|
|
|
@ -12,6 +12,7 @@ from swarms.prompts.finance_agent_sys_prompt import (
|
|
|
|
|
from pulsar import Client, Producer
|
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
|
from loguru import logger
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
# Configure Loguru logger
|
|
|
|
|
logger.remove()
|
|
|
|
@ -52,191 +53,110 @@ class SwarmManager:
|
|
|
|
|
self,
|
|
|
|
|
agents: List[Agent],
|
|
|
|
|
pulsar_service_url: str = PULSAR_SERVICE_URL,
|
|
|
|
|
topic_prefix: str = "swarm_topic_", # Prefix for Pulsar topics
|
|
|
|
|
):
|
|
|
|
|
"""
|
|
|
|
|
Initializes the SwarmManager with a list of agents and Pulsar service URL.
|
|
|
|
|
|
|
|
|
|
:param agents: List of Agent instances.
|
|
|
|
|
:param pulsar_service_url: URL of the Apache Pulsar service.
|
|
|
|
|
"""
|
|
|
|
|
self.agents = agents
|
|
|
|
|
self.pulsar_service_url = pulsar_service_url
|
|
|
|
|
self.topic_prefix = topic_prefix
|
|
|
|
|
self.client: Optional[Client] = None
|
|
|
|
|
self.producers: Dict[str, Producer] = {}
|
|
|
|
|
self.swarm_results = SwarmOutputSchema()
|
|
|
|
|
|
|
|
|
|
def connect_pulsar(self) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Establishes connection to the Apache Pulsar service.
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
self.client = Client(
|
|
|
|
|
self.pulsar_service_url, operation_timeout_seconds=30
|
|
|
|
|
)
|
|
|
|
|
logger.info(
|
|
|
|
|
f"Connected to Pulsar service at {self.pulsar_service_url}"
|
|
|
|
|
)
|
|
|
|
|
self.client = Client(self.pulsar_service_url)
|
|
|
|
|
logger.info(f"Connected to Pulsar service at {self.pulsar_service_url}")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Failed to connect to Pulsar service: {e}")
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
def initialize_producers(self) -> None:
|
|
|
|
|
"""
|
|
|
|
|
Initializes Pulsar producers for each agent.
|
|
|
|
|
"""
|
|
|
|
|
if not self.client:
|
|
|
|
|
logger.error("Pulsar client is not connected.")
|
|
|
|
|
raise ConnectionError("Pulsar client is not connected.")
|
|
|
|
|
|
|
|
|
|
for agent in self.agents:
|
|
|
|
|
topic = f"{self.topic_prefix}{agent.agent_name}"
|
|
|
|
|
try:
|
|
|
|
|
topic = f"{agent.agent_name}_topic"
|
|
|
|
|
producer = self.client.create_producer(topic)
|
|
|
|
|
self.producers[agent.agent_name] = producer
|
|
|
|
|
logger.debug(
|
|
|
|
|
f"Initialized producer for agent {agent.agent_name} on topic {topic}"
|
|
|
|
|
)
|
|
|
|
|
logger.debug(f"Initialized producer for agent {agent.agent_name} on topic {topic}")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"Failed to create producer for agent {agent.agent_name}: {e}"
|
|
|
|
|
)
|
|
|
|
|
logger.error(f"Failed to create producer for agent {agent.agent_name}: {e}")
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
def run_task(self, agent: Agent, task: str) -> AgentOutputSchema:
|
|
|
|
|
"""
|
|
|
|
|
Executes a task using the specified agent and returns the structured output.
|
|
|
|
|
|
|
|
|
|
:param agent: The Agent instance to execute the task.
|
|
|
|
|
:param task: The task string to be executed.
|
|
|
|
|
:return: AgentOutputSchema containing the result and metadata.
|
|
|
|
|
"""
|
|
|
|
|
logger.info(
|
|
|
|
|
f"Agent {agent.agent_name} is starting task: {task}"
|
|
|
|
|
)
|
|
|
|
|
logger.info(f"Agent {agent.agent_name} is starting task: {task}")
|
|
|
|
|
timestamp = datetime.datetime.utcnow()
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
output = agent.run(task)
|
|
|
|
|
status = "Success"
|
|
|
|
|
logger.info(
|
|
|
|
|
f"Agent {agent.agent_name} completed task successfully."
|
|
|
|
|
)
|
|
|
|
|
logger.info(f"Agent {agent.agent_name} completed task successfully.")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
output = str(e)
|
|
|
|
|
status = "Failed"
|
|
|
|
|
logger.error(
|
|
|
|
|
f"Agent {agent.agent_name} failed to complete task: {e}"
|
|
|
|
|
)
|
|
|
|
|
logger.error(f"Agent {agent.agent_name} failed to complete task: {e}")
|
|
|
|
|
|
|
|
|
|
metadata = AgentOutputMetadata(
|
|
|
|
|
agent_name=agent.agent_name,
|
|
|
|
|
task=task,
|
|
|
|
|
timestamp=timestamp,
|
|
|
|
|
status=status,
|
|
|
|
|
agent_name=agent.agent_name, task=task, timestamp=timestamp, status=status
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
data = AgentOutputData(output=output)
|
|
|
|
|
|
|
|
|
|
agent_output = AgentOutputSchema(metadata=metadata, data=data)
|
|
|
|
|
|
|
|
|
|
# Publish result to Pulsar topic
|
|
|
|
|
try:
|
|
|
|
|
producer = self.producers.get(agent.agent_name)
|
|
|
|
|
if producer:
|
|
|
|
|
producer.send(agent_output.json().encode("utf-8"))
|
|
|
|
|
logger.debug(
|
|
|
|
|
f"Published output for agent {agent.agent_name} to Pulsar topic."
|
|
|
|
|
)
|
|
|
|
|
producer.send(agent_output.model_dump_json().encode("utf-8")) # Send as JSON string
|
|
|
|
|
logger.debug(f"Published output for agent {agent.agent_name} to Pulsar topic.")
|
|
|
|
|
else:
|
|
|
|
|
logger.warning(
|
|
|
|
|
f"No producer found for agent {agent.agent_name}. Skipping publish step."
|
|
|
|
|
)
|
|
|
|
|
logger.warning(f"No producer found for agent {agent.agent_name}. Skipping publish step.")
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(
|
|
|
|
|
f"Failed to publish output for agent {agent.agent_name}: {e}"
|
|
|
|
|
)
|
|
|
|
|
logger.error(f"Failed to publish output for agent {agent.agent_name}: {e}")
|
|
|
|
|
|
|
|
|
|
return agent_output
|
|
|
|
|
|
|
|
|
|
def run(self, task: str) -> SwarmOutputSchema:
|
|
|
|
|
"""
|
|
|
|
|
Runs the swarm by executing the task across all agents sequentially and returns aggregated results.
|
|
|
|
|
|
|
|
|
|
:param task: The task string to be executed by the swarm.
|
|
|
|
|
:return: SwarmOutputSchema containing results from all agents.
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
self.connect_pulsar()
|
|
|
|
|
self.initialize_producers()
|
|
|
|
|
|
|
|
|
|
for agent in self.agents:
|
|
|
|
|
result = self.run_task(agent, task)
|
|
|
|
|
with concurrent.futures.ThreadPoolExecutor() as executor: # Parallel execution
|
|
|
|
|
futures = [executor.submit(self.run_task, agent, task) for agent in self.agents]
|
|
|
|
|
for future in concurrent.futures.as_completed(futures):
|
|
|
|
|
try:
|
|
|
|
|
result = future.result()
|
|
|
|
|
self.swarm_results.results.append(result)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"A task encountered an error: {e}")
|
|
|
|
|
# Add a result with error information to the SwarmOutputSchema
|
|
|
|
|
failed_metadata = AgentOutputMetadata(
|
|
|
|
|
agent_name="Unknown", # Or some other identifier
|
|
|
|
|
task=task,
|
|
|
|
|
timestamp=datetime.datetime.utcnow(),
|
|
|
|
|
status="Failed"
|
|
|
|
|
)
|
|
|
|
|
failed_data = AgentOutputData(output=str(e))
|
|
|
|
|
failed_result = AgentOutputSchema(metadata=failed_metadata, data=failed_data)
|
|
|
|
|
self.swarm_results.results.append(failed_result)
|
|
|
|
|
|
|
|
|
|
logger.info("Swarm run completed successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
logger.info("Swarm run completed.")
|
|
|
|
|
return self.swarm_results
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Swarm run encountered an error: {e}")
|
|
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
finally:
|
|
|
|
|
if self.client:
|
|
|
|
|
self.client.close()
|
|
|
|
|
logger.info("Pulsar client connection closed.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Example usage
|
|
|
|
|
# Example usage (similar to before)
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
# Initialize OpenAIChat model
|
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
if not api_key:
|
|
|
|
|
logger.error(
|
|
|
|
|
"OPENAI_API_KEY environment variable is not set."
|
|
|
|
|
)
|
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
|
|
model = OpenAIChat(
|
|
|
|
|
api_key=api_key, model_name="gpt-4", temperature=0.1
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Define agents
|
|
|
|
|
agent1 = Agent(
|
|
|
|
|
agent_name="Financial-Analysis-Agent",
|
|
|
|
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
|
|
|
|
llm=model,
|
|
|
|
|
max_loops=1,
|
|
|
|
|
autosave=True,
|
|
|
|
|
dashboard=False,
|
|
|
|
|
verbose=True,
|
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
|
saved_state_path="finance_agent.json",
|
|
|
|
|
user_name="swarms_corp",
|
|
|
|
|
retry_attempts=1,
|
|
|
|
|
context_length=2000,
|
|
|
|
|
return_step_meta=False,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
agent2 = Agent(
|
|
|
|
|
agent_name="Market-Analysis-Agent",
|
|
|
|
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
|
|
|
|
llm=model,
|
|
|
|
|
max_loops=1,
|
|
|
|
|
autosave=True,
|
|
|
|
|
dashboard=False,
|
|
|
|
|
verbose=True,
|
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
|
saved_state_path="market_agent.json",
|
|
|
|
|
user_name="swarms_corp",
|
|
|
|
|
retry_attempts=1,
|
|
|
|
|
context_length=2000,
|
|
|
|
|
return_step_meta=False,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Initialize and run swarm
|
|
|
|
|
# ... (agent and model initialization)
|
|
|
|
|
swarm = SwarmManager(agents=[agent1, agent2])
|
|
|
|
|
task_description = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"
|
|
|
|
|
results = swarm.run(task_description)
|
|
|
|
|
|
|
|
|
|
# Output results
|
|
|
|
|
print(results.json(indent=4))
|
|
|
|
|
print(results.model_dump_json(indent=4)) # Output JSON
|
|
|
|
|