pull/362/head^2
Kye 1 year ago
parent cdf68c9467
commit 970da21846

@ -25,6 +25,11 @@ from swarms.utils.download_weights_from_url import (
from swarms.utils.save_logs import parse_log_file from swarms.utils.save_logs import parse_log_file
########
from swarms.utils.yaml_output_parser import YamlOutputParser
from swarms.utils.json_output_parser import JsonOutputParser
__all__ = [ __all__ = [
"SubprocessCodeInterpreter", "SubprocessCodeInterpreter",
"display_markdown_message", "display_markdown_message",
@ -45,4 +50,6 @@ __all__ = [
"try_except_wrapper", "try_except_wrapper",
"download_weights_from_url", "download_weights_from_url",
"parse_log_file", "parse_log_file",
"YamlOutputParser",
"JsonOutputParser",
] ]

@ -0,0 +1,82 @@
import json
import re
from typing import Type, TypeVar
from pydantic import BaseModel, ValidationError
T = TypeVar("T", bound=BaseModel)
class JsonParsingException(Exception):
"""Custom exception for errors in JSON parsing."""
class JsonOutputParser:
"""Parse JSON output using a Pydantic model.
This parser is designed to extract JSON formatted data from a given string
and parse it using a specified Pydantic model for validation.
Attributes:
pydantic_object: A Pydantic model class for parsing and validation.
pattern: A regex pattern to match JSON code blocks.
Examples:
>>> from pydantic import BaseModel
>>> from swarms.utils.json_output_parser import JsonOutputParser
>>> class MyModel(BaseModel):
... name: str
... age: int
...
>>> parser = JsonOutputParser(MyModel)
>>> text = "```json\n{\"name\": \"John\", \"age\": 42}\n```"
>>> model = parser.parse(text)
>>> model.name
"""
def __init__(self, pydantic_object: Type[T]):
self.pydantic_object = pydantic_object
self.pattern = re.compile(r"^```(?:json)?(?P<json>[^`]*)", re.MULTILINE | re.DOTALL)
def parse(self, text: str) -> T:
"""Parse the provided text to extract and validate JSON data.
Args:
text: A string containing potential JSON data.
Returns:
An instance of the specified Pydantic model with parsed data.
Raises:
JsonParsingException: If parsing or validation fails.
"""
try:
match = re.search(self.pattern, text.strip())
json_str = match.group("json") if match else text
json_object = json.loads(json_str)
return self.pydantic_object.parse_obj(json_object)
except (json.JSONDecodeError, ValidationError) as e:
name = self.pydantic_object.__name__
msg = f"Failed to parse {name} from text '{text}'. Error: {e}"
raise JsonParsingException(msg) from e
def get_format_instructions(self) -> str:
"""Generate formatting instructions based on the Pydantic model schema.
Returns:
A string containing formatting instructions.
"""
schema = self.pydantic_object.schema()
reduced_schema = {k: v for k, v in schema.items() if k not in ['title', 'type']}
schema_str = json.dumps(reduced_schema, indent=4)
format_instructions = f"JSON Formatting Instructions:\n{schema_str}"
return format_instructions
# # Example usage
# class ExampleModel(BaseModel):
# field1: int
# field2: str
# parser = JsonOutputParser(ExampleModel)
# # Use parser.parse(text) to parse JSON data

@ -0,0 +1,76 @@
import json
import re
import yaml
from typing import Type, TypeVar
from pydantic import BaseModel, ValidationError
T = TypeVar("T", bound=BaseModel)
class YamlParsingException(Exception):
"""Custom exception for errors in YAML parsing."""
class YamlOutputParser:
"""Parse YAML output using a Pydantic model.
This parser is designed to extract YAML formatted data from a given string
and parse it using a specified Pydantic model for validation.
Attributes:
pydantic_object: A Pydantic model class for parsing and validation.
pattern: A regex pattern to match YAML code blocks.
Examples:
>>> from pydantic import BaseModel
>>> from swarms.utils.yaml_output_parser import YamlOutputParser
>>> class MyModel(BaseModel):
... name: str
... age: int
...
>>> parser = YamlOutputParser(MyModel)
>>> text = "```yaml\nname: John\nage: 42\n```"
>>> model = parser.parse(text)
>>> model.name
"""
def __init__(self, pydantic_object: Type[T]):
self.pydantic_object = pydantic_object
self.pattern = re.compile(r"^```(?:ya?ml)?(?P<yaml>[^`]*)", re.MULTILINE | re.DOTALL)
def parse(self, text: str) -> T:
"""Parse the provided text to extract and validate YAML data.
Args:
text: A string containing potential YAML data.
Returns:
An instance of the specified Pydantic model with parsed data.
Raises:
YamlParsingException: If parsing or validation fails.
"""
try:
match = re.search(self.pattern, text.strip())
yaml_str = match.group("yaml") if match else text
json_object = yaml.safe_load(yaml_str)
return self.pydantic_object.parse_obj(json_object)
except (yaml.YAMLError, ValidationError) as e:
name = self.pydantic_object.__name__
msg = f"Failed to parse {name} from text '{text}'. Error: {e}"
raise YamlParsingException(msg) from e
def get_format_instructions(self) -> str:
"""Generate formatting instructions based on the Pydantic model schema.
Returns:
A string containing formatting instructions.
"""
schema = self.pydantic_object.schema()
reduced_schema = {k: v for k, v in schema.items() if k not in ['title', 'type']}
schema_str = json.dumps(reduced_schema, indent=4)
format_instructions = f"YAML Formatting Instructions:\n{schema_str}"
return format_instructions
Loading…
Cancel
Save