tests for groupchats, anthropic

pull/128/head
Kye 1 year ago
parent 76fd9a0019
commit 9402dab489

@ -1,5 +1,5 @@
import unittest import unittest
from unittest.mock import patch, Mock, MagicMock from unittest.mock import patch, Mock
from apps.discord import ( from apps.discord import (
Bot, Bot,
) # Replace 'Bot' with the name of the file containing your bot's code. ) # Replace 'Bot' with the name of the file containing your bot's code.

@ -1,9 +1,20 @@
import os import os
import pytest
from unittest.mock import Mock, patch from unittest.mock import Mock, patch
import pytest
from swarms.models.anthropic import Anthropic from swarms.models.anthropic import Anthropic
# Mock the Anthropic API client for testing
class MockAnthropicClient:
def __init__(self, *args, **kwargs):
pass
def completions_create(self, prompt, stop_sequences, stream, **kwargs):
return MockAnthropicResponse()
@pytest.fixture @pytest.fixture
def mock_anthropic_env(): def mock_anthropic_env():
os.environ["ANTHROPIC_API_URL"] = "https://test.anthropic.com" os.environ["ANTHROPIC_API_URL"] = "https://test.anthropic.com"
@ -125,3 +136,88 @@ def test_anthropic_exception_handling(
anthropic_instance(task, stop) anthropic_instance(task, stop)
assert "An error occurred" in str(excinfo.value) assert "An error occurred" in str(excinfo.value)
class MockAnthropicResponse:
def __init__(self):
self.completion = "Mocked Response from Anthropic"
def test_anthropic_instance_creation(anthropic_instance):
assert isinstance(anthropic_instance, Anthropic)
def test_anthropic_call_method(anthropic_instance):
response = anthropic_instance("What is the meaning of life?")
assert response == "Mocked Response from Anthropic"
def test_anthropic_stream_method(anthropic_instance):
generator = anthropic_instance.stream("Write a story.")
for token in generator:
assert isinstance(token, str)
def test_anthropic_async_call_method(anthropic_instance):
response = anthropic_instance.async_call("Tell me a joke.")
assert response == "Mocked Response from Anthropic"
def test_anthropic_async_stream_method(anthropic_instance):
async_generator = anthropic_instance.async_stream("Translate to French.")
for token in async_generator:
assert isinstance(token, str)
def test_anthropic_get_num_tokens(anthropic_instance):
text = "This is a test sentence."
num_tokens = anthropic_instance.get_num_tokens(text)
assert num_tokens > 0
# Add more test cases to cover other functionalities and edge cases of the Anthropic class
def test_anthropic_wrap_prompt(anthropic_instance):
prompt = "What is the meaning of life?"
wrapped_prompt = anthropic_instance._wrap_prompt(prompt)
assert wrapped_prompt.startswith(anthropic_instance.HUMAN_PROMPT)
assert wrapped_prompt.endswith(anthropic_instance.AI_PROMPT)
def test_anthropic_convert_prompt(anthropic_instance):
prompt = "What is the meaning of life?"
converted_prompt = anthropic_instance.convert_prompt(prompt)
assert converted_prompt.startswith(anthropic_instance.HUMAN_PROMPT)
assert converted_prompt.endswith(anthropic_instance.AI_PROMPT)
def test_anthropic_call_with_stop(anthropic_instance):
response = anthropic_instance("Translate to French.", stop=["stop1", "stop2"])
assert response == "Mocked Response from Anthropic"
def test_anthropic_stream_with_stop(anthropic_instance):
generator = anthropic_instance.stream("Write a story.", stop=["stop1", "stop2"])
for token in generator:
assert isinstance(token, str)
def test_anthropic_async_call_with_stop(anthropic_instance):
response = anthropic_instance.async_call("Tell me a joke.", stop=["stop1", "stop2"])
assert response == "Mocked Response from Anthropic"
def test_anthropic_async_stream_with_stop(anthropic_instance):
async_generator = anthropic_instance.async_stream("Translate to French.", stop=["stop1", "stop2"])
for token in async_generator:
assert isinstance(token, str)
def test_anthropic_get_num_tokens_with_count_tokens(anthropic_instance):
anthropic_instance.count_tokens = Mock(return_value=10)
text = "This is a test sentence."
num_tokens = anthropic_instance.get_num_tokens(text)
assert num_tokens == 10
def test_anthropic_get_num_tokens_without_count_tokens(anthropic_instance):
del anthropic_instance.count_tokens
with pytest.raises(NameError):
text = "This is a test sentence."
anthropic_instance.get_num_tokens(text)
def test_anthropic_wrap_prompt_without_human_ai_prompt(anthropic_instance):
del anthropic_instance.HUMAN_PROMPT
del anthropic_instance.AI_PROMPT
prompt = "What is the meaning of life?"
with pytest.raises(NameError):
anthropic_instance._wrap_prompt(prompt)

@ -1,6 +1,6 @@
import os import os
from concurrent.futures import ThreadPoolExecutor from concurrent.futures import ThreadPoolExecutor
from unittest.mock import Mock, patch from unittest.mock import patch
import pytest import pytest
from dotenv import load_dotenv from dotenv import load_dotenv

@ -3,7 +3,7 @@ import json
import os import os
# Assuming the BingChat class is in a file named "bing_chat.py" # Assuming the BingChat class is in a file named "bing_chat.py"
from bing_chat import BingChat, ConversationStyle from bing_chat import BingChat
class TestBingChat(unittest.TestCase): class TestBingChat(unittest.TestCase):

@ -1,4 +1,4 @@
from unittest.mock import MagicMock, patch from unittest.mock import patch
import pytest import pytest
import torch import torch

@ -22,10 +22,10 @@ def mock_image_request():
# Test utility function # Test utility function
def test_is_overlapping(): def test_is_overlapping():
assert is_overlapping((1, 1, 3, 3), (2, 2, 4, 4)) == True assert is_overlapping((1, 1, 3, 3), (2, 2, 4, 4)) is True
assert is_overlapping((1, 1, 2, 2), (3, 3, 4, 4)) == False assert is_overlapping((1, 1, 2, 2), (3, 3, 4, 4)) is False
assert is_overlapping((0, 0, 1, 1), (1, 1, 2, 2)) == False assert is_overlapping((0, 0, 1, 1), (1, 1, 2, 2)) is False
assert is_overlapping((0, 0, 2, 2), (1, 1, 2, 2)) == True assert is_overlapping((0, 0, 2, 2), (1, 1, 2, 2)) is True
# Test model initialization # Test model initialization

@ -15,7 +15,7 @@ class TestRevChatGPT(unittest.TestCase):
def test_run_time(self): def test_run_time(self):
prompt = "Generate a 300 word essay about technology." prompt = "Generate a 300 word essay about technology."
response = self.model.run(prompt) self.model.run(prompt)
self.assertLess(self.model.end_time - self.model.start_time, 60) self.assertLess(self.model.end_time - self.model.start_time, 60)
def test_generate_summary(self): def test_generate_summary(self):

@ -1,7 +1,7 @@
import os import os
import subprocess import subprocess
import tempfile import tempfile
from unittest.mock import Mock, patch from unittest.mock import patch
import pytest import pytest
import whisperx import whisperx

@ -65,10 +65,10 @@ def test_sequential_workflow_initialization():
assert isinstance(workflow, SequentialWorkflow) assert isinstance(workflow, SequentialWorkflow)
assert len(workflow.tasks) == 0 assert len(workflow.tasks) == 0
assert workflow.max_loops == 1 assert workflow.max_loops == 1
assert workflow.autosave == False assert workflow.autosave is False
assert workflow.saved_state_filepath == "sequential_workflow_state.json" assert workflow.saved_state_filepath == "sequential_workflow_state.json"
assert workflow.restore_state_filepath == None assert workflow.restore_state_filepath is None
assert workflow.dashboard == False assert workflow.dashboard is False
def test_sequential_workflow_add_task(): def test_sequential_workflow_add_task():
@ -87,7 +87,7 @@ def test_sequential_workflow_reset_workflow():
task_flow = MockOpenAIChat() task_flow = MockOpenAIChat()
workflow.add(task_description, task_flow) workflow.add(task_description, task_flow)
workflow.reset_workflow() workflow.reset_workflow()
assert workflow.tasks[0].result == None assert workflow.tasks[0].result is None
def test_sequential_workflow_get_task_results(): def test_sequential_workflow_get_task_results():
@ -330,4 +330,4 @@ def test_real_world_usage_with_environment_variables():
def test_real_world_usage_no_openai_key(): def test_real_world_usage_no_openai_key():
# Ensure that an exception is raised when the OpenAI API key is not set # Ensure that an exception is raised when the OpenAI API key is not set
with pytest.raises(ValueError): with pytest.raises(ValueError):
llm = OpenAIChat() # API key not provided, should raise an exception OpenAIChat() # API key not provided, should raise an exception

@ -0,0 +1,214 @@
import pytest
from swarms.models import OpenAIChat
from swarms.models.anthropic import Anthropic
from swarms.structs.flow import Flow
from swarms.swarms.flow import GroupChat, GroupChatManager
llm = OpenAIChat()
llm2 = Anthropic()
# Mock the OpenAI class for testing
class MockOpenAI:
def __init__(self, *args, **kwargs):
pass
def generate_reply(self, content):
return {"role": "mocked_agent", "content": "Mocked Reply"}
# Create fixtures for agents and a sample message
@pytest.fixture
def agent1():
return Flow(name="Agent1", llm=llm)
@pytest.fixture
def agent2():
return Flow(name="Agent2", llm=llm2)
@pytest.fixture
def sample_message():
return {"role": "Agent1", "content": "Hello, World!"}
# Test the initialization of GroupChat
def test_groupchat_initialization(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
assert len(groupchat.agents) == 2
assert len(groupchat.messages) == 0
assert groupchat.max_round == 10
assert groupchat.admin_name == "Admin"
# Test resetting the GroupChat
def test_groupchat_reset(agent1, agent2, sample_message):
groupchat = GroupChat(agents=[agent1, agent2])
groupchat.messages.append(sample_message)
groupchat.reset()
assert len(groupchat.messages) == 0
# Test finding an agent by name
def test_groupchat_find_agent_by_name(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
found_agent = groupchat.agent_by_name("Agent1")
assert found_agent == agent1
# Test selecting the next agent
def test_groupchat_select_next_agent(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
next_agent = groupchat.next_agent(agent1)
assert next_agent == agent2
# Add more tests for different methods and scenarios as needed
# Test the GroupChatManager
def test_groupchat_manager(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
selector = agent1 # Assuming agent1 is the selector
manager = GroupChatManager(groupchat, selector)
task = "Task for agent2"
reply = manager(task)
assert reply["role"] == "Agent2"
assert reply["content"] == "Reply from Agent2"
# Test selecting the next speaker when there is only one agent
def test_groupchat_select_speaker_single_agent(agent1):
groupchat = GroupChat(agents=[agent1])
selector = agent1
manager = GroupChatManager(groupchat, selector)
task = "Task for agent1"
reply = manager(task)
assert reply["role"] == "Agent1"
assert reply["content"] == "Reply from Agent1"
# Test selecting the next speaker when GroupChat is underpopulated
def test_groupchat_select_speaker_underpopulated(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
selector = agent1
manager = GroupChatManager(groupchat, selector)
task = "Task for agent1"
reply = manager(task)
assert reply["role"] == "Agent2"
assert reply["content"] == "Reply from Agent2"
# Test formatting history
def test_groupchat_format_history(agent1, agent2, sample_message):
groupchat = GroupChat(agents=[agent1, agent2])
groupchat.messages.append(sample_message)
formatted_history = groupchat.format_history(groupchat.messages)
expected_history = "'Agent1:Hello, World!"
assert formatted_history == expected_history
# Test agent names property
def test_groupchat_agent_names(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
names = groupchat.agent_names
assert len(names) == 2
assert "Agent1" in names
assert "Agent2" in names
# Test GroupChatManager initialization
def test_groupchat_manager_initialization(agent1, agent2):
groupchat = GroupChat(agents=[agent1, agent2])
selector = agent1
manager = GroupChatManager(groupchat, selector)
assert manager.groupchat == groupchat
assert manager.selector == selector
# Test case to ensure GroupChatManager generates a reply from an agent
def test_groupchat_manager_generate_reply():
# Create a GroupChat with two agents
agents = [agent1, agent2]
groupchat = GroupChat(agents=agents, messages=[], max_round=10)
# Mock the OpenAI class and GroupChat selector
mocked_openai = MockOpenAI()
selector = agent1
# Initialize GroupChatManager
manager = GroupChatManager(
groupchat=groupchat, selector=selector, openai=mocked_openai
)
# Generate a reply
task = "Write me a riddle"
reply = manager(task)
# Check if a valid reply is generated
assert "role" in reply
assert "content" in reply
assert reply["role"] in groupchat.agent_names
# Test case to ensure GroupChat selects the next speaker correctly
def test_groupchat_select_speaker():
agent3 = Flow(name="agent3", llm=llm)
agents = [agent1, agent2, agent3]
groupchat = GroupChat(agents=agents, messages=[], max_round=10)
# Initialize GroupChatManager with agent1 as selector
selector = agent1
manager = GroupChatManager(groupchat=groupchat, selector=selector)
# Simulate selecting the next speaker
last_speaker = agent1
next_speaker = manager.select_speaker(last_speaker=last_speaker, selector=selector)
# Ensure the next speaker is agent2
assert next_speaker == agent2
# Test case to ensure GroupChat handles underpopulated group correctly
def test_groupchat_underpopulated_group():
agent1 = Flow(name="agent1", llm=llm)
agents = [agent1]
groupchat = GroupChat(agents=agents, messages=[], max_round=10)
# Initialize GroupChatManager with agent1 as selector
selector = agent1
manager = GroupChatManager(groupchat=groupchat, selector=selector)
# Simulate selecting the next speaker in an underpopulated group
last_speaker = agent1
next_speaker = manager.select_speaker(last_speaker=last_speaker, selector=selector)
# Ensure the next speaker is the same as the last speaker in an underpopulated group
assert next_speaker == last_speaker
# Test case to ensure GroupChatManager handles the maximum rounds correctly
def test_groupchat_max_rounds():
agents = [agent1, agent2]
groupchat = GroupChat(agents=agents, messages=[], max_round=2)
# Initialize GroupChatManager with agent1 as selector
selector = agent1
manager = GroupChatManager(groupchat=groupchat, selector=selector)
# Simulate the conversation with max rounds
last_speaker = agent1
for _ in range(2):
next_speaker = manager.select_speaker(
last_speaker=last_speaker, selector=selector
)
last_speaker = next_speaker
# Try one more round, should stay with the last speaker
next_speaker = manager.select_speaker(last_speaker=last_speaker, selector=selector)
# Ensure the next speaker is the same as the last speaker after reaching max rounds
assert next_speaker == last_speaker
# Continue adding more test cases as needed to cover various scenarios and functionalities of the code.

@ -1,7 +1,9 @@
import time import subprocess
import threading import threading
import time
import pytest import pytest
import subprocess
from swarms.utils.code_interpreter import BaseCodeInterpreter, SubprocessCodeInterpreter from swarms.utils.code_interpreter import BaseCodeInterpreter, SubprocessCodeInterpreter
@ -141,7 +143,7 @@ def test_subprocess_code_interpreter_run_debug_mode(
): ):
subprocess_code_interpreter.debug_mode = True subprocess_code_interpreter.debug_mode = True
code = 'print("Hello, World!")' code = 'print("Hello, World!")'
result = list(subprocess_code_interpreter.run(code)) list(subprocess_code_interpreter.run(code))
captured = capsys.readouterr() captured = capsys.readouterr()
assert "Running code:\n" in captured.out assert "Running code:\n" in captured.out
assert "Received output line:\n" in captured.out assert "Received output line:\n" in captured.out
@ -152,7 +154,7 @@ def test_subprocess_code_interpreter_run_no_debug_mode(
): ):
subprocess_code_interpreter.debug_mode = False subprocess_code_interpreter.debug_mode = False
code = 'print("Hello, World!")' code = 'print("Hello, World!")'
result = list(subprocess_code_interpreter.run(code)) list(subprocess_code_interpreter.run(code))
captured = capsys.readouterr() captured = capsys.readouterr()
assert "Running code:\n" not in captured.out assert "Running code:\n" not in captured.out
assert "Received output line:\n" not in captured.out assert "Received output line:\n" not in captured.out

Loading…
Cancel
Save