[README][ModelParallelizer]g

pull/336/head
Kye 1 year ago
parent b640688995
commit 80171b0e4f

@ -460,6 +460,48 @@ print(video_path)
``` ```
### `ModelParallelizer`
- Run any models concurrent to compare outputs
- Concurrent execution of various llms
- Plug in and play with your models
```python
import os
from dotenv import load_dotenv
from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
from swarms.swarms import ModelParallelizer
load_dotenv()
# API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
# Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness."
# Run the task
out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")
```
### Simple Conversational Agent ### Simple Conversational Agent
- Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our models - Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our models
- Reliable conversational structure to hold messages together with dynamic handling for long context conversations and interactions with auto chunking - Reliable conversational structure to hold messages together with dynamic handling for long context conversations and interactions with auto chunking

@ -102,8 +102,8 @@ Now that we have covered the class definition, let's delve into the functionalit
One of the primary use cases of `ModelParallelizer` is to distribute a task to all registered LLMs and collect their responses. This can be achieved using the `run(task)` method. Below is an example: One of the primary use cases of `ModelParallelizer` is to distribute a task to all registered LLMs and collect their responses. This can be achieved using the `run(task)` method. Below is an example:
```python ```python
god_mode = ModelParallelizer(llms) parallelizer = ModelParallelizer(llms)
responses = god_mode.run("Translate the following English text to French: 'Hello, how are you?'") responses = parallelizer.run("Translate the following English text to French: 'Hello, how are you?'")
``` ```
### Printing Responses ### Printing Responses
@ -111,7 +111,7 @@ responses = god_mode.run("Translate the following English text to French: 'Hello
To present the responses from all LLMs in a structured tabular format, use the `print_responses(task)` method. Example: To present the responses from all LLMs in a structured tabular format, use the `print_responses(task)` method. Example:
```python ```python
god_mode.print_responses("Summarize the main points of 'War and Peace.'") parallelizer.print_responses("Summarize the main points of 'War and Peace.'")
``` ```
### Saving Responses to a File ### Saving Responses to a File
@ -119,7 +119,7 @@ god_mode.print_responses("Summarize the main points of 'War and Peace.'")
Users can save the responses to a file using the `save_responses_to_file(filename)` method. This is useful for archiving and reviewing responses later. Example: Users can save the responses to a file using the `save_responses_to_file(filename)` method. This is useful for archiving and reviewing responses later. Example:
```python ```python
god_mode.save_responses_to_file("responses.txt") parallelizer.save_responses_to_file("responses.txt")
``` ```
### Task History ### Task History
@ -127,7 +127,7 @@ god_mode.save_responses_to_file("responses.txt")
The `ModelParallelizer` class keeps track of the task history. Developers can access the task history using the `get_task_history()` method. Example: The `ModelParallelizer` class keeps track of the task history. Developers can access the task history using the `get_task_history()` method. Example:
```python ```python
task_history = god_mode.get_task_history() task_history = parallelizer.get_task_history()
for i, task in enumerate(task_history): for i, task in enumerate(task_history):
print(f"Task {i + 1}: {task}") print(f"Task {i + 1}: {task}")
``` ```
@ -186,13 +186,13 @@ worker3 = Worker(
# Register the worker agents with ModelParallelizer # Register the worker agents with ModelParallelizer
agents = [worker1, worker2, worker3] agents = [worker1, worker2, worker3]
god_mode = ModelParallelizer(agents) parallelizer = ModelParallelizer(agents)
# Task for sentiment analysis # Task for sentiment analysis
task = "Please analyze the sentiment of the following sentence: 'This movie is amazing!'" task = "Please analyze the sentiment of the following sentence: 'This movie is amazing!'"
# Print responses from all agents # Print responses from all agents
god_mode.print_responses(task) parallelizer.print_responses(task)
``` ```
### Example 2: Translation ### Example 2: Translation
@ -209,13 +209,13 @@ translator3 = OpenAIChat(model_name="translator-en-de", openai_api_key="api-key"
# Register translation agents with ModelParallelizer # Register translation agents with ModelParallelizer
translators = [translator1, translator2, translator3] translators = [translator1, translator2, translator3]
god_mode = ModelParallelizer(translators) parallelizer = ModelParallelizer(translators)
# Task for translation # Task for translation
task = "Translate the following English text to French: 'Hello, how are you?'" task = "Translate the following English text to French: 'Hello, how are you?'"
# Print translated responses from all agents # Print translated responses from all agents
god_mode.print_responses(task) parallelizer.print_responses(task)
``` ```
### Example 3: Summarization ### Example 3: Summarization
@ -233,13 +233,13 @@ summarizer3 = OpenAIChat(model_name="summarizer-en", openai_api_key="api-key", t
# Register summarization agents with ModelParallelizer # Register summarization agents with ModelParallelizer
summarizers = [summarizer1, summarizer2, summarizer3] summarizers = [summarizer1, summarizer2, summarizer3]
god_mode = ModelParallelizer(summarizers) parallelizer = ModelParallelizer(summarizers)
# Task for summarization # Task for summarization
task = "Summarize the main points of the article titled 'Climate Change and Its Impact on the Environment.'" task = "Summarize the main points of the article titled 'Climate Change and Its Impact on the Environment.'"
# Print summarized responses from all agents # Print summarized responses from all agents
god_mode.print_responses(task) parallelizer.print_responses(task)
``` ```
## 7. Conclusion <a name="conclusion"></a> ## 7. Conclusion <a name="conclusion"></a>

@ -1,16 +1,33 @@
from swarms.swarms import ModelParallelizer import os
from swarms.models import OpenAIChat
from dotenv import load_dotenv
api_key = "" from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
from swarms.swarms import ModelParallelizer
llm = OpenAIChat(openai_api_key=api_key) load_dotenv()
# API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
llms = [llm, llm, llm] # Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
god_mode = ModelParallelizer(llms) # Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness." task = "Generate a 10,000 word blog on health and wellness."
out = god_mode.run(task) # Run the task
god_mode.print_responses(task) out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")

@ -31,9 +31,9 @@ class ModelParallelizer:
print_responses(task): print responses from all LLMs print_responses(task): print responses from all LLMs
Usage: Usage:
god_mode = ModelParallelizer(llms) parallelizer = ModelParallelizer(llms)
god_mode.run(task) parallelizer.run(task)
god_mode.print_responses(task) parallelizer.print_responses(task)
""" """

Loading…
Cancel
Save