[FEAT][API.py]

pull/518/head^2
Kye Gomez 7 months ago
parent 56857ae74d
commit 995bb7d317

@ -971,6 +971,7 @@ load_dotenv()
# Load environment variables # Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")) llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1) agent = Agent(llm=llm, max_loops=1)
# Create a workflow # Create a workflow
@ -988,40 +989,6 @@ workflow.add(tasks=[task1, task2, task3])
workflow.run() workflow.run()
``` ```
### `RecursiveWorkflow`
`RecursiveWorkflow` will keep executing the tasks until a specific token like <DONE> is located inside the text!
```python
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, RecursiveWorkflow, Task
# Load environment variables from .env file
load_dotenv()
# Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1)
# Create a workflow
workflow = RecursiveWorkflow(stop_token="<DONE>")
# Create tasks
task1 = Task(agent, "What's the weather in miami")
task2 = Task(agent, "What's the weather in new york")
task3 = Task(agent, "What's the weather in london")
# Add tasks to the workflow
workflow.add(task1)
workflow.add(task2)
workflow.add(task3)
# Run the workflow
workflow.run()
```
### `SwarmNetwork` ### `SwarmNetwork`

@ -31,4 +31,4 @@ def cleanup_json_logs(name: str = None):
# Call the function # Call the function
cleanup_json_logs("agriculture_swarm") cleanup_json_logs("heinz_swarm")

@ -0,0 +1,110 @@
import threading
from dataclasses import dataclass, field
from typing import Callable, List, Optional, Any
from swarms.utils.logger import logger
from swarms.structs.agent import Agent
from swarms.structs.base_workflow import BaseWorkflow
from swarms import OpenAIChat
import os
@dataclass
class ConcurrentWorkflow(BaseWorkflow):
"""
ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents.
Args:
max_workers (int): The maximum number of workers to use for the threading.Thread.
autosave (bool): Whether to save the state of the workflow to a file. Default is False.
saved_state_filepath (str): The filepath to save the state of the workflow to. Default is "runs/concurrent_workflow.json".
print_results (bool): Whether to print the results of each task. Default is False.
return_results (bool): Whether to return the results of each task. Default is False.
use_processes (bool): Whether to use processes instead of threads. Default is False.
Examples:
>>> from swarms.models import OpenAIChat
>>> from swarms.structs import ConcurrentWorkflow
>>> llm = OpenAIChat(openai_api_key="")
>>> workflow = ConcurrentWorkflow(max_workers=5, agents=[llm])
>>> workflow.run()
"""
max_loops: int = 1
max_workers: int = 5
autosave: bool = False
agents: List[Agent] = field(default_factory=list)
saved_state_filepath: Optional[str] = "runs/concurrent_workflow.json"
print_results: bool = True # Modified: Set print_results to True
return_results: bool = False
stopping_condition: Optional[Callable] = None
def run(self, task: Optional[str] = None, *args, **kwargs) -> Optional[List[Any]]:
"""
Executes the tasks in parallel using multiple threads.
Args:
task (Optional[str]): A task description if applicable.
*args: Additional arguments.
**kwargs: Additional keyword arguments.
Returns:
Optional[List[Any]]: A list of the results of each task, if return_results is True. Otherwise, returns None.
"""
loop = 0
results = []
while loop < self.max_loops:
if not self.agents:
logger.warning("No agents found in the workflow.")
break
threads = [threading.Thread(target=self.execute_agent, args=(agent, task)) for agent in self.agents]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
if self.return_results:
results.extend([thread.result for thread in threads if hasattr(thread, 'result')])
loop += 1
if self.stopping_condition and self.stopping_condition(results):
break
return results if self.return_results else None
def list_agents(self):
"""Prints a list of the agents in the workflow."""
for agent in self.agents:
logger.info(agent)
def save(self):
"""Saves the state of the workflow to a file."""
self.save_state(self.saved_state_filepath)
def execute_agent(self, agent: Agent, task: Optional[str] = None, *args, **kwargs):
try:
result = agent.run(task, *args, **kwargs)
if self.print_results:
logger.info(f"Agent {agent}: {result}")
if self.return_results:
return result
except Exception as e:
logger.error(f"Agent {agent} generated an exception: {e}")
api_key = os.environ["OPENAI_API_KEY"]
# Model
swarm = ConcurrentWorkflow(
agents = [Agent(llm=OpenAIChat(openai_api_key=api_key, max_tokens=4000,), max_loops=4, dashboard=False)],
)
# Run the workflow
swarm.run("Generate a report on the top 3 biggest expenses for small businesses and how businesses can save 20%")

@ -7,9 +7,7 @@ def run_model(api_key):
model = MultiOnAgent( model = MultiOnAgent(
api_key=api_key, max_steps=500, url="https://x.com" api_key=api_key, max_steps=500, url="https://x.com"
) )
out = model.run( out = model.run("")
""
)
print(out) print(out)

@ -0,0 +1,101 @@
from swarms import Agent, OpenAIChat, MixtureOfAgents
from swarms import Anthropic
GEO_EXPERT_SYSTEM_PROMPT = """
You are GeoExpert AI, a sophisticated agent specialized in the fields of geo-economic fragmentation and foreign direct investment (FDI).
Your goals are:
1. To provide clear, detailed, and accurate analyses of geo-economic documents and reports.
2. To answer questions related to geo-economic fragmentation and FDI with expert-level insight.
3. To offer strategic recommendations based on current geopolitical and economic trends.
4. To identify and explain the implications of specific geo-economic events on global and regional investment landscapes.
You will achieve these goals by:
1. Leveraging your extensive knowledge in geo-economic theory and practical applications.
2. Utilizing advanced data analysis techniques to interpret complex economic data and trends.
3. Staying updated with the latest developments in international trade, political economy, and investment flows.
4. Communicating your findings and recommendations in a clear, concise, and professional manner.
Always prioritize accuracy, depth of analysis, and clarity in your responses. Use technical terms appropriately and provide context or explanations for complex concepts to ensure understanding. Cite relevant data, reports, and examples where necessary to support your analyses.
---
"""
# Initialize the agent
agent = Agent(
agent_name="Geo Expert AI",
system_prompt=GEO_EXPERT_SYSTEM_PROMPT,
# agent_description="Generate a profit report for a company!",
llm=OpenAIChat(max_tokens=4000),
max_loops=1,
autosave=True,
dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="accounting_agent.json",
# tools=[calculate_profit, generate_report],
docs_folder="heinz_docs",
# pdf_path="docs/accounting_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
# user_name="User",
# # docs=
# # docs_folder="docs",
# retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=100000,
# interactive=True,
# long_term_memory=ChromaDB(docs_folder="heinz_docs", output_dir="geoexpert_output"),
)
# Initialize the agent
forecaster_agent = Agent(
agent_name="Forecaster Agent",
system_prompt="You're the forecaster agent, your purpose is to predict the future of a company! Give numbers and numbers, don't summarize we need numbers",
# agent_description="Generate a profit report for a company!",
llm=Anthropic(max_tokens=4000, anthropic_api_key="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"),
max_loops=1,
autosave=True,
dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="forecaster_agent.json",
# tools=[calculate_profit, generate_report],
docs_folder="heinz_docs",
# pdf_path="docs/accounting_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
# user_name="User",
# # docs=
# # docs_folder="docs",
# retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=100000,
# interactive=True,
# long_term_memory=ChromaDB(docs_folder="heinz_docs", output_dir="geoexpert_output"),
)
# Initialize the swarm
swarm = MixtureOfAgents(
agents = [agent, forecaster_agent],
final_agent = forecaster_agent,
layers = 1,
)
# Run the swarm
out = swarm.run("what is the economic impact of China from technology decoupling, and how is that impact measured? What is the forecast or economic, give some numbers")
print(out)

@ -0,0 +1,84 @@
envs:
# MODEL_NAME: meta-llama/Meta-Llama-3-70B-Instruct
MODEL_NAME: meta-llama/Meta-Llama-3-8B
HF_TOKEN: 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 # Change to your own huggingface token, or use --env to pass.
HF_HUB_ENABLE_HF_TRANSFER: True
# Service configuration
service:
readiness_probe:
path: /v1/chat/completions # Path for the readiness probe
post_data:
model: $MODEL_NAME # Specify the model name
messages:
- role: user
content: Hello! What is your name? # Specify the initial message
max_tokens: 1 # Maximum number of tokens
readiness_probe: /v1/health # Additional readiness probe
# Replica Policy
replica_policy:
min_replicas: 1 # Minimum number of replicas
max_replicas: 10 # Maximum number of replicas
target_qps_per_replica: 2.5 # Target queries per second per replica
upscale_delay_seconds: 200 # Delay before upscaling replicas
downscale_delay_seconds: 1200 # Delay before downscaling replicas
resources:
# accelerators: {L4:8, A10g:8, A10:8, A100:4, A100:8, A100-80GB:2, A100-80GB:4, A100-80GB:8}
accelerators: {A10g, A10, L40, A40} # We can use cheaper accelerators for 8B model.
# cpus: 32+
use_spot: True
disk_size: 100 # Ensure model checkpoints can fit.
# disk_tier: best
ports: 8081 # Expose to internet traffic.
setup: |
#Install vllm
conda activate vllm
if [ $? -ne 0 ]; then
conda create -n vllm python=3.10 -y
conda activate vllm
fi
pip install vllm==0.4.0.post1
# Install Gradio for web UI.
pip install gradio openai
pip install flash-attn==2.5.7
pip install hf_transfer
run: |
# Serve VLM
conda activate vllm
echo 'Starting vllm api server...'
# https://github.com/vllm-project/vllm/issues/3098
export PATH=$PATH:/sbin
# NOTE: --gpu-memory-utilization 0.95 needed for 4-GPU nodes.
python3 -u -m vllm.entrypoints.openai.api_server \
--port 8090 \
--model meta-llama/Meta-Llama-3-8B \
--trust-remote-code --tensor-parallel-size 4 \
--gpu-memory-utilization 0.95 \
--max-num-seqs 64 \
# Serve Gradio
# echo 'Starting gradio server...'
# git clone https://github.com/vllm-project/vllm.git || true
# python vllm/examples/gradio_openai_chatbot_webserver.py \
# -m $MODEL_NAME \
# --port 8811 \
# --model-url http://localhost:8081/v1 \
# --stop-token-ids 128009,128001
# --share
echo 'Starting gradio server...'
git clone https://github.com/vllm-project/vllm.git || true
python3 vllm/examples/gradio_openai_chatbot_webserver.py \
-m meta-llama/Meta-Llama-3-8B\
--port 8811 \
--model-url http://localhost:8081/v1 \
--stop-token-ids 128009,128001

@ -38,6 +38,7 @@ from swarms.structs.multi_process_workflow import (
from swarms.structs.multi_threaded_workflow import ( from swarms.structs.multi_threaded_workflow import (
MultiThreadedWorkflow, MultiThreadedWorkflow,
) )
from swarms.structs.swarm_net import SwarmNetwork
from swarms.structs.rearrange import AgentRearrange, rearrange from swarms.structs.rearrange import AgentRearrange, rearrange
from swarms.structs.recursive_workflow import RecursiveWorkflow from swarms.structs.recursive_workflow import RecursiveWorkflow
from swarms.structs.round_robin import RoundRobinSwarm from swarms.structs.round_robin import RoundRobinSwarm
@ -164,4 +165,5 @@ __all__ = [
"AgentLoadBalancer", "AgentLoadBalancer",
"MixtureOfAgents", "MixtureOfAgents",
"GraphWorkflow", "GraphWorkflow",
"SwarmNetwork",
] ]

@ -6,7 +6,7 @@ from typing import Any, Callable, Dict, List, Union
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.conversation import Conversation from swarms.structs.conversation import Conversation
from swarms.utils.logger import logger from swarms.utils.loguru_logger import logger
from swarms.structs.omni_agent_types import AgentType from swarms.structs.omni_agent_types import AgentType

@ -1,6 +1,6 @@
import os import os
from dotenv import load_dotenv from dotenv import load_dotenv
from swarms.structs import Agent, OpenAIChat, Task from swarms import Agent, OpenAIChat, Task
# Load the environment variables # Load the environment variables
load_dotenv() load_dotenv()
Loading…
Cancel
Save