Former-commit-id: 3e9aaa4ea9
pull/47/head
Kye 1 year ago
parent 2eccf04a30
commit 8dac197def

@ -10,13 +10,14 @@ from swarms.agents.prompts.prompt_generator import FINISH_NAME
from swarms.agents.models.base import AbstractModel from swarms.agents.models.base import AbstractModel
from swarms.agents.prompts.agent_output_parser import AgentOutputParser from swarms.agents.prompts.agent_output_parser import AgentOutputParser
from swarms.agents.prompts.agent_prompt_auto import PromptConstructor, MessageFormatter from swarms.agents.prompts.agent_prompt_auto import PromptConstructor, MessageFormatter
from swarms.agents.prompts.agent_prompt import AIMessage, HumanMessage, SystemMessage
from langchain.chains.llm import LLMChain from langchain.chains.llm import LLMChain
from langchain.memory import ChatMessageHistory from langchain.memory import ChatMessageHistory
from langchain.schema import (BaseChatMessageHistory, Document,) from langchain.schema import (BaseChatMessageHistory, Document)
from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
from langchain.tools.base import BaseTool from langchain.tools.base import BaseTool
from langchain.vectorstores.base import VectorStoreRetriever from langchain.vectorstores.base import VectorStoreRetriever

@ -0,0 +1,121 @@
from __future__ import annotations
from abc import abstractmethod
from typing import Any, Dict, List, Sequence
from pydantic import Field
class Message:
"""
The base abstract Message class.
Messages are the inputs and outputs of ChatModels.
"""
def __init__(self, content: str, role: str, additional_kwargs: Dict = None):
self.content = content
self.role = role
self.additional_kwargs = additional_kwargs if additional_kwargs else {}
@abstractmethod
def get_type(self) -> str:
pass
class HumanMessage(Message):
"""
A Message from a human.
"""
def __init__(self, content: str, role: str = "Human", additional_kwargs: Dict = None, example: bool = False):
super().__init__(content, role, additional_kwargs)
self.example = example
def get_type(self) -> str:
return "human"
class AIMessage(Message):
"""
A Message from an AI.
"""
def __init__(self, content: str, role: str = "AI", additional_kwargs: Dict = None, example: bool = False):
super().__init__(content, role, additional_kwargs)
self.example = example
def get_type(self) -> str:
return "ai"
class SystemMessage(Message):
"""
A Message for priming AI behavior, usually passed in as the first of a sequence
of input messages.
"""
def __init__(self, content: str, role: str = "System", additional_kwargs: Dict = None):
super().__init__(content, role, additional_kwargs)
def get_type(self) -> str:
return "system"
class FunctionMessage(Message):
"""
A Message for passing the result of executing a function back to a model.
"""
def __init__(self, content: str, role: str = "Function", name: str, additional_kwargs: Dict = None):
super().__init__(content, role, additional_kwargs)
self.name = name
def get_type(self) -> str:
return "function"
class ChatMessage(Message):
"""
A Message that can be assigned an arbitrary speaker (i.e. role).
"""
def __init__(self, content: str, role: str, additional_kwargs: Dict = None):
super().__init__(content, role, additional_kwargs)
def get_type(self) -> str:
return "chat"
def get_buffer_string(
messages: Sequence[Message], human_prefix: str = "Human", ai_prefix: str = "AI"
) -> str:
string_messages = []
for m in messages:
message = f"{m.role}: {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return "\n".join(string_messages)
def message_to_dict(message: Message) -> dict:
return {"type": message.get_type(), "data": message.__dict__}
def messages_to_dict(messages: Sequence[Message]) -> List[dict]:
return [message_to_dict(m) for m in messages]
def message_from_dict(message: dict) -> Message:
_type = message["type"]
if _type == "human":
return HumanMessage(**message["data"])
elif _type == "ai":
return AIMessage(**message["data"])
elif _type == "system":
return SystemMessage(**message["data"])
elif _type == "chat":
return ChatMessage(**message["data"])
elif _type == "function":
return FunctionMessage(**message["data"])
else:
raise ValueError(f"Got unexpected message type: {_type}")
def messages_from_dict(messages: List[dict]) -> List[Message]:
return [message_from_dict(m) for m in messages]
Loading…
Cancel
Save