[CLEANUP][Old tests with modelscope and vllm]

pull/378/head^2
Kye 11 months ago
parent a552a98373
commit 7e50f19f3f

@ -17,8 +17,12 @@ from swarms.structs.recursive_workflow import RecursiveWorkflow
from swarms.structs.schemas import ( from swarms.structs.schemas import (
Artifact, Artifact,
ArtifactUpload, ArtifactUpload,
Step,
StepInput, StepInput,
StepOutput,
StepRequestBody,
TaskInput, TaskInput,
TaskRequestBody,
) )
from swarms.structs.sequential_workflow import SequentialWorkflow from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.step import Step from swarms.structs.step import Step
@ -105,4 +109,7 @@ __all__ = [
"sigmoid_swarm", "sigmoid_swarm",
"staircase_swarm", "staircase_swarm",
"star_swarm", "star_swarm",
"StepOutput",
"StepRequestBody",
"TaskRequestBody",
] ]

@ -1,71 +0,0 @@
import pytest
from swarms.models.cog_agent import CogAgent
from unittest.mock import MagicMock
from PIL import Image
@pytest.fixture
def cogagent_params():
return {
"model_name": "ZhipuAI/cogagent-chat",
"tokenizer_name": "I-ModelScope/vicuna-7b-v1.5",
"dtype": "torch.bfloat16",
"low_cpu_mem_usage": True,
"load_in_4bit": True,
"trust_remote_code": True,
"device": "cuda",
}
@pytest.fixture
def cogagent(cogagent_params):
return CogAgent(**cogagent_params)
def test_init(mocker, cogagent_params, cogagent):
mock_model = mocker.patch(
"swarms.models.cog_agent.AutoModelForCausalLM.from_pretrained"
)
mock_tokenizer = mocker.patch(
"swarms.models.cog_agent.AutoTokenizer.from_pretrained"
)
for param, value in cogagent_params.items():
assert getattr(cogagent, param) == value
mock_tokenizer.assert_called_once_with(
cogagent_params["tokenizer_name"]
)
mock_model.assert_called_once_with(
cogagent_params["model_name"],
torch_dtype=cogagent_params["dtype"],
low_cpu_mem_usage=cogagent_params["low_cpu_mem_usage"],
load_in_4bit=cogagent_params["load_in_4bit"],
trust_remote_code=cogagent_params["trust_remote_code"],
)
def test_run(mocker, cogagent):
task = "How are you?"
img = "images/1.jpg"
mock_image = mocker.patch(
"PIL.Image.open", return_value=MagicMock(spec=Image.Image)
)
cogagent.model.build_conversation_input_ids = MagicMock(
return_value={
"input_ids": MagicMock(),
"token_type_ids": MagicMock(),
"attention_mask": MagicMock(),
"images": [MagicMock()],
}
)
cogagent.model.__call__ = MagicMock(return_value="Mocked output")
cogagent.decode = MagicMock(return_value="Mocked response")
output = cogagent.run(task, img)
assert output is not None
mock_image.assert_called_once_with(img)
cogagent.model.build_conversation_input_ids.assert_called_once()
cogagent.model.__call__.assert_called_once()
cogagent.decode.assert_called_once()

@ -9,7 +9,6 @@ from dotenv import load_dotenv
load_dotenv() load_dotenv()
# Define some test data # Define some test data
SAMPLE_TEXT = "Hello, this is a test." SAMPLE_TEXT = "Hello, this is a test."
API_KEY = os.environ.get("ELEVEN_API_KEY") API_KEY = os.environ.get("ELEVEN_API_KEY")

@ -10,7 +10,6 @@ from swarms.models.gpt4_vision_api import GPT4VisionAPI
load_dotenv() load_dotenv()
custom_api_key = os.environ.get("OPENAI_API_KEY") custom_api_key = os.environ.get("OPENAI_API_KEY")
img = "images/swarms.jpeg" img = "images/swarms.jpeg"

@ -1,39 +0,0 @@
import pytest
from swarms.models.modelscope_pipeline import ModelScopePipeline
from unittest.mock import MagicMock
@pytest.fixture
def pipeline_params():
return {
"type_task": "text-generation",
"model_name": "gpt2",
}
@pytest.fixture
def pipeline_model(pipeline_params):
return ModelScopePipeline(**pipeline_params)
def test_init(mocker, pipeline_params, pipeline_model):
mock_pipeline = mocker.patch(
"swarms.models.modelscope_pipeline.pipeline"
)
for param, value in pipeline_params.items():
assert getattr(pipeline_model, param) == value
mock_pipeline.assert_called_once_with(
pipeline_params["type_task"],
model=pipeline_params["model_name"],
)
def test_run(mocker, pipeline_model):
task = "Generate a 10,000 word blog on health and wellness."
pipeline_model.model = MagicMock(return_value="Mocked output")
output = pipeline_model.run(task)
assert output is not None

@ -1,58 +0,0 @@
import pytest
from swarms.models.modelscope_llm import ModelScopeAutoModel
from unittest.mock import MagicMock
@pytest.fixture
def model_params():
return {
"model_name": "gpt2",
"tokenizer_name": None,
"device": "cuda",
"device_map": "auto",
"max_new_tokens": 500,
"skip_special_tokens": True,
}
@pytest.fixture
def modelscope(model_params):
return ModelScopeAutoModel(**model_params)
def test_init(mocker, model_params, modelscope):
mock_model = mocker.patch(
"swarms.models.modelscope_llm.AutoModelForCausalLM.from_pretrained"
)
mock_tokenizer = mocker.patch(
"swarms.models.modelscope_llm.AutoTokenizer.from_pretrained"
)
for param, value in model_params.items():
assert getattr(modelscope, param) == value
mock_tokenizer.assert_called_once_with(
model_params["tokenizer_name"]
)
mock_model.assert_called_once_with(
model_params["model_name"],
device_map=model_params["device_map"],
)
def test_run(mocker, modelscope):
task = "Generate a 10,000 word blog on health and wellness."
mocker.patch(
"swarms.models.modelscope_llm.AutoTokenizer.decode",
return_value="Mocked output",
)
modelscope.model.generate = MagicMock(
return_value=["Mocked token"]
)
modelscope.tokenizer = MagicMock(
return_value={"input_ids": "Mocked input_ids"}
)
output = modelscope.run(task)
assert output is not None

@ -1,141 +0,0 @@
import pytest
from swarms.models.vllm import vLLM
# Fixture for initializing vLLM
@pytest.fixture
def vllm_instance():
return vLLM()
# Test the default initialization of vLLM
def test_vllm_default_init(vllm_instance):
assert isinstance(vllm_instance, vLLM)
assert vllm_instance.model_name == "facebook/opt-13b"
assert vllm_instance.tensor_parallel_size == 4
assert not vllm_instance.trust_remote_code
assert vllm_instance.revision is None
assert vllm_instance.temperature == 0.5
assert vllm_instance.top_p == 0.95
# Test custom initialization of vLLM
def test_vllm_custom_init():
vllm_instance = vLLM(
model_name="custom_model",
tensor_parallel_size=8,
trust_remote_code=True,
revision="123",
temperature=0.7,
top_p=0.9,
)
assert isinstance(vllm_instance, vLLM)
assert vllm_instance.model_name == "custom_model"
assert vllm_instance.tensor_parallel_size == 8
assert vllm_instance.trust_remote_code
assert vllm_instance.revision == "123"
assert vllm_instance.temperature == 0.7
assert vllm_instance.top_p == 0.9
# Test the run method of vLLM
def test_vllm_run(vllm_instance):
task = "Hello, vLLM!"
result = vllm_instance.run(task)
assert isinstance(result, str)
assert len(result) > 0
# Test run method with different temperature and top_p values
@pytest.mark.parametrize(
"temperature, top_p", [(0.2, 0.8), (0.8, 0.2)]
)
def test_vllm_run_with_params(vllm_instance, temperature, top_p):
task = "Temperature and Top-P Test"
result = vllm_instance.run(
task, temperature=temperature, top_p=top_p
)
assert isinstance(result, str)
assert len(result) > 0
# Test run method with a specific model revision
def test_vllm_run_with_revision(vllm_instance):
task = "Specific Model Revision Test"
result = vllm_instance.run(task, revision="abc123")
assert isinstance(result, str)
assert len(result) > 0
# Test run method with a specific model name
def test_vllm_run_with_custom_model(vllm_instance):
task = "Custom Model Test"
custom_model_name = "my_custom_model"
result = vllm_instance.run(task, model_name=custom_model_name)
assert isinstance(result, str)
assert len(result) > 0
assert vllm_instance.model_name == custom_model_name
# Test run method with invalid task input
def test_vllm_run_invalid_task(vllm_instance):
invalid_task = None
with pytest.raises(ValueError):
vllm_instance.run(invalid_task)
# Test run method with a very high temperature value
def test_vllm_run_high_temperature(vllm_instance):
task = "High Temperature Test"
high_temperature = 10.0
result = vllm_instance.run(task, temperature=high_temperature)
assert isinstance(result, str)
assert len(result) > 0
# Test run method with a very low top_p value
def test_vllm_run_low_top_p(vllm_instance):
task = "Low Top-P Test"
low_top_p = 0.01
result = vllm_instance.run(task, top_p=low_top_p)
assert isinstance(result, str)
assert len(result) > 0
# Test run method with an empty task
def test_vllm_run_empty_task(vllm_instance):
empty_task = ""
result = vllm_instance.run(empty_task)
assert isinstance(result, str)
assert len(result) == 0
# Test initialization with invalid parameters
def test_vllm_invalid_init():
with pytest.raises(ValueError):
vLLM(
model_name=None,
tensor_parallel_size=-1,
trust_remote_code="invalid",
revision=123,
temperature=-0.1,
top_p=1.1,
)
# Test running vLLM with a large number of parallel heads
def test_vllm_large_parallel_heads():
vllm_instance = vLLM(tensor_parallel_size=16)
task = "Large Parallel Heads Test"
result = vllm_instance.run(task)
assert isinstance(result, str)
assert len(result) > 0
# Test running vLLM with trust_remote_code set to True
def test_vllm_trust_remote_code():
vllm_instance = vLLM(trust_remote_code=True)
task = "Trust Remote Code Test"
result = vllm_instance.run(task)
assert isinstance(result, str)
assert len(result) > 0

@ -135,7 +135,6 @@ def test_save(collaboration, tmp_path):
# Add more tests here... # Add more tests here...
# Add more parameterized tests for different scenarios... # Add more parameterized tests for different scenarios...

@ -2,7 +2,6 @@ from unittest.mock import Mock, patch
import pytest import pytest
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.swarm_net import SwarmNetwork from swarms.structs.swarm_net import SwarmNetwork

Loading…
Cancel
Save