parent
3d7b378b53
commit
92833a8f3a
@ -0,0 +1,346 @@
|
||||
# MCP Agent Tool Documentation
|
||||
|
||||
## Introduction to MCP and Agent Running
|
||||
|
||||
The Model Context Protocol (MCP) provides a standardized way to create and manage AI agents through a server-client architecture. Running agents on MCP offers several key benefits:
|
||||
|
||||
- **Standardized Interface**: Consistent API for agent creation and management across different systems
|
||||
- **Scalability**: Handle multiple agents simultaneously through a single MCP server
|
||||
- **Interoperability**: Agents can be called from any MCP-compatible client
|
||||
- **Resource Management**: Centralized control over agent lifecycle and resources
|
||||
- **Protocol Compliance**: Follows the established MCP standard for AI tool integration
|
||||
|
||||
## Step 1: Setup and Installation
|
||||
|
||||
### Prerequisites
|
||||
|
||||
- Python 3.8 or higher
|
||||
- pip package manager
|
||||
|
||||
### Required Packages
|
||||
|
||||
Install the necessary packages using pip:
|
||||
|
||||
```bash
|
||||
# Install MCP SDK and FastMCP
|
||||
pip install mcp fastmcp
|
||||
|
||||
# Install Swarms framework
|
||||
pip install swarms
|
||||
|
||||
# Install additional dependencies
|
||||
pip install loguru
|
||||
```
|
||||
|
||||
### Verify Installation
|
||||
|
||||
```python
|
||||
# Test imports
|
||||
from mcp.server.fastmcp import FastMCP
|
||||
from swarms import Agent
|
||||
|
||||
print("MCP and Swarms installed successfully!")
|
||||
```
|
||||
|
||||
## Step 2: MCP Server Setup
|
||||
|
||||
Create the MCP server file that will handle agent creation requests:
|
||||
|
||||
```python
|
||||
from mcp.server.fastmcp import FastMCP
|
||||
from swarms import Agent
|
||||
|
||||
mcp = FastMCP("MCPAgentTool")
|
||||
|
||||
@mcp.tool(
|
||||
name="create_agent",
|
||||
description="Create an agent with the specified name, system prompt, and model, then run a task.",
|
||||
)
|
||||
def create_agent(agent_name: str, system_prompt: str, model_name: str, task: str) -> str:
|
||||
"""
|
||||
Create an agent with the given parameters and execute the specified task.
|
||||
|
||||
Args:
|
||||
agent_name (str): The name of the agent to create.
|
||||
system_prompt (str): The system prompt to initialize the agent with.
|
||||
model_name (str): The model name to use for the agent.
|
||||
task (str): The task for the agent to perform.
|
||||
|
||||
Returns:
|
||||
str: The result of the agent running the given task.
|
||||
"""
|
||||
agent = Agent(
|
||||
agent_name=agent_name,
|
||||
system_prompt=system_prompt,
|
||||
model_name=model_name,
|
||||
)
|
||||
return agent.run(task)
|
||||
|
||||
if __name__ == "__main__":
|
||||
mcp.run(transport="streamable-http")
|
||||
```
|
||||
|
||||
Save this as `mcp_agent_tool.py` and run it to start the MCP server:
|
||||
|
||||
```bash
|
||||
python mcp_agent_tool.py
|
||||
```
|
||||
|
||||
## Step 3: Basic Client-side Setup: Single Agent
|
||||
|
||||
Create a client file to interact with the MCP server and run a single agent:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
from mcp import ClientSession
|
||||
from mcp.client.streamable_http import (
|
||||
streamablehttp_client as http_client,
|
||||
)
|
||||
|
||||
|
||||
async def create_agent_via_mcp():
|
||||
"""Create and use an agent through MCP using streamable HTTP."""
|
||||
|
||||
print("🔧 Starting MCP client connection...")
|
||||
|
||||
# Connect to the MCP server using streamable HTTP
|
||||
try:
|
||||
async with http_client("http://localhost:8000/mcp") as (read, write, _):
|
||||
|
||||
async with ClientSession(read, write) as session:
|
||||
try:
|
||||
await session.initialize()
|
||||
print("Session initialized successfully!")
|
||||
except Exception as e:
|
||||
print(f"Session initialization failed: {e}")
|
||||
raise
|
||||
|
||||
# List available tools
|
||||
print("Listing available tools...")
|
||||
try:
|
||||
tools = await session.list_tools()
|
||||
print(f"📋 Available tools: {[tool.name for tool in tools.tools]}")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Failed to list tools: {e}")
|
||||
raise
|
||||
|
||||
# Create an agent using your tool
|
||||
print("Calling create_agent tool...")
|
||||
try:
|
||||
arguments = {
|
||||
"agent_name": "tech_expert",
|
||||
"system_prompt": "You are a technology expert. Provide clear explanations.",
|
||||
"model_name": "gpt-4",
|
||||
"task": "Explain blockchain technology in simple terms"
|
||||
}
|
||||
|
||||
result = await session.call_tool(
|
||||
name="create_agent",
|
||||
arguments=arguments
|
||||
)
|
||||
|
||||
# Result Handling
|
||||
if hasattr(result, 'content') and result.content:
|
||||
if isinstance(result.content, list):
|
||||
for content_item in result.content:
|
||||
if hasattr(content_item, 'text'):
|
||||
print(content_item.text)
|
||||
else:
|
||||
print(content_item)
|
||||
else:
|
||||
print(result.content)
|
||||
else:
|
||||
print("No content returned from agent")
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
print(f"Tool call failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
except Exception as e:
|
||||
print(f"Connection failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
# Run the client
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(create_agent_via_mcp())
|
||||
```
|
||||
|
||||
## Step 4: Advanced Client-side Setup: Multiple Agents
|
||||
|
||||
Create a multi-agent system that chains multiple agents together for complex workflows:
|
||||
|
||||
```python
|
||||
import asyncio
|
||||
|
||||
from mcp import ClientSession
|
||||
from mcp.client.streamable_http import (
|
||||
streamablehttp_client as http_client,
|
||||
)
|
||||
|
||||
async def create_agent_via_mcp(session, agent_name, system_prompt, model_name, task):
|
||||
"""Create and use an agent through MCP using streamable HTTP."""
|
||||
print(f"🔧 Creating agent '{agent_name}' with task: {task}")
|
||||
try:
|
||||
arguments = {
|
||||
"agent_name": agent_name,
|
||||
"system_prompt": system_prompt,
|
||||
"model_name": model_name,
|
||||
"task": task
|
||||
}
|
||||
result = await session.call_tool(
|
||||
name="create_agent",
|
||||
arguments=arguments
|
||||
)
|
||||
# Result Handling
|
||||
output = None
|
||||
if hasattr(result, 'content') and result.content:
|
||||
if isinstance(result.content, list):
|
||||
for content_item in result.content:
|
||||
if hasattr(content_item, 'text'):
|
||||
print(content_item.text)
|
||||
output = content_item.text
|
||||
else:
|
||||
print(content_item)
|
||||
output = content_item
|
||||
else:
|
||||
print(result.content)
|
||||
output = result.content
|
||||
else:
|
||||
print("No content returned from agent")
|
||||
return output
|
||||
except Exception as e:
|
||||
print(f"Tool call failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
async def main():
|
||||
print("🔧 Starting MCP client connection...")
|
||||
|
||||
try:
|
||||
async with http_client("http://localhost:8000/mcp") as (read, write, _):
|
||||
async with ClientSession(read, write) as session:
|
||||
try:
|
||||
await session.initialize()
|
||||
print("Session initialized successfully!")
|
||||
except Exception as e:
|
||||
print(f"Session initialization failed: {e}")
|
||||
raise
|
||||
|
||||
# List available tools
|
||||
print("Listing available tools...")
|
||||
try:
|
||||
tools = await session.list_tools()
|
||||
print(f"📋 Available tools: {[tool.name for tool in tools.tools]}")
|
||||
except Exception as e:
|
||||
print(f"Failed to list tools: {e}")
|
||||
raise
|
||||
|
||||
# Sequential Multi-Agent System
|
||||
# Agent 1: Tech Expert explains blockchain
|
||||
agent1_name = "tech_expert"
|
||||
agent1_prompt = "You are a technology expert. Provide clear explanations."
|
||||
agent1_model = "gpt-4"
|
||||
agent1_task = "Explain blockchain technology in simple terms"
|
||||
|
||||
agent1_output = await create_agent_via_mcp(
|
||||
session,
|
||||
agent1_name,
|
||||
agent1_prompt,
|
||||
agent1_model,
|
||||
agent1_task
|
||||
)
|
||||
|
||||
# Agent 2: Legal Expert analyzes the explanation from Agent 1
|
||||
agent2_name = "legal_expert"
|
||||
agent2_prompt = "You are a legal expert. Analyze the following explanation for legal implications."
|
||||
agent2_model = "gpt-4"
|
||||
agent2_task = f"Analyze the following explanation for legal implications:\n\n{agent1_output}"
|
||||
|
||||
agent2_output = await create_agent_via_mcp(
|
||||
session,
|
||||
agent2_name,
|
||||
agent2_prompt,
|
||||
agent2_model,
|
||||
agent2_task
|
||||
)
|
||||
|
||||
# Agent 3: Educator simplifies the legal analysis for students
|
||||
agent3_name = "educator"
|
||||
agent3_prompt = "You are an educator. Summarize the following legal analysis in simple terms for students."
|
||||
agent3_model = "gpt-4"
|
||||
agent3_task = f"Summarize the following legal analysis in simple terms for students:\n\n{agent2_output}"
|
||||
|
||||
agent3_output = await create_agent_via_mcp(
|
||||
session,
|
||||
agent3_name,
|
||||
agent3_prompt,
|
||||
agent3_model,
|
||||
agent3_task
|
||||
)
|
||||
|
||||
print("\n=== Final Output from Educator Agent ===")
|
||||
print(agent3_output)
|
||||
|
||||
except Exception as e:
|
||||
print(f"Connection failed: {e}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
raise
|
||||
|
||||
# Run the client
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
```
|
||||
|
||||
## Summary: Complete Setup Steps for Agent Initialization and Setup on MCP
|
||||
|
||||
Here's a complete overview of all the steps needed to set up your agent initialization and setup on MCP:
|
||||
|
||||
### **Step-by-Step Summary:**
|
||||
|
||||
1. **📦 Package Installation** - Install MCP SDK, FastMCP, Swarms, and dependencies
|
||||
2. **🔧 Server Creation** - Create the MCP server with agent creation tool
|
||||
3. **🚀 Server Startup** - Run the MCP server to handle client requests
|
||||
4. **📱 Basic Client** - Create a simple client to run single agents
|
||||
5. **🔄 Advanced Client** - Build multi-agent workflows with sequential processing
|
||||
|
||||
### **What You'll Have After Following These Steps:**
|
||||
|
||||
- ✅ **MCP Server** running and ready to handle agent creation requests
|
||||
- ✅ **Single Agent Client** for basic agent tasks
|
||||
- ✅ **Multi-Agent Client** for complex, chained workflows
|
||||
- ✅ **Complete System** for dynamic agent creation and management
|
||||
- ✅ **Scalable Architecture** that can handle multiple concurrent agent requests
|
||||
|
||||
### **Key Benefits Achieved:**
|
||||
|
||||
- **Standardized Interface** for agent management
|
||||
- **Scalable Architecture** for multiple agents
|
||||
- **Protocol Compliance** with MCP standards
|
||||
- **Resource Management** for efficient agent lifecycle
|
||||
- **Interoperability** with any MCP-compatible client
|
||||
|
||||
This setup gives you a complete, production-ready system for running AI agents through the Model Context Protocol!
|
||||
|
||||
## Connect With Us
|
||||
|
||||
If you'd like technical support, join our Discord below and stay updated on our Twitter for new updates!
|
||||
|
||||
| Platform | Link | Description |
|
||||
|----------|------|-------------|
|
||||
| 📚 Documentation | [docs.swarms.world](https://docs.swarms.world) | Official documentation and guides |
|
||||
| 📝 Blog | [Medium](https://medium.com/@kyeg) | Latest updates and technical articles |
|
||||
| 💬 Discord | [Join Discord](https://discord.gg/EamjgSaEQf) | Live chat and community support |
|
||||
| 🐦 Twitter | [@kyegomez](https://twitter.com/kyegomez) | Latest news and announcements |
|
||||
| 👥 LinkedIn | [The Swarm Corporation](https://www.linkedin.com/company/the-swarm-corporation) | Professional network and updates |
|
||||
| 📺 YouTube | [Swarms Channel](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ) | Tutorials and demos |
|
||||
| 🎫 Events | [Sign up here](https://lu.ma/5p2jnc2v) | Join our community events |
|
Loading…
Reference in new issue