parent
161fee9368
commit
7d68229fee
@ -1,638 +0,0 @@
|
|||||||
# Mergers & Acquisition (M&A) Advisory Swarm
|
|
||||||
|
|
||||||
The M&A Advisory Swarm is a sophisticated multi-agent system designed to automate and streamline the entire mergers & acquisitions advisory workflow. By orchestrating a series of specialized AI agents, this swarm provides comprehensive analysis from initial intake to final recommendation.
|
|
||||||
|
|
||||||
## What it Does
|
|
||||||
The `MAAdvisorySwarm` operates as a **sequential workflow**, where each agent's output builds upon previous analyses, ensuring a cohesive and comprehensive advisory process. The swarm consists of the following agents:
|
|
||||||
|
|
||||||
| Agent Name | Agent (Name) | Key Responsibilities |
|
|
||||||
|-----------|--------------|---------------------|
|
|
||||||
| Intake & Scoping | Emma | Gathers essential information about the potential deal, including deal type, industry, target profile, objectives, timeline, budget, and specific concerns. It generates an initial Deal Brief. |
|
|
||||||
| Market & Strategic Analysis | Marcus | Evaluates industry dynamics, competitive landscape, and strategic fit. It leverages the `exa_search` tool to gather real-time market intelligence on trends, key players, and external factors. |
|
|
||||||
| Financial Valuation & Risk Assessment | Sophia | Performs comprehensive financial health analysis, various valuation methodologies (comparable companies, precedent transactions, DCF), synergy assessment, and a detailed risk assessment (financial, operational, legal, market). |
|
|
||||||
| Deal Structuring | David | Recommends the optimal transaction structure, considering asset vs. stock purchase, cash vs. stock consideration, earnouts, financing strategies, tax optimization, and deal protection mechanisms. |
|
|
||||||
| Integration Planning | Nathan | Develops a comprehensive post-merger integration roadmap, including Day 1 priorities, a 100-day plan, functional integration strategies (operations, systems, sales, HR), and synergy realization timelines. |
|
|
||||||
| Final Recommendation | Alex | Synthesizes all prior agent analyses into a comprehensive, executive-ready M&A Advisory Report, including an executive summary, investment thesis, key risks, deal structure, integration approach, and a clear GO/NO-GO/CONDITIONAL recommendation. |
|
|
||||||
|
|
||||||
## How to Set Up
|
|
||||||
|
|
||||||
To set up and run the M&A Advisory Swarm, follow these steps:
|
|
||||||
|
|
||||||
## Step 1: Setup and Installation
|
|
||||||
|
|
||||||
### Prerequisites
|
|
||||||
|
|
||||||
| Requirement |
|
|
||||||
|-----------------------|
|
|
||||||
| Python 3.8 or higher |
|
|
||||||
| pip package manager |
|
|
||||||
|
|
||||||
1. **Install dependencies:**
|
|
||||||
Use the following command to download all dependencies.
|
|
||||||
```bash
|
|
||||||
# Install Swarms framework
|
|
||||||
pip install swarms
|
|
||||||
|
|
||||||
# Install environment and logging dependencies
|
|
||||||
pip install python-dotenv loguru
|
|
||||||
|
|
||||||
# Install HTTP client and tools
|
|
||||||
pip install httpx swarms_tools
|
|
||||||
```
|
|
||||||
2. **Set up API Keys:**
|
|
||||||
The `Property Research Agent` utilizes the `exa_search` tool, which requires an `EXA_API_KEY`.
|
|
||||||
Create a `.env` file in the root directory of your project (or wherever your application loads environment variables) and add your API keys:
|
|
||||||
```
|
|
||||||
EXA_API_KEY="YOUR_EXA_API_KEY"
|
|
||||||
OPENAI_API_KEY="OPENAI_API_KEY"
|
|
||||||
```
|
|
||||||
Replace `"YOUR_EXA_API_KEY"` & `"OPENAI_API_KEY"` with your actual API keys.
|
|
||||||
|
|
||||||
## Step 2: Running the Mergers & Acquisitions Advisory Swarm
|
|
||||||
|
|
||||||
```python
|
|
||||||
from typing import List
|
|
||||||
from loguru import logger
|
|
||||||
from swarms.structs.agent import Agent
|
|
||||||
from swarms.structs.conversation import Conversation
|
|
||||||
from swarms.utils.history_output_formatter import history_output_formatter
|
|
||||||
from swarms_tools import exa_search
|
|
||||||
|
|
||||||
# System prompts for each agent
|
|
||||||
INTAKE_AGENT_PROMPT = """
|
|
||||||
You are an M&A Intake Specialist responsible for gathering comprehensive information about a potential transaction.
|
|
||||||
|
|
||||||
ROLE:
|
|
||||||
Engage with the user to understand the full context of the potential M&A deal, extracting critical details that will guide subsequent analyses.
|
|
||||||
|
|
||||||
RESPONSIBILITIES:
|
|
||||||
- Conduct a thorough initial interview to understand:
|
|
||||||
* Transaction type (acquisition, merger, divestiture)
|
|
||||||
* Industry and sector specifics
|
|
||||||
* Target company profile and size
|
|
||||||
* Strategic objectives
|
|
||||||
* Buyer/seller perspective
|
|
||||||
* Timeline and urgency
|
|
||||||
* Budget constraints
|
|
||||||
* Specific concerns or focus areas
|
|
||||||
|
|
||||||
OUTPUT FORMAT:
|
|
||||||
Provide a comprehensive Deal Brief that includes:
|
|
||||||
1. Transaction Overview
|
|
||||||
- Proposed transaction type
|
|
||||||
- Key parties involved
|
|
||||||
- Initial strategic rationale
|
|
||||||
|
|
||||||
2. Stakeholder Context
|
|
||||||
- Buyer's background and motivations
|
|
||||||
- Target company's current position
|
|
||||||
- Key decision-makers
|
|
||||||
|
|
||||||
3. Initial Assessment
|
|
||||||
- Preliminary strategic fit
|
|
||||||
- Potential challenges or red flags
|
|
||||||
- Recommended focus areas for deeper analysis
|
|
||||||
|
|
||||||
4. Information Gaps
|
|
||||||
- Questions that need further clarification
|
|
||||||
- Additional data points required
|
|
||||||
|
|
||||||
IMPORTANT:
|
|
||||||
- Be thorough and systematic
|
|
||||||
- Ask probing questions to uncover nuanced details
|
|
||||||
- Maintain a neutral, professional tone
|
|
||||||
- Prepare a foundation for subsequent in-depth analysis
|
|
||||||
"""
|
|
||||||
|
|
||||||
MARKET_ANALYSIS_PROMPT = """
|
|
||||||
You are an M&A Market Intelligence Analyst tasked with conducting comprehensive market research.
|
|
||||||
|
|
||||||
ROLE:
|
|
||||||
Perform an in-depth analysis of market dynamics, competitive landscape, and strategic implications for the potential transaction.
|
|
||||||
|
|
||||||
TOOLS:
|
|
||||||
You have access to the exa_search tool for gathering real-time market intelligence.
|
|
||||||
|
|
||||||
RESPONSIBILITIES:
|
|
||||||
1. Conduct Market Research
|
|
||||||
- Use exa_search to gather current market insights
|
|
||||||
- Analyze industry trends, size, and growth potential
|
|
||||||
- Identify key players and market share distribution
|
|
||||||
|
|
||||||
2. Competitive Landscape Analysis
|
|
||||||
- Map out competitive ecosystem
|
|
||||||
- Assess target company's market positioning
|
|
||||||
- Identify potential competitive advantages or vulnerabilities
|
|
||||||
|
|
||||||
3. Strategic Fit Evaluation
|
|
||||||
- Analyze alignment with buyer's strategic objectives
|
|
||||||
- Assess potential market entry or expansion opportunities
|
|
||||||
- Evaluate potential for market disruption
|
|
||||||
|
|
||||||
4. External Factor Assessment
|
|
||||||
- Examine regulatory environment
|
|
||||||
- Analyze technological disruption potential
|
|
||||||
- Consider macroeconomic impacts
|
|
||||||
|
|
||||||
OUTPUT FORMAT:
|
|
||||||
Provide a comprehensive Market Analysis Report:
|
|
||||||
1. Market Overview
|
|
||||||
- Market size and growth trajectory
|
|
||||||
- Key industry trends
|
|
||||||
- Competitive landscape summary
|
|
||||||
|
|
||||||
2. Strategic Fit Assessment
|
|
||||||
- Market attractiveness score (1-10)
|
|
||||||
- Strategic alignment evaluation
|
|
||||||
- Potential synergies and opportunities
|
|
||||||
|
|
||||||
3. Risk and Opportunity Mapping
|
|
||||||
- Key market opportunities
|
|
||||||
- Potential competitive threats
|
|
||||||
- Regulatory and technological risk factors
|
|
||||||
|
|
||||||
4. Recommended Next Steps
|
|
||||||
- Areas requiring deeper investigation
|
|
||||||
- Initial strategic recommendations
|
|
||||||
"""
|
|
||||||
|
|
||||||
FINANCIAL_VALUATION_PROMPT = """
|
|
||||||
You are an M&A Financial Analysis and Risk Expert. Perform comprehensive financial evaluation and risk assessment.
|
|
||||||
|
|
||||||
RESPONSIBILITIES:
|
|
||||||
1. Financial Health Analysis
|
|
||||||
- Analyze revenue trends and quality
|
|
||||||
- Evaluate profitability metrics (EBITDA, margins)
|
|
||||||
- Conduct cash flow analysis
|
|
||||||
- Assess balance sheet strength
|
|
||||||
- Review working capital requirements
|
|
||||||
|
|
||||||
2. Valuation Analysis
|
|
||||||
- Perform comparable company analysis
|
|
||||||
- Conduct precedent transaction analysis
|
|
||||||
- Develop Discounted Cash Flow (DCF) model
|
|
||||||
- Assess asset-based valuation
|
|
||||||
|
|
||||||
3. Synergy and Risk Assessment
|
|
||||||
- Quantify potential revenue and cost synergies
|
|
||||||
- Identify financial and operational risks
|
|
||||||
- Evaluate integration complexity
|
|
||||||
- Assess potential deal-breakers
|
|
||||||
|
|
||||||
OUTPUT FORMAT:
|
|
||||||
1. Comprehensive Financial Analysis Report
|
|
||||||
2. Valuation Range (low, mid, high scenarios)
|
|
||||||
3. Synergy Potential Breakdown
|
|
||||||
4. Detailed Risk Matrix
|
|
||||||
5. Recommended Pricing Strategy
|
|
||||||
"""
|
|
||||||
|
|
||||||
DEAL_STRUCTURING_PROMPT = """
|
|
||||||
You are an M&A Deal Structuring Advisor. Recommend the optimal transaction structure.
|
|
||||||
|
|
||||||
RESPONSIBILITIES:
|
|
||||||
1. Transaction Structure Design
|
|
||||||
- Evaluate asset vs stock purchase options
|
|
||||||
- Analyze cash vs stock consideration
|
|
||||||
- Design earnout provisions
|
|
||||||
- Develop contingent payment structures
|
|
||||||
|
|
||||||
2. Financing Strategy
|
|
||||||
- Recommend debt/equity mix
|
|
||||||
- Identify optimal financing sources
|
|
||||||
- Assess impact on buyer's capital structure
|
|
||||||
|
|
||||||
3. Tax and Legal Optimization
|
|
||||||
- Design tax-efficient structure
|
|
||||||
- Consider jurisdictional implications
|
|
||||||
- Minimize tax liabilities
|
|
||||||
|
|
||||||
4. Deal Protection Mechanisms
|
|
||||||
- Develop escrow arrangements
|
|
||||||
- Design representations and warranties
|
|
||||||
- Create indemnification provisions
|
|
||||||
- Recommend non-compete agreements
|
|
||||||
|
|
||||||
OUTPUT FORMAT:
|
|
||||||
1. Recommended Deal Structure
|
|
||||||
2. Detailed Payment Terms
|
|
||||||
3. Key Contractual Protections
|
|
||||||
4. Tax Optimization Strategy
|
|
||||||
5. Rationale for Proposed Structure
|
|
||||||
"""
|
|
||||||
|
|
||||||
INTEGRATION_PLANNING_PROMPT = """
|
|
||||||
You are an M&A Integration Planning Expert. Develop a comprehensive post-merger integration roadmap.
|
|
||||||
|
|
||||||
RESPONSIBILITIES:
|
|
||||||
1. Immediate Integration Priorities
|
|
||||||
- Define critical day-1 actions
|
|
||||||
- Develop communication strategy
|
|
||||||
- Identify quick win opportunities
|
|
||||||
|
|
||||||
2. 100-Day Integration Plan
|
|
||||||
- Design organizational structure alignment
|
|
||||||
- Establish governance framework
|
|
||||||
- Create detailed integration milestones
|
|
||||||
|
|
||||||
3. Functional Integration Strategy
|
|
||||||
- Plan operations consolidation
|
|
||||||
- Design systems and technology integration
|
|
||||||
- Align sales and marketing approaches
|
|
||||||
- Develop cultural integration plan
|
|
||||||
|
|
||||||
4. Synergy Realization
|
|
||||||
- Create detailed synergy capture timeline
|
|
||||||
- Establish performance tracking mechanisms
|
|
||||||
- Define accountability framework
|
|
||||||
|
|
||||||
OUTPUT FORMAT:
|
|
||||||
1. Comprehensive Integration Roadmap
|
|
||||||
2. Detailed 100-Day Plan
|
|
||||||
3. Functional Integration Strategies
|
|
||||||
4. Synergy Realization Timeline
|
|
||||||
5. Risk Mitigation Recommendations
|
|
||||||
"""
|
|
||||||
|
|
||||||
FINAL_RECOMMENDATION_PROMPT = """
|
|
||||||
You are the Senior M&A Advisory Partner. Synthesize all analyses into a comprehensive recommendation.
|
|
||||||
|
|
||||||
RESPONSIBILITIES:
|
|
||||||
1. Executive Summary
|
|
||||||
- Summarize transaction overview
|
|
||||||
- Highlight strategic rationale
|
|
||||||
- Articulate key value drivers
|
|
||||||
|
|
||||||
2. Investment Thesis Validation
|
|
||||||
- Assess strategic benefits
|
|
||||||
- Evaluate financial attractiveness
|
|
||||||
- Project long-term potential
|
|
||||||
|
|
||||||
3. Comprehensive Risk Assessment
|
|
||||||
- Summarize top risks
|
|
||||||
- Provide mitigation strategies
|
|
||||||
- Identify potential deal-breakers
|
|
||||||
|
|
||||||
4. Final Recommendation
|
|
||||||
- Provide clear GO/NO-GO recommendation
|
|
||||||
- Specify recommended offer range
|
|
||||||
- Outline key proceeding conditions
|
|
||||||
|
|
||||||
OUTPUT FORMAT:
|
|
||||||
1. Executive-Level Recommendation Report
|
|
||||||
2. Decision Framework
|
|
||||||
3. Risk-Adjusted Strategic Perspective
|
|
||||||
4. Actionable Next Steps
|
|
||||||
5. Recommendation Confidence Level
|
|
||||||
"""
|
|
||||||
|
|
||||||
class MAAdvisorySwarm:
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
name: str = "M&A Advisory Swarm",
|
|
||||||
description: str = "Comprehensive AI-driven M&A advisory system",
|
|
||||||
max_loops: int = 1,
|
|
||||||
user_name: str = "M&A Advisor",
|
|
||||||
output_type: str = "json",
|
|
||||||
):
|
|
||||||
self.max_loops = max_loops
|
|
||||||
self.name = name
|
|
||||||
self.description = description
|
|
||||||
self.user_name = user_name
|
|
||||||
self.output_type = output_type
|
|
||||||
|
|
||||||
self.agents = self._initialize_agents()
|
|
||||||
self.conversation = Conversation()
|
|
||||||
self.exa_search_results = []
|
|
||||||
self.search_queries = []
|
|
||||||
self.current_iteration = 0
|
|
||||||
self.max_iterations = 1 # Limiting to 1 iteration for full sequential demo
|
|
||||||
self.analysis_concluded = False
|
|
||||||
|
|
||||||
self.handle_initial_processing()
|
|
||||||
|
|
||||||
def handle_initial_processing(self):
|
|
||||||
self.conversation.add(
|
|
||||||
role="System",
|
|
||||||
content=f"Company: {self.name}\n"
|
|
||||||
f"Description: {self.description}\n"
|
|
||||||
f"Mission: Provide comprehensive M&A advisory for {self.user_name}"
|
|
||||||
)
|
|
||||||
|
|
||||||
def _initialize_agents(self) -> List[Agent]:
|
|
||||||
return [
|
|
||||||
Agent(
|
|
||||||
agent_name="Emma-Intake-Specialist",
|
|
||||||
agent_description="Gathers comprehensive initial information about the potential M&A transaction.",
|
|
||||||
system_prompt=INTAKE_AGENT_PROMPT,
|
|
||||||
max_loops=self.max_loops,
|
|
||||||
dynamic_temperature_enabled=True,
|
|
||||||
output_type="final",
|
|
||||||
),
|
|
||||||
Agent(
|
|
||||||
agent_name="Marcus-Market-Analyst",
|
|
||||||
agent_description="Conducts in-depth market research and competitive analysis.",
|
|
||||||
system_prompt=MARKET_ANALYSIS_PROMPT,
|
|
||||||
max_loops=self.max_loops,
|
|
||||||
dynamic_temperature_enabled=True,
|
|
||||||
output_type="final",
|
|
||||||
),
|
|
||||||
Agent(
|
|
||||||
agent_name="Sophia-Financial-Analyst",
|
|
||||||
agent_description="Performs comprehensive financial valuation and risk assessment.",
|
|
||||||
system_prompt=FINANCIAL_VALUATION_PROMPT,
|
|
||||||
max_loops=self.max_loops,
|
|
||||||
dynamic_temperature_enabled=True,
|
|
||||||
output_type="final",
|
|
||||||
),
|
|
||||||
Agent(
|
|
||||||
agent_name="David-Deal-Structuring-Advisor",
|
|
||||||
agent_description="Recommends optimal deal structure and terms.",
|
|
||||||
system_prompt=DEAL_STRUCTURING_PROMPT,
|
|
||||||
max_loops=self.max_loops,
|
|
||||||
dynamic_temperature_enabled=True,
|
|
||||||
output_type="final",
|
|
||||||
),
|
|
||||||
Agent(
|
|
||||||
agent_name="Nathan-Integration-Planner",
|
|
||||||
agent_description="Develops comprehensive post-merger integration roadmap.",
|
|
||||||
system_prompt=INTEGRATION_PLANNING_PROMPT,
|
|
||||||
max_loops=self.max_loops,
|
|
||||||
dynamic_temperature_enabled=True,
|
|
||||||
output_type="final",
|
|
||||||
),
|
|
||||||
Agent(
|
|
||||||
agent_name="Alex-Final-Recommendation-Partner",
|
|
||||||
agent_description="Synthesizes all analyses into a comprehensive recommendation.",
|
|
||||||
system_prompt=FINAL_RECOMMENDATION_PROMPT,
|
|
||||||
max_loops=self.max_loops,
|
|
||||||
dynamic_temperature_enabled=True,
|
|
||||||
output_type="final",
|
|
||||||
)
|
|
||||||
]
|
|
||||||
|
|
||||||
def find_agent_by_name(self, name: str) -> Agent:
|
|
||||||
for agent in self.agents:
|
|
||||||
if name in agent.agent_name:
|
|
||||||
return agent
|
|
||||||
return None
|
|
||||||
|
|
||||||
def intake_and_scoping(self, user_input: str):
|
|
||||||
"""Phase 1: Intake and initial deal scoping"""
|
|
||||||
emma_agent = self.find_agent_by_name("Intake-Specialist")
|
|
||||||
|
|
||||||
emma_output = emma_agent.run(
|
|
||||||
f"User Input: {user_input}\n\n"
|
|
||||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
|
||||||
f"Analyze the potential M&A transaction, extract key details, and prepare a comprehensive deal brief. "
|
|
||||||
f"If information is unclear, ask clarifying questions."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conversation.add(
|
|
||||||
role="Intake-Specialist", content=emma_output
|
|
||||||
)
|
|
||||||
|
|
||||||
# Extract potential search queries for market research
|
|
||||||
self.search_queries = self._extract_search_queries(emma_output)
|
|
||||||
|
|
||||||
return emma_output
|
|
||||||
|
|
||||||
def _extract_search_queries(self, intake_output: str) -> List[str]:
|
|
||||||
"""Extract search queries from Intake Specialist output"""
|
|
||||||
queries = []
|
|
||||||
lines = intake_output.split('\n')
|
|
||||||
|
|
||||||
# Look for lines that could be good search queries
|
|
||||||
for line in lines:
|
|
||||||
line = line.strip()
|
|
||||||
# Simple heuristic: lines with potential research keywords
|
|
||||||
if any(keyword in line.lower() for keyword in ['market', 'industry', 'trend', 'competitor', 'analysis']):
|
|
||||||
if len(line) > 20: # Ensure query is substantial
|
|
||||||
queries.append(line)
|
|
||||||
|
|
||||||
# Fallback queries if none found
|
|
||||||
if not queries:
|
|
||||||
queries = [
|
|
||||||
"M&A trends in technology sector",
|
|
||||||
"Market analysis for potential business acquisition",
|
|
||||||
"Competitive landscape in enterprise software"
|
|
||||||
]
|
|
||||||
|
|
||||||
return queries[:3] # Limit to 3 queries
|
|
||||||
|
|
||||||
def market_research(self):
|
|
||||||
"""Phase 2: Conduct market research using exa_search"""
|
|
||||||
# Execute exa_search for each query
|
|
||||||
self.exa_search_results = []
|
|
||||||
for query in self.search_queries:
|
|
||||||
result = exa_search(query)
|
|
||||||
self.exa_search_results.append({
|
|
||||||
"query": query,
|
|
||||||
"exa_result": result
|
|
||||||
})
|
|
||||||
|
|
||||||
# Pass results to Market Analysis agent
|
|
||||||
marcus_agent = self.find_agent_by_name("Market-Analyst")
|
|
||||||
|
|
||||||
# Build exa context
|
|
||||||
exa_context = "\n\n[Exa Market Research Results]\n"
|
|
||||||
for item in self.exa_search_results:
|
|
||||||
exa_context += f"Query: {item['query']}\nResults: {item['exa_result']}\n\n"
|
|
||||||
|
|
||||||
marcus_output = marcus_agent.run(
|
|
||||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
|
||||||
f"{exa_context}\n"
|
|
||||||
f"Analyze these market research results. Provide comprehensive market intelligence and strategic insights."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conversation.add(
|
|
||||||
role="Market-Analyst", content=marcus_output
|
|
||||||
)
|
|
||||||
|
|
||||||
return marcus_output
|
|
||||||
|
|
||||||
def financial_valuation(self):
|
|
||||||
"""Phase 3: Perform comprehensive financial valuation and risk assessment"""
|
|
||||||
sophia_agent = self.find_agent_by_name("Financial-Analyst")
|
|
||||||
|
|
||||||
sophia_output = sophia_agent.run(
|
|
||||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
|
||||||
f"Perform comprehensive financial analysis and risk assessment based on previous insights."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conversation.add(
|
|
||||||
role="Financial-Analyst", content=sophia_output
|
|
||||||
)
|
|
||||||
|
|
||||||
return sophia_output
|
|
||||||
|
|
||||||
def deal_structuring(self):
|
|
||||||
"""Phase 4: Recommend optimal deal structure"""
|
|
||||||
david_agent = self.find_agent_by_name("Deal-Structuring-Advisor")
|
|
||||||
|
|
||||||
david_output = david_agent.run(
|
|
||||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
|
||||||
f"Recommend the optimal transaction structure and terms based on all prior analyses."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conversation.add(
|
|
||||||
role="Deal-Structuring-Advisor", content=david_output
|
|
||||||
)
|
|
||||||
|
|
||||||
return david_output
|
|
||||||
|
|
||||||
def integration_planning(self):
|
|
||||||
"""Phase 5: Develop post-merger integration roadmap"""
|
|
||||||
nathan_agent = self.find_agent_by_name("Integration-Planner")
|
|
||||||
|
|
||||||
nathan_output = nathan_agent.run(
|
|
||||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
|
||||||
f"Create a comprehensive integration plan to realize deal value."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conversation.add(
|
|
||||||
role="Integration-Planner", content=nathan_output
|
|
||||||
)
|
|
||||||
|
|
||||||
return nathan_output
|
|
||||||
|
|
||||||
def final_recommendation(self):
|
|
||||||
"""Phase 6: Synthesize all analyses into a comprehensive recommendation"""
|
|
||||||
alex_agent = self.find_agent_by_name("Final-Recommendation-Partner")
|
|
||||||
|
|
||||||
alex_output = alex_agent.run(
|
|
||||||
f"Conversation History: {self.conversation.get_str()}\n\n"
|
|
||||||
f"Synthesize all agent analyses into a comprehensive, actionable M&A recommendation."
|
|
||||||
)
|
|
||||||
|
|
||||||
self.conversation.add(
|
|
||||||
role="Final-Recommendation-Partner", content=alex_output
|
|
||||||
)
|
|
||||||
|
|
||||||
return alex_output
|
|
||||||
|
|
||||||
|
|
||||||
def run(self, initial_user_input: str):
|
|
||||||
"""
|
|
||||||
Run the M&A advisory swarm with continuous analysis.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
initial_user_input: User's initial M&A transaction details
|
|
||||||
"""
|
|
||||||
self.conversation.add(role=self.user_name, content=initial_user_input)
|
|
||||||
|
|
||||||
while not self.analysis_concluded and self.current_iteration < self.max_iterations:
|
|
||||||
self.current_iteration += 1
|
|
||||||
logger.info(f"Starting analysis iteration {self.current_iteration}")
|
|
||||||
|
|
||||||
# Phase 1: Intake and Scoping
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("ITERATION - INTAKE AND SCOPING")
|
|
||||||
print(f"{'='*60}\n")
|
|
||||||
self.intake_and_scoping(initial_user_input)
|
|
||||||
|
|
||||||
# Phase 2: Market Research (with exa_search)
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("ITERATION - MARKET RESEARCH")
|
|
||||||
print(f"{'='*60}\n")
|
|
||||||
self.market_research()
|
|
||||||
|
|
||||||
# Phase 3: Financial Valuation
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("ITERATION - FINANCIAL VALUATION")
|
|
||||||
print(f"{'='*60}\n")
|
|
||||||
self.financial_valuation()
|
|
||||||
|
|
||||||
# Phase 4: Deal Structuring
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("ITERATION - DEAL STRUCTURING")
|
|
||||||
print(f"{'='*60}\n")
|
|
||||||
self.deal_structuring()
|
|
||||||
|
|
||||||
# Phase 5: Integration Planning
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("ITERATION - INTEGRATION PLANNING")
|
|
||||||
print(f"{'='*60}\n")
|
|
||||||
self.integration_planning()
|
|
||||||
|
|
||||||
# Phase 6: Final Recommendation
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print("ITERATION - FINAL RECOMMENDATION")
|
|
||||||
print(f"{'='*60}\n")
|
|
||||||
self.final_recommendation()
|
|
||||||
|
|
||||||
# Conclude analysis after one full sequence for demo purposes
|
|
||||||
self.analysis_concluded = True
|
|
||||||
|
|
||||||
# Return formatted conversation history
|
|
||||||
return history_output_formatter(
|
|
||||||
self.conversation, type=self.output_type
|
|
||||||
)
|
|
||||||
|
|
||||||
def main():
|
|
||||||
"""Main entry point for M&A advisory swarm"""
|
|
||||||
|
|
||||||
# Example M&A transaction details
|
|
||||||
transaction_details = """
|
|
||||||
We are exploring a potential acquisition of DataPulse Analytics by TechNova Solutions.
|
|
||||||
|
|
||||||
Transaction Context:
|
|
||||||
- Buyer: TechNova Solutions (NASDAQ: TNVA) - $500M annual revenue enterprise software company
|
|
||||||
- Target: DataPulse Analytics - Series B AI-driven analytics startup based in San Francisco
|
|
||||||
- Primary Objectives:
|
|
||||||
* Expand predictive analytics capabilities in healthcare and financial services
|
|
||||||
* Accelerate AI-powered business intelligence product roadmap
|
|
||||||
* Acquire top-tier machine learning engineering talent
|
|
||||||
|
|
||||||
Key Considerations:
|
|
||||||
- Deep integration of DataPulse's proprietary AI models into TechNova's existing platform
|
|
||||||
- Retention of key DataPulse leadership and engineering team
|
|
||||||
- Projected 3-year ROI and synergy potential
|
|
||||||
- Regulatory and compliance alignment
|
|
||||||
- Technology stack compatibility
|
|
||||||
"""
|
|
||||||
|
|
||||||
# Initialize the swarm
|
|
||||||
ma_advisory_swarm = MAAdvisorySwarm(
|
|
||||||
name="AI-Powered M&A Advisory System",
|
|
||||||
description="Comprehensive AI-driven M&A advisory and market intelligence platform",
|
|
||||||
user_name="Corporate Development Team",
|
|
||||||
output_type="json",
|
|
||||||
max_loops=1,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Run the swarm
|
|
||||||
print("\n" + "="*60)
|
|
||||||
print("INITIALIZING M&A ADVISORY SWARM")
|
|
||||||
print("="*60 + "\n")
|
|
||||||
|
|
||||||
ma_advisory_swarm.run(initial_user_input=transaction_details)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
```
|
|
||||||
|
|
||||||
## How it Can Be Used for M&A
|
|
||||||
|
|
||||||
The M&A Advisory Swarm can be utilized for a variety of M&A tasks, providing an automated and efficient approach to complex deal workflows:
|
|
||||||
|
|
||||||
* **Automated Deal Scoping**: Quickly gather and structure initial information about a potential transaction.
|
|
||||||
* **Real-time Market Intelligence**: Leverage web search capabilities to rapidly research industry trends, competitive landscapes, and strategic fit.
|
|
||||||
* **Comprehensive Financial & Risk Analysis**: Perform detailed financial evaluations, valuation modeling, synergy assessments, and identify critical risks.
|
|
||||||
* **Optimized Deal Structuring**: Recommend the most advantageous transaction structures, financing strategies, and deal protection mechanisms.
|
|
||||||
* **Proactive Integration Planning**: Develop robust integration roadmaps to ensure seamless post-merger transitions and value realization.
|
|
||||||
* **Executive-Ready Recommendations**: Synthesize complex analyses into clear, actionable recommendations for decision-makers.
|
|
||||||
|
|
||||||
By chaining these specialized agents, the M&A Advisory Swarm provides an end-to-end solution for corporate development teams, investment bankers, and M&A professionals, reducing manual effort and increasing the speed and quality of strategic decision-making.
|
|
||||||
|
|
||||||
## Contributing to Swarms
|
|
||||||
|
|
||||||
| Platform | Link | Description |
|
|
||||||
| :--------- | :----- | :------------ |
|
|
||||||
| 📚 Documentation | [docs.swarms.world](https://docs.swarms.world) | Official documentation and guides |
|
|
||||||
| 📝 Blog | [Medium](https://medium.com/@kyeg) | Latest updates and technical articles |
|
|
||||||
| 💬 Discord | [Join Discord](https://discord.gg/EamjgSaEQf) | Live chat and community support |
|
|
||||||
| 🐦 Twitter | [@kyegomez](https://twitter.com/kyegomez) | Latest news and announcements |
|
|
||||||
| 👥 LinkedIn | [The Swarm Corporation](https://www.linkedin.com/company/the-swarm-corporation) | Professional network and updates |
|
|
||||||
| 📺 YouTube | [Swarms Channel](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ) | Tutorials and demos |
|
|
||||||
| 🎫 Events | [Sign up here](https://lu.ma/5p2jnc2v) | Join our community events |
|
|
Loading…
Reference in new issue