`BossNode` simplification

Former-commit-id: 4c4e5b28ac
group-chat
Kye 1 year ago
parent c9c312b671
commit 8f0b055912

@ -7,10 +7,8 @@ from langchain import LLMChain, OpenAI, PromptTemplate
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.docstore import InMemoryDocstore
from langchain.embeddings import OpenAIEmbeddings
from langchain_experimental.autonomous_agents import BabyAGI
from langchain.vectorstores import FAISS
from langchain_experimental.autonomous_agents import BabyAGI
from pydantic import ValidationError
@ -18,50 +16,57 @@ from pydantic import ValidationError
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# ---------- Boss Node ----------
class BossNodeInitializer:
class Boss:
"""
The BossNode class is responsible for creating and executing tasks using the BabyAGI model.
It takes a language model (llm), a vectorstore for memory, an agent_executor for task execution, and a maximum number of iterations for the BabyAGI model.
# Setup
api_key = "YOUR_OPENAI_API_KEY" # Replace with your OpenAI API Key.
os.environ["OPENAI_API_KEY"] = api_key
# Objective for the Boss
objective = "Analyze website user behavior patterns over the past month."
# Create a BossNode instance
boss = BossNode(
objective=objective,
boss_system_prompt="You are the main controller of a data analysis swarm...",
api_key=api_key,
worker_node=WorkerNode
)
# Run the BossNode to process the objective
boss.run()
"""
def __init__(self, llm, vectorstore, agent_executor, max_iterations, human_in_the_loop):
if not llm or not vectorstore or not agent_executor or not max_iterations:
logging.error("llm, vectorstore, agent_executor, and max_iterations cannot be None.")
raise ValueError("llm, vectorstore, agent_executor, and max_iterations cannot be None.")
self.llm = llm
self.vectorstore = vectorstore
self.agent_executor = agent_executor
def __init__(
self,
objective: str,
api_key=None,
max_iterations=5,
human_in_the_loop=None,
boss_system_prompt="You are a boss planner in a swarm...",
llm_class=OpenAI,
worker_node=None,
verbose=False
):
# Store parameters
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
self.objective = objective
self.max_iterations = max_iterations
self.human_in_the_loop = human_in_the_loop
try:
self.baby_agi = BabyAGI.from_llm(
llm=self.llm,
vectorstore=self.vectorstore,
task_execution_chain=self.agent_executor,
max_iterations=self.max_iterations,
human_in_the_loop=self.human_in_the_loop
)
except ValidationError as e:
logging.error(f"Validation Error while initializing BabyAGI: {e}")
raise
except Exception as e:
logging.error(f"Unexpected Error while initializing BabyAGI: {e}")
raise
self.boss_system_prompt = boss_system_prompt
self.llm_class = llm_class
self.verbose = verbose
def initialize_vectorstore(self):
"""
Init vector store
"""
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 8192
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
return None
# Initialization methods
self.llm = self._initialize_llm()
self.vectorstore = self._initialize_vectorstore()
self.task = self._create_task(self.objective)
self.agent_executor = self._initialize_agent_executor(worker_node)
self.baby_agi = self._initialize_baby_agi(human_in_the_loop)
def initialize_llm(self, llm_class, temperature=0.5):
def _initialize_llm(self):
"""
Init LLM
@ -70,83 +75,55 @@ class BossNodeInitializer:
temperature (float): The Temperature for the language model. Default is 0.5
"""
try:
# Initialize language model
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
return self.llm_class(openai_api_key=self.api_key, temperature=0.5)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
raise e
def create_task(self, objective):
"""
Creates a task with the given objective.
"""
if not objective:
logging.error("Objective cannot be empty.")
raise ValueError("Objective cannot be empty.")
return {"objective": objective}
def run(self, task):
"""
Executes a task using the BabyAGI model.
"""
if not task:
logging.error("Task cannot be empty.")
raise ValueError("Task cannot be empty.")
def _initialize_vectorstore(self):
try:
self.baby_agi(task)
except Exception as e:
logging.error(f"Error while executing task: {e}")
raise
class BossNode:
def __init__(self,
llm=None,
vectorstore=None,
agent_executor=None,
max_iterations=5,
human_in_the_loop=None,
objective: Optional[str] = None,
boss_system_prompt: Optional[str] = "You are a boss planner in a swarm...",
api_key=None,
worker_node=None,
llm_class=OpenAI,
verbose=False,
):
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
self.worker_node = worker_node
self.boss_system_prompt = boss_system_prompt
self.llm_class = llm_class
self.max_iterations = max_iterations
self.verbose = verbose
embeddings_model = OpenAIEmbeddings(openai_api_key=self.api_key)
embedding_size = 8192
index = faiss.IndexFlatL2(embedding_size)
if not self.api_key:
raise ValueError("[MasterBossNode][ValueError][API KEY must be provided either as an argument or as an environment variable API_KEY]")
return FAISS(
embeddings_model.embed_query,
index,
InMemoryDocstore({}), {}
)
# Initialize components if not provided
self.llm = llm if llm else self._initialize_llm(self.llm_class)
self.vectorstore = vectorstore if vectorstore else self._initialize_vectorstore()
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
raise e
# Setting up todo_chain and agent_executor
todo_prompt = PromptTemplate.from_template(boss_system_prompt)
def _initialize_agent_executor(self, worker_node):
todo_prompt = PromptTemplate.from_template(self.boss_system_prompt)
todo_chain = LLMChain(llm=self.llm, prompt=todo_prompt)
tools = [
Tool(name="Goal Decomposition Tool", func=todo_chain.run, description="Use Case: Decompose ambitious goals into as many explicit and well defined tasks for an AI agent to follow. Rules and Regulations, don't use this tool too often only in the beginning when the user grants you a mission."),
Tool(name="Swarm Worker Agent", func=self.worker_node, description="Use Case: When you want to delegate and assign the decomposed goal sub tasks to a worker agent in your swarm, Rules and Regulations, Provide a task specification sheet to the worker agent. It can use the browser, process csvs and generate content")
Tool(
name="Goal Decomposition Tool",
func=todo_chain.run,
description="Use Case: Decompose ambitious goals into as many explicit and well defined tasks for an AI agent to follow. Rules and Regulations, don't use this tool too often only in the beginning when the user grants you a mission."
),
Tool(name="Swarm Worker Agent", func=worker_node, description="Use Case: When you want to delegate and assign the decomposed goal sub tasks to a worker agent in your swarm, Rules and Regulations, Provide a task specification sheet to the worker agent. It can use the browser, process csvs and generate content")
]
suffix = """Question: {task}\n{agent_scratchpad}"""
prefix = """You are a Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["objective", "task", "context", "agent_scratchpad"],
)
llm_chain = LLMChain(llm=self.llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tools])
self.agent_executor = agent_executor if agent_executor else AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=self.verbose)
agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tools)
return AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=self.verbose)
# Setup BabyAGI
def _initialize_baby_agi(self, human_in_the_loop):
try:
self.baby_agi = BabyAGI.from_llm(
return BabyAGI.from_llm(
llm=self.llm,
vectorstore=self.vectorstore,
task_execution_chain=self.agent_executor,
@ -160,25 +137,6 @@ class BossNode:
logging.error(f"Unexpected Error while initializing BabyAGI: {e}")
raise
self.task = self._create_task(objective)
def _initialize_llm(self, llm_class, temperature=0.5):
try:
return llm_class(openai_api_key=self.api_key, temperature=temperature)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
raise e
def _initialize_vectorstore(self):
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.api_key)
embedding_size = 8192
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
return None
def _create_task(self, objective):
if not objective:
logging.error("Objective cannot be empty.")

Loading…
Cancel
Save