base agebt abstract class

pull/53/head
Kye 1 year ago
parent 4233e69c6a
commit 90398a4a58

@ -0,0 +1,134 @@
from __future__ import annotations
from typing import List, Optional
from langchain.chains.llm import LLMChain
from swarms.agents.memory.base import VectorStoreRetriever
from swarms.agents.memory.base_memory import BaseChatMessageHistory, ChatMessageHistory
from swarms.agents.memory.document import Document
from swarms.agents.models.base import AbstractModel
from swarms.agents.models.prompts.agent_prompt_auto import (
MessageFormatter,
PromptConstructor,
)
from swarms.agents.models.prompts.agent_prompt_generator import FINISH_NAME
from swarms.agents.models.prompts.base import (
AIMessage,
HumanMessage,
SystemMessage,
)
from swarms.agents.tools.base import BaseTool
from swarms.agents.utils.Agent import AgentOutputParser
from swarms.agents.utils.human_input import HumanInputRun
class Agent:
"""Base Agent class"""
def __init__(
self,
ai_name: str,
chain: LLMChain,
memory: VectorStoreRetriever,
output_parser: AgentOutputParser,
tools: List[BaseTool],
feedback_tool: Optional[HumanInputRun] = None,
chat_history_memory: Optional[BaseChatMessageHistory] = None,
):
self.ai_name = ai_name
self.chain = chain
self.memory = memory
self.next_action_count = 0
self.output_parser = output_parser
self.tools = tools
self.feedback_tool = feedback_tool
self.chat_history_memory = chat_history_memory or ChatMessageHistory()
@classmethod
def from_llm_and_tools(
cls,
ai_name: str,
ai_role: str,
memory: VectorStoreRetriever,
tools: List[BaseTool],
llm: AbstractModel,
human_in_the_loop: bool = False,
output_parser: Optional[AgentOutputParser] = None,
chat_history_memory: Optional[BaseChatMessageHistory] = None,
) -> Agent:
prompt_constructor = PromptConstructor(ai_name=ai_name,
ai_role=ai_role,
tools=tools)
message_formatter = MessageFormatter()
human_feedback_tool = HumanInputRun() if human_in_the_loop else None
chain = LLMChain(llm=llm, prompt_constructor=prompt_constructor, message_formatter=message_formatter)
return cls(
ai_name,
memory,
chain,
output_parser or AgentOutputParser(),
tools,
feedback_tool=human_feedback_tool,
chat_history_memory=chat_history_memory,
)
def run(self, goals: List[str]) -> str:
user_input = (
"Determine which next command to use, and respond using the format specified above:"
)
loop_count = 0
while True:
loop_count += 1
# Send message to AI, get response
assistant_reply = self.chain.run(
goals=goals,
messages=self.chat_history_memory.messages,
memory=self.memory,
user_input=user_input,
)
print(assistant_reply)
self.chat_history_memory.add_message(HumanMessage(content=user_input))
self.chat_history_memory.add_message(AIMessage(content=assistant_reply))
# Get command name and arguments
action = self.output_parser.parse(assistant_reply)
tools = {t.name: t for t in self.tools}
if action.name == FINISH_NAME:
return action.args["response"]
if action.name in tools:
tool = tools[action.name]
try:
observation = tool.run(action.args)
except Exception as error:
observation = (
f"Validation Error in args: {str(error)}, args: {action.args}"
)
except Exception as e:
observation = (
f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
)
result = f"Command {tool.name} returned: {observation}"
elif action.name == "ERROR":
result = f"Error: {action.args}. "
else:
result = (
f"""Unknown command '{action.name}'.
Please refer to the 'COMMANDS' list for available
commands and only respond in the specified JSON format."""
)
memory_to_add = (
f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
)
if self.feedback_tool is not None:
feedback = f"\n{self.feedback_tool.run('Input: ')}"
if feedback in {"q", "stop"}:
print("EXITING")
return "EXITING"
memory_to_add += feedback
self.memory.add_documents([Document(page_content=memory_to_add)])
self.chat_history_memory.add_message(SystemMessage(content=result))

@ -1,134 +1,25 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from typing import List, Optional
class AbstractAgent(ABC):
#absrtact agent class
from langchain.chains.llm import LLMChain
from swarms.agents.memory.base import VectorStoreRetriever
from swarms.agents.memory.base_memory import BaseChatMessageHistory, ChatMessageHistory
from swarms.agents.memory.document import Document
from swarms.agents.models.base import AbstractModel
from swarms.agents.models.prompts.agent_prompt_auto import (
MessageFormatter,
PromptConstructor,
)
from swarms.agents.models.prompts.agent_prompt_generator import FINISH_NAME
from swarms.agents.models.prompts.base import (
AIMessage,
HumanMessage,
SystemMessage,
)
from swarms.agents.tools.base import BaseTool
from swarms.agents.utils.Agent import AgentOutputParser
from swarms.agents.utils.human_input import HumanInputRun
class Agent:
"""Base Agent class"""
@classmethod
def __init__(
self,
ai_name: str,
chain: LLMChain,
memory: VectorStoreRetriever,
output_parser: AgentOutputParser,
tools: List[BaseTool],
feedback_tool: Optional[HumanInputRun] = None,
chat_history_memory: Optional[BaseChatMessageHistory] = None,
ai_name: str = None,
ai_role: str = None,
memory = None,
tools = None,
llm = None,
human_in_the_loop=None,
output_parser = None,
chat_history_memory=None,
*args,
**kwargs
):
self.ai_name = ai_name
self.chain = chain
self.memory = memory
self.next_action_count = 0
self.output_parser = output_parser
self.tools = tools
self.feedback_tool = feedback_tool
self.chat_history_memory = chat_history_memory or ChatMessageHistory()
@classmethod
def from_llm_and_tools(
cls,
ai_name: str,
ai_role: str,
memory: VectorStoreRetriever,
tools: List[BaseTool],
llm: AbstractModel,
human_in_the_loop: bool = False,
output_parser: Optional[AgentOutputParser] = None,
chat_history_memory: Optional[BaseChatMessageHistory] = None,
) -> Agent:
prompt_constructor = PromptConstructor(ai_name=ai_name,
ai_role=ai_role,
tools=tools)
message_formatter = MessageFormatter()
human_feedback_tool = HumanInputRun() if human_in_the_loop else None
chain = LLMChain(llm=llm, prompt_constructor=prompt_constructor, message_formatter=message_formatter)
return cls(
ai_name,
memory,
chain,
output_parser or AgentOutputParser(),
tools,
feedback_tool=human_feedback_tool,
chat_history_memory=chat_history_memory,
)
def run(self, goals: List[str]) -> str:
user_input = (
"Determine which next command to use, and respond using the format specified above:"
)
loop_count = 0
while True:
loop_count += 1
# Send message to AI, get response
assistant_reply = self.chain.run(
goals=goals,
messages=self.chat_history_memory.messages,
memory=self.memory,
user_input=user_input,
)
print(assistant_reply)
self.chat_history_memory.add_message(HumanMessage(content=user_input))
self.chat_history_memory.add_message(AIMessage(content=assistant_reply))
# Get command name and arguments
action = self.output_parser.parse(assistant_reply)
tools = {t.name: t for t in self.tools}
if action.name == FINISH_NAME:
return action.args["response"]
if action.name in tools:
tool = tools[action.name]
try:
observation = tool.run(action.args)
except Exception as error:
observation = (
f"Validation Error in args: {str(error)}, args: {action.args}"
)
except Exception as e:
observation = (
f"Error: {str(e)}, {type(e).__name__}, args: {action.args}"
)
result = f"Command {tool.name} returned: {observation}"
elif action.name == "ERROR":
result = f"Error: {action.args}. "
else:
result = (
f"""Unknown command '{action.name}'.
Please refer to the 'COMMANDS' list for available
commands and only respond in the specified JSON format."""
)
memory_to_add = (
f"Assistant Reply: {assistant_reply} " f"\nResult: {result} "
)
if self.feedback_tool is not None:
feedback = f"\n{self.feedback_tool.run('Input: ')}"
if feedback in {"q", "stop"}:
print("EXITING")
return "EXITING"
memory_to_add += feedback
self.memory.add_documents([Document(page_content=memory_to_add)])
self.chat_history_memory.add_message(SystemMessage(content=result))
pass
@abstractmethod
def run(self, goals=None):
pass

Loading…
Cancel
Save