pull/286/head
Kye 1 year ago
parent 8fc19ace18
commit 830c7bf651

@ -0,0 +1,215 @@
# Weaviate API Client Documentation
## Overview
The Weaviate API Client is an interface to Weaviate, a vector database with a GraphQL API. This client allows you to interact with Weaviate programmatically, making it easier to create collections, add objects, query data, update objects, and delete objects within your Weaviate instance.
This documentation provides a comprehensive guide on how to use the Weaviate API Client, including its initialization, methods, and usage examples.
## Table of Contents
- [Installation](#installation)
- [Initialization](#initialization)
- [Methods](#methods)
- [create_collection](#create-collection)
- [add](#add)
- [query](#query)
- [update](#update)
- [delete](#delete)
- [Examples](#examples)
## Installation
Before using the Weaviate API Client, make sure to install the `weaviate-client` library. You can install it using pip:
```bash
pip install weaviate-client
```
## Initialization
To use the Weaviate API Client, you need to initialize an instance of the `WeaviateClient` class. Here are the parameters you can pass to the constructor:
| Parameter | Type | Description |
|----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------|
| `http_host` | str | The HTTP host of the Weaviate server. |
| `http_port` | str | The HTTP port of the Weaviate server. |
| `http_secure` | bool | Whether to use HTTPS. |
| `grpc_host` | Optional[str] | The gRPC host of the Weaviate server. (Optional) |
| `grpc_port` | Optional[str] | The gRPC port of the Weaviate server. (Optional) |
| `grpc_secure` | Optional[bool] | Whether to use gRPC over TLS. (Optional) |
| `auth_client_secret` | Optional[Any] | The authentication client secret. (Optional) |
| `additional_headers` | Optional[Dict[str, str]] | Additional headers to send with requests. (Optional) |
| `additional_config` | Optional[weaviate.AdditionalConfig] | Additional configuration for the client. (Optional) |
| `connection_params` | Dict[str, Any] | Dictionary containing connection parameters. This parameter is used internally and can be ignored in most cases. |
Here's an example of how to initialize a WeaviateClient:
```python
from weaviate_client import WeaviateClient
weaviate_client = WeaviateClient(
http_host="YOUR_HTTP_HOST",
http_port="YOUR_HTTP_PORT",
http_secure=True,
grpc_host="YOUR_gRPC_HOST",
grpc_port="YOUR_gRPC_PORT",
grpc_secure=True,
auth_client_secret="YOUR_APIKEY",
additional_headers={"X-OpenAI-Api-Key": "YOUR_OPENAI_APIKEY"},
additional_config=None, # You can pass additional configuration here
)
```
## Methods
### `create_collection`
The `create_collection` method allows you to create a new collection in Weaviate. A collection is a container for storing objects with specific properties.
#### Parameters
- `name` (str): The name of the collection.
- `properties` (List[Dict[str, Any]]): A list of dictionaries specifying the properties of objects to be stored in the collection.
- `vectorizer_config` (Any, optional): Additional vectorizer configuration for the collection. (Optional)
#### Usage
```python
weaviate_client.create_collection(
name="my_collection",
properties=[
{"name": "property1", "dataType": ["string"]},
{"name": "property2", "dataType": ["int"]},
],
vectorizer_config=None # Optional vectorizer configuration
)
```
### `add`
The `add` method allows you to add an object to a specified collection in Weaviate.
#### Parameters
- `collection_name` (str): The name of the collection where the object will be added.
- `properties` (Dict[str, Any]): A dictionary specifying the properties of the object to be added.
#### Usage
```python
weaviate_client.add(
collection_name="my_collection",
properties={"property1": "value1", "property2": 42}
)
```
### `query`
The `query` method allows you to query objects from a specified collection in Weaviate.
#### Parameters
- `collection_name` (str): The name of the collection to query.
- `query` (str): The query string specifying the search criteria.
- `limit` (int, optional): The maximum number of results to return. (Default: 10)
#### Usage
```python
results = weaviate_client.query(
collection_name="my_collection",
query="property1:value1",
limit=20 # Optional, specify the limit
if needed
)
```
### `update`
The `update` method allows you to update an object in a specified collection in Weaviate.
#### Parameters
- `collection_name` (str): The name of the collection where the object exists.
- `object_id` (str): The ID of the object to be updated.
- `properties` (Dict[str, Any]): A dictionary specifying the properties to update.
#### Usage
```python
weaviate_client.update(
collection_name="my_collection",
object_id="object123",
properties={"property1": "new_value", "property2": 99}
)
```
### `delete`
The `delete` method allows you to delete an object from a specified collection in Weaviate.
#### Parameters
- `collection_name` (str): The name of the collection from which to delete the object.
- `object_id` (str): The ID of the object to delete.
#### Usage
```python
weaviate_client.delete(
collection_name="my_collection",
object_id="object123"
)
```
## Examples
Here are three examples demonstrating how to use the Weaviate API Client for common tasks:
### Example 1: Creating a Collection
```python
weaviate_client.create_collection(
name="people",
properties=[
{"name": "name", "dataType": ["string"]},
{"name": "age", "dataType": ["int"]}
]
)
```
### Example 2: Adding an Object
```python
weaviate_client.add(
collection_name="people",
properties={"name": "John", "age": 30}
)
```
### Example 3: Querying Objects
```python
results = weaviate_client.query(
collection_name="people",
query="name:John",
limit=5
)
```
These examples cover the basic operations of creating collections, adding objects, and querying objects using the Weaviate API Client.
## Additional Information and Tips
- If you encounter any errors during the operations, the client will raise exceptions with informative error messages.
- You can explore more advanced features and configurations in the Weaviate documentation.
- Make sure to handle authentication and security appropriately when using the client in production environments.
## References and Resources
- [Weaviate Documentation](https://weaviate.readthedocs.io/en/latest/): Official documentation for Weaviate.
- [Weaviate GitHub Repository](https://github.com/semi-technologies/weaviate): The source code and issue tracker for Weaviate.
This documentation provides a comprehensive guide on using the Weaviate API Client to interact with Weaviate, making it easier to manage and query your data.

@ -101,6 +101,7 @@ nav:
- Agent: "swarms/structs/agent.md" - Agent: "swarms/structs/agent.md"
- SequentialWorkflow: 'swarms/structs/sequential_workflow.md' - SequentialWorkflow: 'swarms/structs/sequential_workflow.md'
- swarms.memory: - swarms.memory:
- Weaviate: "swarms/memory/weaviate.md"
- PineconeVectorStoreStore: "swarms/memory/pinecone.md" - PineconeVectorStoreStore: "swarms/memory/pinecone.md"
- PGVectorStore: "swarms/memory/pg.md" - PGVectorStore: "swarms/memory/pg.md"
- Guides: - Guides:

@ -2,9 +2,10 @@ from swarms.memory import chroma
chromadbcl = chroma.ChromaClient() chromadbcl = chroma.ChromaClient()
chromadbcl.add_vectors(["This is a document", "BONSAIIIIIII", "the walking dead"]) chromadbcl.add_vectors(
["This is a document", "BONSAIIIIIII", "the walking dead"]
)
results = chromadbcl.search_vectors("zombie", limit=1) results = chromadbcl.search_vectors("zombie", limit=1)
print(results) print(results)

@ -17,9 +17,7 @@ class VectorDatabase(ABC):
pass pass
@abstractmethod @abstractmethod
def query( def query(self, text: str, num_results: int) -> Dict[str, Any]:
self, text: str, num_results: int
) -> Dict[str, Any]:
""" """
Query the database for vectors similar to the given vector. Query the database for vectors similar to the given vector.

@ -1,4 +1,216 @@
""" """
Weaviate API Client Weaviate API Client
"""
import os
import subprocess
from typing import Any, Dict, List, Optional
from swarms.memory.base_vectordb import VectorDatabase
try:
import weaviate
except ImportError as error:
print("pip install weaviate-client")
subprocess.run(["pip", "install", "weaviate-client"])
class WeaviateClient(VectorDatabase):
"""
Weaviate API Client
Interface to Weaviate, a vector database with a GraphQL API.
Args:
http_host (str): The HTTP host of the Weaviate server.
http_port (str): The HTTP port of the Weaviate server.
http_secure (bool): Whether to use HTTPS.
grpc_host (Optional[str]): The gRPC host of the Weaviate server.
grpc_port (Optional[str]): The gRPC port of the Weaviate server.
grpc_secure (Optional[bool]): Whether to use gRPC over TLS.
auth_client_secret (Optional[Any]): The authentication client secret.
additional_headers (Optional[Dict[str, str]]): Additional headers to send with requests.
additional_config (Optional[weaviate.AdditionalConfig]): Additional configuration for the client.
Methods:
create_collection: Create a new collection in Weaviate.
add: Add an object to a specified collection.
query: Query objects from a specified collection.
update: Update an object in a specified collection.
delete: Delete an object from a specified collection.
Examples:
>>> from swarms.memory import WeaviateClient
""" """
def __init__(
self,
http_host: str,
http_port: str,
http_secure: bool,
grpc_host: Optional[str] = None,
grpc_port: Optional[str] = None,
grpc_secure: Optional[bool] = None,
auth_client_secret: Optional[Any] = None,
additional_headers: Optional[Dict[str, str]] = None,
additional_config: Optional[weaviate.AdditionalConfig] = None,
connection_params: Dict[str, Any] = None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.http_host = http_host
self.http_port = http_port
self.http_secure = http_secure
self.grpc_host = grpc_host
self.grpc_port = grpc_port
self.grpc_secure = grpc_secure
self.auth_client_secret = auth_client_secret
self.additional_headers = additional_headers
self.additional_config = additional_config
self.connection_params = connection_params
# If connection_params are provided, use them to initialize the client.
connection_params = weaviate.ConnectionParams.from_params(
http_host=http_host,
http_port=http_port,
http_secure=http_secure,
grpc_host=grpc_host,
grpc_port=grpc_port,
grpc_secure=grpc_secure,
)
# If additional headers are provided, add them to the connection params.
self.client = weaviate.WeaviateClient(
connection_params=connection_params,
auth_client_secret=auth_client_secret,
additional_headers=additional_headers,
additional_config=additional_config,
)
def create_collection(
self,
name: str,
properties: List[Dict[str, Any]],
vectorizer_config: Any = None,
):
"""Create a new collection in Weaviate.
Args:
name (str): _description_
properties (List[Dict[str, Any]]): _description_
vectorizer_config (Any, optional): _description_. Defaults to None.
"""
try:
out = self.client.collections.create(
name=name,
vectorizer_config=vectorizer_config,
properties=properties,
)
print(out)
except Exception as error:
print(f"Error creating collection: {error}")
raise
def add(self, collection_name: str, properties: Dict[str, Any]):
"""Add an object to a specified collection.
Args:
collection_name (str): _description_
properties (Dict[str, Any]): _description_
Returns:
_type_: _description_
"""
try:
collection = self.client.collections.get(collection_name)
return collection.data.insert(properties)
except Exception as error:
print(f"Error adding object: {error}")
raise
def query(
self, collection_name: str, query: str, limit: int = 10
):
"""Query objects from a specified collection.
Args:
collection_name (str): _description_
query (str): _description_
limit (int, optional): _description_. Defaults to 10.
Returns:
_type_: _description_
"""
try:
collection = self.client.collections.get(collection_name)
response = collection.query.bm25(query=query, limit=limit)
return [o.properties for o in response.objects]
except Exception as error:
print(f"Error querying objects: {error}")
raise
def update(
self,
collection_name: str,
object_id: str,
properties: Dict[str, Any],
):
"""UPdate an object in a specified collection.
Args:
collection_name (str): _description_
object_id (str): _description_
properties (Dict[str, Any]): _description_
"""
try:
collection = self.client.collections.get(collection_name)
collection.data.update(object_id, properties)
except Exception as error:
print(f"Error updating object: {error}")
raise
def delete(self, collection_name: str, object_id: str):
"""Delete an object from a specified collection.
Args:
collection_name (str): _description_
object_id (str): _description_
"""
try:
collection = self.client.collections.get(collection_name)
collection.data.delete_by_id(object_id)
except Exception as error:
print(f"Error deleting object: {error}")
raise
# # Example usage
# connection_params = {
# "http_host": "YOUR_HTTP_HOST",
# "http_port": "YOUR_HTTP_PORT",
# "http_secure": True,
# "grpc_host": "YOUR_gRPC_HOST",
# "grpc_port": "YOUR_gRPC_PORT",
# "grpc_secure": True,
# "auth_client_secret": weaviate.AuthApiKey("YOUR_APIKEY"),
# "additional_headers": {"X-OpenAI-Api-Key": "YOUR_OPENAI_APIKEY"},
# "additional_config": weaviate.AdditionalConfig(
# startup_period=10, timeout=(5, 15)
# ),
# }
# weaviate_client = WeaviateClient(connection_params)
# # Example usage
# weaviate_client = WeaviateClient(
# http_host="YOUR_HTTP_HOST",
# http_port="YOUR_HTTP_PORT",
# http_secure=True,
# grpc_host="YOUR_gRPC_HOST",
# grpc_port="YOUR_gRPC_PORT",
# grpc_secure=True,
# auth_client_secret=weaviate.AuthApiKey("YOUR_APIKEY"),
# additional_headers={"X-OpenAI-Api-Key": "YOUR_OPENAI_APIKEY"},
# additional_config=weaviate.AdditionalConfig(startup_period=10, timeout=(5, 15))
# )

@ -763,11 +763,7 @@ class Agent:
""" """
return agent_history_prompt return agent_history_prompt
def agent_memory_prompt( def agent_memory_prompt(self, query, prompt):
self,
query,
prompt
):
""" """
Generate the agent long term memory prompt Generate the agent long term memory prompt
@ -789,7 +785,6 @@ class Agent:
return context_injected_prompt return context_injected_prompt
async def run_concurrent(self, tasks: List[str], **kwargs): async def run_concurrent(self, tasks: List[str], **kwargs):
""" """
Run a batch of tasks concurrently and handle an infinite level of task inputs. Run a batch of tasks concurrently and handle an infinite level of task inputs.

@ -0,0 +1,196 @@
import pytest
from unittest.mock import Mock, patch
from swarms.memory.weaviate import WeaviateClient
# Define fixture for a WeaviateClient instance with mocked methods
@pytest.fixture
def weaviate_client_mock():
client = WeaviateClient(
http_host="mock_host",
http_port="mock_port",
http_secure=False,
grpc_host="mock_grpc_host",
grpc_port="mock_grpc_port",
grpc_secure=False,
auth_client_secret="mock_api_key",
additional_headers={
"X-OpenAI-Api-Key": "mock_openai_api_key"
},
additional_config=Mock(),
)
# Mock the methods
client.client.collections.create = Mock()
client.client.collections.get = Mock()
client.client.collections.query = Mock()
client.client.collections.data.insert = Mock()
client.client.collections.data.update = Mock()
client.client.collections.data.delete_by_id = Mock()
return client
# Define tests for the WeaviateClient class
def test_create_collection(weaviate_client_mock):
# Test creating a collection
weaviate_client_mock.create_collection(
"test_collection", [{"name": "property"}]
)
weaviate_client_mock.client.collections.create.assert_called_with(
name="test_collection",
vectorizer_config=None,
properties=[{"name": "property"}],
)
def test_add_object(weaviate_client_mock):
# Test adding an object
properties = {"name": "John"}
weaviate_client_mock.add("test_collection", properties)
weaviate_client_mock.client.collections.get.assert_called_with(
"test_collection"
)
weaviate_client_mock.client.collections.data.insert.assert_called_with(
properties
)
def test_query_objects(weaviate_client_mock):
# Test querying objects
query = "name:John"
weaviate_client_mock.query("test_collection", query)
weaviate_client_mock.client.collections.get.assert_called_with(
"test_collection"
)
weaviate_client_mock.client.collections.query.bm25.assert_called_with(
query=query, limit=10
)
def test_update_object(weaviate_client_mock):
# Test updating an object
object_id = "12345"
properties = {"name": "Jane"}
weaviate_client_mock.update(
"test_collection", object_id, properties
)
weaviate_client_mock.client.collections.get.assert_called_with(
"test_collection"
)
weaviate_client_mock.client.collections.data.update.assert_called_with(
object_id, properties
)
def test_delete_object(weaviate_client_mock):
# Test deleting an object
object_id = "12345"
weaviate_client_mock.delete("test_collection", object_id)
weaviate_client_mock.client.collections.get.assert_called_with(
"test_collection"
)
weaviate_client_mock.client.collections.data.delete_by_id.assert_called_with(
object_id
)
def test_create_collection_with_vectorizer_config(
weaviate_client_mock,
):
# Test creating a collection with vectorizer configuration
vectorizer_config = {"config_key": "config_value"}
weaviate_client_mock.create_collection(
"test_collection", [{"name": "property"}], vectorizer_config
)
weaviate_client_mock.client.collections.create.assert_called_with(
name="test_collection",
vectorizer_config=vectorizer_config,
properties=[{"name": "property"}],
)
def test_query_objects_with_limit(weaviate_client_mock):
# Test querying objects with a specified limit
query = "name:John"
limit = 20
weaviate_client_mock.query("test_collection", query, limit)
weaviate_client_mock.client.collections.get.assert_called_with(
"test_collection"
)
weaviate_client_mock.client.collections.query.bm25.assert_called_with(
query=query, limit=limit
)
def test_query_objects_without_limit(weaviate_client_mock):
# Test querying objects without specifying a limit
query = "name:John"
weaviate_client_mock.query("test_collection", query)
weaviate_client_mock.client.collections.get.assert_called_with(
"test_collection"
)
weaviate_client_mock.client.collections.query.bm25.assert_called_with(
query=query, limit=10
)
def test_create_collection_failure(weaviate_client_mock):
# Test failure when creating a collection
with patch(
"weaviate_client.weaviate.collections.create",
side_effect=Exception("Create error"),
):
with pytest.raises(
Exception, match="Error creating collection"
):
weaviate_client_mock.create_collection(
"test_collection", [{"name": "property"}]
)
def test_add_object_failure(weaviate_client_mock):
# Test failure when adding an object
properties = {"name": "John"}
with patch(
"weaviate_client.weaviate.collections.data.insert",
side_effect=Exception("Insert error"),
):
with pytest.raises(Exception, match="Error adding object"):
weaviate_client_mock.add("test_collection", properties)
def test_query_objects_failure(weaviate_client_mock):
# Test failure when querying objects
query = "name:John"
with patch(
"weaviate_client.weaviate.collections.query.bm25",
side_effect=Exception("Query error"),
):
with pytest.raises(Exception, match="Error querying objects"):
weaviate_client_mock.query("test_collection", query)
def test_update_object_failure(weaviate_client_mock):
# Test failure when updating an object
object_id = "12345"
properties = {"name": "Jane"}
with patch(
"weaviate_client.weaviate.collections.data.update",
side_effect=Exception("Update error"),
):
with pytest.raises(Exception, match="Error updating object"):
weaviate_client_mock.update(
"test_collection", object_id, properties
)
def test_delete_object_failure(weaviate_client_mock):
# Test failure when deleting an object
object_id = "12345"
with patch(
"weaviate_client.weaviate.collections.data.delete_by_id",
side_effect=Exception("Delete error"),
):
with pytest.raises(Exception, match="Error deleting object"):
weaviate_client_mock.delete("test_collection", object_id)
Loading…
Cancel
Save