Merge pull request #1052 from harshalmore31/qdrant-integration

[Fix] Docs
pull/1053/head
Kye Gomez 6 days ago committed by GitHub
commit 8d3331cfcb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -383,30 +383,45 @@ print(result)
## Best Practices ## Best Practices
1. **Document Processing Strategy**: ### Document Processing Strategy
- **Chunking**: Split large documents into 200-500 token chunks for optimal retrieval
- **Overlap**: Use 20-50 token overlap between chunks to maintain context | Practice | Recommendation | Details |
- **Preprocessing**: Clean and normalize text before indexing |----------|----------------|---------|
| **Chunking** | 200-500 tokens | Split large documents into optimal chunks for retrieval |
2. **Collection Organization**: | **Overlap** | 20-50 tokens | Maintain context between consecutive chunks |
- Use separate collections for different document types (technical docs, policies, etc.) | **Preprocessing** | Clean & normalize | Remove noise and standardize text format |
- Implement consistent naming conventions for collections
- Consider document lifecycle and update strategies ### Collection Organization
3. **Embedding Model Selection**: | Practice | Recommendation | Details |
- **Development**: Use `all-MiniLM-L6-v2` for fast iteration |----------|----------------|---------|
- **Production**: Use `text-embedding-3-small` or `text-embedding-3-large` for quality | **Separation** | Type-based collections | Use separate collections for docs, policies, code, etc. |
- **Specialized Domains**: Consider domain-specific embedding models | **Naming** | Consistent conventions | Follow clear, descriptive naming patterns |
| **Lifecycle** | Update strategies | Plan for document versioning and updates |
4. **Performance Optimization**:
- **Retrieval Count**: Start with 3-5 results, adjust based on performance testing ### Embedding Model Selection
- **Batch Operations**: Use `batch_add()` for efficient bulk document ingestion
- **Metadata Strategy**: Store relevant metadata for enhanced filtering and context | Environment | Recommended Model | Use Case |
|-------------|-------------------|----------|
5. **Production Deployment**: | **Development** | `all-MiniLM-L6-v2` | Fast iteration and testing |
- Use Qdrant Cloud or self-hosted server for persistent storage | **Production** | `text-embedding-3-small/large` | High-quality production deployment |
- Implement proper error handling and retry mechanisms | **Specialized** | Domain-specific models | Industry or domain-focused applications |
- Monitor performance metrics and embedding quality
### Performance Optimization
| Setting | Recommendation | Rationale |
|---------|----------------|-----------|
| **Retrieval Count** | Start with 3-5 results | Balance relevance with performance |
| **Batch Operations** | Use `batch_add()` | Efficient bulk document processing |
| **Metadata** | Strategic storage | Enable filtering and enhanced context |
### Production Deployment
| Component | Best Practice | Implementation |
|-----------|---------------|----------------|
| **Storage** | Persistent server | Use Qdrant Cloud or self-hosted server |
| **Error Handling** | Robust mechanisms | Implement retry logic and graceful failures |
| **Monitoring** | Performance tracking | Monitor metrics and embedding quality |
## Performance Tips ## Performance Tips

Loading…
Cancel
Save