parent
4233e69c6a
commit
90398a4a58
@ -0,0 +1,134 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
from swarms.agents.memory.base import VectorStoreRetriever
|
||||
from swarms.agents.memory.base_memory import BaseChatMessageHistory, ChatMessageHistory
|
||||
from swarms.agents.memory.document import Document
|
||||
from swarms.agents.models.base import AbstractModel
|
||||
from swarms.agents.models.prompts.agent_prompt_auto import (
|
||||
MessageFormatter,
|
||||
PromptConstructor,
|
||||
)
|
||||
from swarms.agents.models.prompts.agent_prompt_generator import FINISH_NAME
|
||||
from swarms.agents.models.prompts.base import (
|
||||
AIMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from swarms.agents.tools.base import BaseTool
|
||||
from swarms.agents.utils.Agent import AgentOutputParser
|
||||
from swarms.agents.utils.human_input import HumanInputRun
|
||||
|
||||
|
||||
class Agent:
|
||||
"""Base Agent class"""
|
||||
def __init__(
|
||||
self,
|
||||
ai_name: str,
|
||||
chain: LLMChain,
|
||||
memory: VectorStoreRetriever,
|
||||
output_parser: AgentOutputParser,
|
||||
tools: List[BaseTool],
|
||||
feedback_tool: Optional[HumanInputRun] = None,
|
||||
chat_history_memory: Optional[BaseChatMessageHistory] = None,
|
||||
):
|
||||
self.ai_name = ai_name
|
||||
self.chain = chain
|
||||
self.memory = memory
|
||||
self.next_action_count = 0
|
||||
self.output_parser = output_parser
|
||||
self.tools = tools
|
||||
self.feedback_tool = feedback_tool
|
||||
self.chat_history_memory = chat_history_memory or ChatMessageHistory()
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
ai_name: str,
|
||||
ai_role: str,
|
||||
memory: VectorStoreRetriever,
|
||||
tools: List[BaseTool],
|
||||
llm: AbstractModel,
|
||||
human_in_the_loop: bool = False,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
chat_history_memory: Optional[BaseChatMessageHistory] = None,
|
||||
) -> Agent:
|
||||
prompt_constructor = PromptConstructor(ai_name=ai_name,
|
||||
ai_role=ai_role,
|
||||
tools=tools)
|
||||
message_formatter = MessageFormatter()
|
||||
human_feedback_tool = HumanInputRun() if human_in_the_loop else None
|
||||
chain = LLMChain(llm=llm, prompt_constructor=prompt_constructor, message_formatter=message_formatter)
|
||||
return cls(
|
||||
ai_name,
|
||||
memory,
|
||||
chain,
|
||||
output_parser or AgentOutputParser(),
|
||||
tools,
|
||||
feedback_tool=human_feedback_tool,
|
||||
chat_history_memory=chat_history_memory,
|
||||
)
|
||||
|
||||
def run(self, goals: List[str]) -> str:
|
||||
user_input = (
|
||||
"Determine which next command to use, and respond using the format specified above:"
|
||||
)
|
||||
loop_count = 0
|
||||
while True:
|
||||
loop_count += 1
|
||||
|
||||
# Send message to AI, get response
|
||||
assistant_reply = self.chain.run(
|
||||
goals=goals,
|
||||
messages=self.chat_history_memory.messages,
|
||||
memory=self.memory,
|
||||
user_input=user_input,
|
||||
)
|
||||
|
||||
print(assistant_reply)
|
||||
self.chat_history_memory.add_message(HumanMessage(content=user_input))
|
||||
self.chat_history_memory.add_message(AIMessage(content=assistant_reply))
|
||||
|
||||
# Get command name and arguments
|
||||
action = self.output_parser.parse(assistant_reply)
|
||||
tools = {t.name: t for t in self.tools}
|
||||
if action.name == FINISH_NAME:
|
||||
return action.args["response"]
|
||||
if action.name in tools:
|
||||
tool = tools[action.name]
|
||||
try:
|
||||
observation = tool.run(action.args)
|
||||
except Exception as error:
|
||||
observation = (
|
||||
f"Validation Error in args: {str(error)}, args: {action.args}"
|
||||
)
|
||||
except Exception as e:
|
||||
observation = (
|
||||
f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
|
||||
)
|
||||
result = f"Command {tool.name} returned: {observation}"
|
||||
elif action.name == "ERROR":
|
||||
result = f"Error: {action.args}. "
|
||||
else:
|
||||
result = (
|
||||
f"""Unknown command '{action.name}'.
|
||||
Please refer to the 'COMMANDS' list for available
|
||||
commands and only respond in the specified JSON format."""
|
||||
)
|
||||
memory_to_add = (
|
||||
f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
|
||||
)
|
||||
if self.feedback_tool is not None:
|
||||
feedback = f"\n{self.feedback_tool.run('Input: ')}"
|
||||
if feedback in {"q", "stop"}:
|
||||
print("EXITING")
|
||||
return "EXITING"
|
||||
memory_to_add += feedback
|
||||
|
||||
self.memory.add_documents([Document(page_content=memory_to_add)])
|
||||
self.chat_history_memory.add_message(SystemMessage(content=result))
|
||||
|
||||
|
@ -1,134 +1,25 @@
|
||||
from __future__ import annotations
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
|
||||
from swarms.agents.memory.base import VectorStoreRetriever
|
||||
from swarms.agents.memory.base_memory import BaseChatMessageHistory, ChatMessageHistory
|
||||
from swarms.agents.memory.document import Document
|
||||
from swarms.agents.models.base import AbstractModel
|
||||
from swarms.agents.models.prompts.agent_prompt_auto import (
|
||||
MessageFormatter,
|
||||
PromptConstructor,
|
||||
)
|
||||
from swarms.agents.models.prompts.agent_prompt_generator import FINISH_NAME
|
||||
from swarms.agents.models.prompts.base import (
|
||||
AIMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from swarms.agents.tools.base import BaseTool
|
||||
from swarms.agents.utils.Agent import AgentOutputParser
|
||||
from swarms.agents.utils.human_input import HumanInputRun
|
||||
|
||||
|
||||
class Agent:
|
||||
"""Base Agent class"""
|
||||
class AbstractAgent(ABC):
|
||||
#absrtact agent class
|
||||
|
||||
@classmethod
|
||||
def __init__(
|
||||
self,
|
||||
ai_name: str,
|
||||
chain: LLMChain,
|
||||
memory: VectorStoreRetriever,
|
||||
output_parser: AgentOutputParser,
|
||||
tools: List[BaseTool],
|
||||
feedback_tool: Optional[HumanInputRun] = None,
|
||||
chat_history_memory: Optional[BaseChatMessageHistory] = None,
|
||||
self,
|
||||
ai_name: str = None,
|
||||
ai_role: str = None,
|
||||
memory = None,
|
||||
tools = None,
|
||||
llm = None,
|
||||
human_in_the_loop=None,
|
||||
output_parser = None,
|
||||
chat_history_memory=None,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
self.ai_name = ai_name
|
||||
self.chain = chain
|
||||
self.memory = memory
|
||||
self.next_action_count = 0
|
||||
self.output_parser = output_parser
|
||||
self.tools = tools
|
||||
self.feedback_tool = feedback_tool
|
||||
self.chat_history_memory = chat_history_memory or ChatMessageHistory()
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
ai_name: str,
|
||||
ai_role: str,
|
||||
memory: VectorStoreRetriever,
|
||||
tools: List[BaseTool],
|
||||
llm: AbstractModel,
|
||||
human_in_the_loop: bool = False,
|
||||
output_parser: Optional[AgentOutputParser] = None,
|
||||
chat_history_memory: Optional[BaseChatMessageHistory] = None,
|
||||
) -> Agent:
|
||||
prompt_constructor = PromptConstructor(ai_name=ai_name,
|
||||
ai_role=ai_role,
|
||||
tools=tools)
|
||||
message_formatter = MessageFormatter()
|
||||
human_feedback_tool = HumanInputRun() if human_in_the_loop else None
|
||||
chain = LLMChain(llm=llm, prompt_constructor=prompt_constructor, message_formatter=message_formatter)
|
||||
return cls(
|
||||
ai_name,
|
||||
memory,
|
||||
chain,
|
||||
output_parser or AgentOutputParser(),
|
||||
tools,
|
||||
feedback_tool=human_feedback_tool,
|
||||
chat_history_memory=chat_history_memory,
|
||||
)
|
||||
|
||||
def run(self, goals: List[str]) -> str:
|
||||
user_input = (
|
||||
"Determine which next command to use, and respond using the format specified above:"
|
||||
)
|
||||
loop_count = 0
|
||||
while True:
|
||||
loop_count += 1
|
||||
|
||||
# Send message to AI, get response
|
||||
assistant_reply = self.chain.run(
|
||||
goals=goals,
|
||||
messages=self.chat_history_memory.messages,
|
||||
memory=self.memory,
|
||||
user_input=user_input,
|
||||
)
|
||||
|
||||
print(assistant_reply)
|
||||
self.chat_history_memory.add_message(HumanMessage(content=user_input))
|
||||
self.chat_history_memory.add_message(AIMessage(content=assistant_reply))
|
||||
|
||||
# Get command name and arguments
|
||||
action = self.output_parser.parse(assistant_reply)
|
||||
tools = {t.name: t for t in self.tools}
|
||||
if action.name == FINISH_NAME:
|
||||
return action.args["response"]
|
||||
if action.name in tools:
|
||||
tool = tools[action.name]
|
||||
try:
|
||||
observation = tool.run(action.args)
|
||||
except Exception as error:
|
||||
observation = (
|
||||
f"Validation Error in args: {str(error)}, args: {action.args}"
|
||||
)
|
||||
except Exception as e:
|
||||
observation = (
|
||||
f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
|
||||
)
|
||||
result = f"Command {tool.name} returned: {observation}"
|
||||
elif action.name == "ERROR":
|
||||
result = f"Error: {action.args}. "
|
||||
else:
|
||||
result = (
|
||||
f"""Unknown command '{action.name}'.
|
||||
Please refer to the 'COMMANDS' list for available
|
||||
commands and only respond in the specified JSON format."""
|
||||
)
|
||||
memory_to_add = (
|
||||
f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
|
||||
)
|
||||
if self.feedback_tool is not None:
|
||||
feedback = f"\n{self.feedback_tool.run('Input: ')}"
|
||||
if feedback in {"q", "stop"}:
|
||||
print("EXITING")
|
||||
return "EXITING"
|
||||
memory_to_add += feedback
|
||||
|
||||
self.memory.add_documents([Document(page_content=memory_to_add)])
|
||||
self.chat_history_memory.add_message(SystemMessage(content=result))
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def run(self, goals=None):
|
||||
pass
|
||||
|
||||
|
Loading…
Reference in new issue