot be empty.")
conversation = Conversation()
center_agent = agents[0] # The central agent
responses = []
for task in tasks:
# Central agent processes the task
center_response = center_agent.run(task)
conversation.add_log(
agent_name=center_agent.agent_name,
task=task,
response=center_response,
)
responses.append(center_response)
out = center_agent.run(task)
log = f"Agent: {center_agent.agent_name} Response {out}"
logger.info(log)
conversation.add(center_agent.agent_name, out)
responses.append(out)
# Other agents process the same task
for agent in agents[1:]:
response = agent.run(task)
conversation.add_log(
agent_name=agent.agent_name,
task=task,
response=response,
)
responses.append(response)
output = agent.run(task)
log_two = f"Agent: {agent.agent_name} Response {output}"
logger.info(log_two)
conversation.add(agent.agent_name, output)
responses.append(out)
out = concat_strings(responses)
print(out)
return (
conversation.return_history()
if return_full_history
else responses
)
return out
# Mesh Swarm: Agents work on tasks randomly from a task queue until all tasks are processed
def mesh_swarm(
agents: AgentListType,
tasks: List[str],
return_full_history: bool = True,
) -> Union[str, List[str]]:
if not agents or not tasks:
raise ValueError("Agents and tasks lists cannot be empty.")
def mesh_swarm(agents: AgentListType, tasks: List[str]):
conversation = Conversation()
task_queue = tasks.copy()
responses = []
while task_queue:
for agent in agents:
if task_queue:
task = task_queue.pop(0)
agent.run(task)
response = agent.run(task)
conversation.add_log(
agent_name=agent.agent_name,
task=task,
response=response,
)
responses.append(response)
return (
conversation.return_history()
if return_full_history
else responses
)
def grid_swarm(agents: AgentListType, tasks: List[str]):
grid_size = int(
len(agents) ** 0.5
) # Assuming agents can form a perfect square grid
for i in range(grid_size):
for j in range(grid_size):
if tasks:
task = tasks.pop(0)
agents[i * grid_size + j].run(task)
# Pyramid Swarm: Agents are arranged in a pyramid structure
def pyramid_swarm(
agents: AgentListType,
tasks: List[str],
return_full_history: bool = True,
) -> Union[str, List[str]]:
if not agents or not tasks:
raise ValueError("Agents and tasks lists cannot be empty.")
conversation = Conversation()
responses = []
def pyramid_swarm(agents: AgentListType, tasks: List[str]):
levels = int(
(-1 + (1 + 8 * len(agents)) ** 0.5) / 2
) # Assuming agents can form a perfect pyramid
) # Number of levels in the pyramid
for i in range(levels):
for j in range(i + 1):
if tasks:
task = tasks.pop(0)
agents[int(i * (i + 1) / 2 + j)].run(task)
agent_index = int(i * (i + 1) / 2 + j)
response = agents[agent_index].run(task)
conversation.add_log(
agent_name=agents[agent_index].agent_name,
task=task,
response=response,
)
responses.append(response)
return (
conversation.return_history()
if return_full_history
else responses
)
def fibonacci_swarm(agents: AgentListType, tasks: List[str]):
@ -318,86 +366,92 @@ async def one_to_three(
raise error
async def broadcast(
sender: Agent,
agents: AgentListType,
task: str,
):
"""
This module contains functions for facilitating communication between agents in a swarm. It includes methods for one-to-one communication, broadcasting, and other swarm architectures.
"""
# One-to-One Communication between two agents
def one_to_one(
sender: Agent, receiver: Agent, task: str, max_loops: int = 1
) -> str:
"""
Broadcasts a message from the sender agent to a list of agents.
Facilitates one-to-one communication between two agents. The sender and receiver agents exchange messages for a specified number of loops.
Args:
sender (Agent): The agent sending the message.
agents (AgentListType): The list of agents to receive the message.
task (str): The message to be broadcasted.
Raises:
Exception: If an error occurs during the broadcast.
receiver (Agent): The agent receiving the message.
task (str): The message to be sent.
max_loops (int, optional): The number of times the sender and receiver exchange messages. Defaults to 1.
Returns:
None
"""
if not sender:
raise ValueError("The sender cannot be empty.")
str: The conversation history between the sender and receiver.
if not agents:
raise ValueError("The agents list cannot be empty.")
if not task:
raise ValueError("The task cannot be empty.")
Raises:
Exception: If there is an error during the communication process.
"""
conversation = Conversation()
responses = []
try:
receive_tasks = []
for agent in agents:
receive_tasks.append(
agent.receive_message(sender.agent_name, task)
for _ in range(max_loops):
# Sender processes the task
sender_response = sender.run(task)
conversation.add_log(
agent_name=sender.agent_name,
task=task,
response=sender_response,
)
responses.append(sender_response)
# Receiver processes the result of the sender
receiver_response = receiver.run(sender_response)
conversation.add_log(
agent_name=receiver.agent_name,
task=task,
response=receiver_response,
)
responses.append(receiver_response)
await asyncio.gather(*receive_tasks)
except Exception as error:
logger.error(
f"[ERROR][CLASS: Agent][METHOD: broadcast] {error}"
f"Error during one_to_one communication: {error}"
)
raise error
return conversation.return_history()
def one_to_one(
sender: Agent,
receiver: Agent,
task: str,
max_loops: int = 1,
):
# Broadcasting: A message from one agent to many
async def broadcast(
sender: Agent, agents: AgentListType, task: str
) -> None:
"""
Sends a message from the sender agent to the receiver agent.
Facilitates broadcasting of a message from one agent to multiple agents.
Args:
sender (Agent): The agent sending the message.
receiver (Agent): The agent to receive the message.
agents (AgentListType): The list of agents to receive the message.
task (str): The message to be sent.
Raises:
Exception: If an error occurs during the message sending.
Returns:
None
ValueError: If the sender, agents, or task is empty.
Exception: If there is an error during the broadcasting process.
"""
try:
responses = []
responses.append(task)
for i in range(max_loops):
conversation = Conversation()
# Run the agent on the task then pass the response to the receiver
response = sender.run(task)
log = f"Agent {sender.agent_name} Response: {response}"
responses.append(log)
if not sender or not agents or not task:
raise ValueError("Sender, agents, and task cannot be empty.")
# Send the response to the receiver
out = receiver.run(concat_strings(responses))
responses.append(out)
try:
receive_tasks = []
for agent in agents:
receive_tasks.append(agent.run(task))
conversation.add_log(
agent_name=agent.agent_name, task=task, response=task
)
return concat_strings(responses)
await asyncio.gather(*receive_tasks)
except Exception as error:
logger.error(
f"[ERROR][CLASS: Agent][METHOD: one_to_one] {error}"
)
logger.error(f"Error during broadcast: {error}")
raise error

Loading…
Cancel
Save