test auto gpt

main
Kye 2 years ago
parent 5759a9f42f
commit 9afde2ab86

@ -0,0 +1,920 @@
from __future__ import annotations
from core.prompts.input import EVAL_PREFIX, EVAL_SUFFIX
from core.tools.base import BaseToolSet
from core.tools.factory import ToolsFactory
from env import settings
from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseOutputParser
from langchain.callbacks.base import BaseCallbackManager
from .chat_agent import ConversationalChatAgent
from .llm import ChatOpenAI
from .parser import EvalOutputParser
class AgentBuilder:
def __init__(self, toolsets: list[BaseToolSet] = []):
self.llm: BaseChatModel = None
self.parser: BaseOutputParser = None
self.global_tools: list = None
self.toolsets = toolsets
def build_llm(self, callback_manager: BaseCallbackManager = None):
self.llm = ChatOpenAI(
temperature=0, callback_manager=callback_manager, verbose=True
)
self.llm.check_access()
def build_parser(self):
self.parser = EvalOutputParser()
def build_global_tools(self):
if self.llm is None:
raise ValueError("LLM must be initialized before tools")
toolnames = ["wikipedia"]
if settings["SERPAPI_API_KEY"]:
toolnames.append("serpapi")
if settings["BING_SEARCH_URL"] and settings["BING_SUBSCRIPTION_KEY"]:
toolnames.append("bing-search")
self.global_tools = [
*ToolsFactory.create_global_tools_from_names(toolnames, llm=self.llm),
*ToolsFactory.create_global_tools(self.toolsets),
]
def get_parser(self):
if self.parser is None:
raise ValueError("Parser is not initialized yet")
return self.parser
def get_global_tools(self):
if self.global_tools is None:
raise ValueError("Global tools are not initialized yet")
return self.global_tools
def get_agent(self):
if self.llm is None:
raise ValueError("LLM must be initialized before agent")
if self.parser is None:
raise ValueError("Parser must be initialized before agent")
if self.global_tools is None:
raise ValueError("Global tools must be initialized before agent")
return ConversationalChatAgent.from_llm_and_tools(
llm=self.llm,
tools=[
*self.global_tools,
*ToolsFactory.create_per_session_tools(
self.toolsets
), # for names and descriptions
],
system_message=EVAL_PREFIX.format(bot_name=settings["BOT_NAME"]),
human_message=EVAL_SUFFIX.format(bot_name=settings["BOT_NAME"]),
output_parser=self.parser,
max_iterations=30,
)
#===================================> callback
#===================================> callback
from typing import Any, Dict, List, Optional, Union
from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult
from celery import Task
from ansi import ANSI, Color, Style, dim_multiline
from logger import logger
class EVALCallbackHandler(BaseCallbackHandler):
@property
def ignore_llm(self) -> bool:
return False
def set_parser(self, parser) -> None:
self.parser = parser
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
text = response.generations[0][0].text
parsed = self.parser.parse_all(text)
logger.info(ANSI("Plan").to(Color.blue().bright()) + ": " + parsed["plan"])
logger.info(ANSI("What I Did").to(Color.blue()) + ": " + parsed["what_i_did"])
logger.info(
ANSI("Action").to(Color.cyan())
+ ": "
+ ANSI(parsed["action"]).to(Style.bold())
)
logger.info(
ANSI("Input").to(Color.cyan())
+ ": "
+ dim_multiline(parsed["action_input"])
)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
logger.info(ANSI(f"on_llm_new_token {token}").to(Color.green(), Style.italic()))
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
logger.info(ANSI(f"Entering new chain.").to(Color.green(), Style.italic()))
logger.info(ANSI("Prompted Text").to(Color.yellow()) + f': {inputs["input"]}\n')
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
logger.info(ANSI(f"Finished chain.").to(Color.green(), Style.italic()))
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logger.error(
ANSI(f"Chain Error").to(Color.red()) + ": " + dim_multiline(str(error))
)
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
pass
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
logger.info(
ANSI("Observation").to(Color.magenta()) + ": " + dim_multiline(output)
)
logger.info(ANSI("Thinking...").to(Color.green(), Style.italic()))
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
logger.error(ANSI("Tool Error").to(Color.red()) + f": {error}")
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Optional[str],
) -> None:
pass
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
logger.info(
ANSI("Final Answer").to(Color.yellow())
+ ": "
+ dim_multiline(finish.return_values.get("output", ""))
)
class ExecutionTracingCallbackHandler(BaseCallbackHandler):
def __init__(self, execution: Task):
self.execution = execution
self.index = 0
def set_parser(self, parser) -> None:
self.parser = parser
def on_llm_start(
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
) -> None:
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
text = response.generations[0][0].text
parsed = self.parser.parse_all(text)
self.index += 1
parsed["index"] = self.index
self.execution.update_state(state="LLM_END", meta=parsed)
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
pass
def on_llm_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
pass
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
pass
def on_chain_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
self.execution.update_state(state="CHAIN_ERROR", meta={"error": str(error)})
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
pass
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
previous = self.execution.AsyncResult(self.execution.request.id)
self.execution.update_state(
state="TOOL_END", meta={**previous.info, "observation": output}
)
def on_tool_error(
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
) -> None:
previous = self.execution.AsyncResult(self.execution.request.id)
self.execution.update_state(
state="TOOL_ERROR", meta={**previous.info, "error": str(error)}
)
def on_text(
self,
text: str,
color: Optional[str] = None,
end: str = "",
**kwargs: Optional[str],
) -> None:
pass
def on_agent_finish(
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
) -> None:
pass
#===================================> callback
#===================================> callback
#===================================> callback
from typing import Any, List, Optional, Sequence, Tuple
from langchain.agents.agent import Agent
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains import LLMChain
from langchain.schema import BaseOutputParser
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
SystemMessagePromptTemplate,
)
from langchain.schema import (
AgentAction,
AIMessage,
BaseLanguageModel,
BaseMessage,
HumanMessage,
)
from langchain.tools.base import BaseTool
# from core.prompts.input import EVAL_TOOL_RESPONSE
from swarms.prompts.prompts import EVAL_FORMAT_INSTRUCTIONS
class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
output_parser: BaseOutputParser
@property
def _agent_type(self) -> str:
raise NotImplementedError
@property
def observation_prefix(self) -> str:
"""Prefix to append the observation with."""
return "Observation: "
@property
def llm_prefix(self) -> str:
"""Prefix to append the llm call with."""
return "Thought: "
@classmethod
def create_prompt(
cls,
tools: Sequence[BaseTool],
system_message: str,
human_message: str,
output_parser: BaseOutputParser,
input_variables: Optional[List[str]] = None,
) -> BasePromptTemplate:
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
tool_names = ", ".join([tool.name for tool in tools])
format_instructions = human_message.format(
format_instructions=output_parser.get_format_instructions()
)
final_prompt = format_instructions.format(
tool_names=tool_names, tools=tool_strings
)
if input_variables is None:
input_variables = ["input", "chat_history", "agent_scratchpad"]
messages = [
SystemMessagePromptTemplate.from_template(system_message),
MessagesPlaceholder(variable_name="chat_history"),
HumanMessagePromptTemplate.from_template(final_prompt),
MessagesPlaceholder(variable_name="agent_scratchpad"),
]
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
def _extract_tool_and_input(self, llm_output: str) -> Optional[Tuple[str, str]]:
try:
response = self.output_parser.parse(llm_output)
return response["action"], response["action_input"]
except Exception:
raise ValueError(f"Could not parse LLM output: {llm_output}")
def _construct_scratchpad(
self, intermediate_steps: List[Tuple[AgentAction, str]]
) -> List[BaseMessage]:
"""Construct the scratchpad that lets the agent continue its thought process."""
thoughts: List[BaseMessage] = []
for action, observation in intermediate_steps:
thoughts.append(AIMessage(content=action.log))
human_message = HumanMessage(
content=EVAL_TOOL_RESPONSE.format(observation=observation)
)
thoughts.append(human_message)
return thoughts
@classmethod
def from_llm_and_tools(
cls,
llm: BaseLanguageModel,
tools: Sequence[BaseTool],
system_message: str,
human_message: str,
output_parser: BaseOutputParser,
callback_manager: Optional[BaseCallbackManager] = None,
input_variables: Optional[List[str]] = None,
**kwargs: Any,
) -> Agent:
"""Construct an agent from an LLM and tools."""
cls._validate_tools(tools)
prompt = cls.create_prompt(
tools,
system_message=system_message,
human_message=human_message,
input_variables=input_variables,
output_parser=output_parser,
)
llm_chain = LLMChain(
llm=llm,
prompt=prompt,
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=output_parser,
**kwargs,
)
#===================================> CHAT AGENT
#####===============================>
"""OpenAI chat wrapper."""
import logging
import sys
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple
import openai
from langchain.chat_models.base import BaseChatModel
from langchain.schema import (
AIMessage,
BaseMessage,
ChatGeneration,
ChatMessage,
ChatResult,
HumanMessage,
SystemMessage,
)
from langchain.utils import get_from_dict_or_env
from logger import logger
from pydantic import BaseModel, Extra, Field, root_validator
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from env import settings
from ansi import ANSI, Color, Style
def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(llm.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any:
"""Use tenacity to retry the async completion call."""
retry_decorator = _create_retry_decorator(llm)
@retry_decorator
async def _completion_with_retry(**kwargs: Any) -> Any:
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
return await llm.client.acreate(**kwargs)
return await _completion_with_retry(**kwargs)
def _convert_dict_to_message(_dict: dict) -> BaseMessage:
role = _dict["role"]
if role == "user":
return HumanMessage(content=_dict["content"])
elif role == "assistant":
return AIMessage(content=_dict["content"])
elif role == "system":
return SystemMessage(content=_dict["content"])
else:
return ChatMessage(content=_dict["content"], role=role)
def _convert_message_to_dict(message: BaseMessage) -> dict:
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, HumanMessage):
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
elif isinstance(message, SystemMessage):
message_dict = {"role": "system", "content": message.content}
else:
raise ValueError(f"Got unknown type {message}")
if "name" in message.additional_kwargs:
message_dict["name"] = message.additional_kwargs["name"]
return message_dict
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
generations = []
for res in response["choices"]:
message = _convert_dict_to_message(res["message"])
gen = ChatGeneration(message=message)
generations.append(gen)
return ChatResult(generations=generations)
class ModelNotFoundException(Exception):
"""Exception raised when the model is not found."""
def __init__(self, model_name: str):
self.model_name = model_name
super().__init__(
f"\n\nModel {ANSI(self.model_name).to(Color.red())} does not exist.\nMake sure if you have access to the model.\n"
+ f"You can set the model name with the environment variable {ANSI('MODEL_NAME').to(Style.bold())} on {ANSI('.env').to(Style.bold())}.\n"
+ "\nex) MODEL_NAME=gpt-4\n"
+ ANSI(
"\nLooks like you don't have access to gpt-4 yet. Try using `gpt-3.5-turbo`."
if self.model_name == "gpt-4"
else ""
).to(Style.italic())
)
class ChatOpenAI(BaseChatModel, BaseModel):
"""Wrapper around OpenAI Chat large language models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain.chat_models import ChatOpenAI
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
"""
client: Any #: :meta private:
model_name: str = settings["MODEL_NAME"]
"""Model name to use."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[str] = None
max_retries: int = 6
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
n: int = 1
"""Number of chat completions to generate for each prompt."""
max_tokens: int = 2048
"""Maximum number of tokens to generate."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.ignore
def check_access(self) -> None:
"""Check that the user has access to the model."""
try:
openai.Engine.retrieve(self.model_name)
except openai.error.InvalidRequestError:
raise ModelNotFoundException(self.model_name)
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = {field.alias for field in cls.__fields__.values()}
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name not in all_required_field_names:
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
extra[field_name] = values.pop(field_name)
values["model_kwargs"] = extra
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
try:
import openai
openai.api_key = openai_api_key
except ImportError:
raise ValueError(
"Could not import openai python package. "
"Please it install it with `pip install openai`."
)
try:
values["client"] = openai.ChatCompletion
except AttributeError:
raise ValueError(
"`openai` has no `ChatCompletion` attribute, this is likely "
"due to an old version of the openai package. Try upgrading it "
"with `pip install --upgrade openai`."
)
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["n"] > 1 and values["streaming"]:
raise ValueError("n must be 1 when streaming.")
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
return {
"model": self.model_name,
"max_tokens": self.max_tokens,
"stream": self.streaming,
"n": self.n,
**self.model_kwargs,
}
def _create_retry_decorator(self) -> Callable[[Any], Any]:
import openai
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(self.max_retries),
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
retry=(
retry_if_exception_type(openai.error.Timeout)
| retry_if_exception_type(openai.error.APIError)
| retry_if_exception_type(openai.error.APIConnectionError)
| retry_if_exception_type(openai.error.RateLimitError)
| retry_if_exception_type(openai.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def completion_with_retry(self, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = self._create_retry_decorator()
@retry_decorator
def _completion_with_retry(**kwargs: Any) -> Any:
response = self.client.create(**kwargs)
logger.debug("Response:\n\t%s", response)
return response
return _completion_with_retry(**kwargs)
def _generate(
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
logger.debug("Messages:\n")
for item in message_dicts:
for k, v in item.items():
logger.debug(f"\t\t{k}: {v}")
logger.debug("\t-------")
logger.debug("===========")
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
for stream_resp in self.completion_with_retry(
messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token
self.callback_manager.on_llm_new_token(
token,
verbose=self.verbose,
)
message = _convert_dict_to_message(
{"content": inner_completion, "role": role}
)
return ChatResult(generations=[ChatGeneration(message=message)])
response = self.completion_with_retry(messages=message_dicts, **params)
return _create_chat_result(response)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
message_dicts = [_convert_message_to_dict(m) for m in messages]
return message_dicts, params
async def _agenerate(
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
) -> ChatResult:
message_dicts, params = self._create_message_dicts(messages, stop)
if self.streaming:
inner_completion = ""
role = "assistant"
params["stream"] = True
async for stream_resp in await acompletion_with_retry(
self, messages=message_dicts, **params
):
role = stream_resp["choices"][0]["delta"].get("role", role)
token = stream_resp["choices"][0]["delta"].get("content", "")
inner_completion += token
if self.callback_manager.is_async:
await self.callback_manager.on_llm_new_token(
token,
verbose=self.verbose,
)
else:
self.callback_manager.on_llm_new_token(
token,
verbose=self.verbose,
)
message = _convert_dict_to_message(
{"content": inner_completion, "role": role}
)
return ChatResult(generations=[ChatGeneration(message=message)])
else:
response = await acompletion_with_retry(
self, messages=message_dicts, **params
)
return _create_chat_result(response)
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
def get_num_tokens(self, text: str) -> int:
"""Calculate num tokens with tiktoken package."""
# tiktoken NOT supported for Python 3.8 or below
if sys.version_info[1] <= 8:
return super().get_num_tokens(text)
try:
import tiktoken
except ImportError:
raise ValueError(
"Could not import tiktoken python package. "
"This is needed in order to calculate get_num_tokens. "
"Please it install it with `pip install tiktoken`."
)
# create a GPT-3.5-Turbo encoder instance
enc = tiktoken.encoding_for_model(self.model_name)
# encode the text using the GPT-3.5-Turbo encoder
tokenized_text = enc.encode(text)
# calculate the number of tokens in the encoded text
return len(tokenized_text)
###############LLM END =>
from typing import Dict, Optional
from celery import Task
from langchain.agents.agent import AgentExecutor
from langchain.callbacks.base import CallbackManager
from langchain.callbacks import set_handler
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.memory.chat_memory import BaseChatMemory
# from core.tools.base import BaseToolSet
# from core.tools.factory import ToolsFactory
# from .builder import AgentBuilder
# from .callback import EVALCallbackHandler, ExecutionTracingCallbackHandler
set_handler(EVALCallbackHandler())
class AgentManager:
def __init__(
self,
toolsets: list[BaseToolSet] = [],
):
self.toolsets: list[BaseToolSet] = toolsets
self.memories: Dict[str, BaseChatMemory] = {}
self.executors: Dict[str, AgentExecutor] = {}
def create_memory(self) -> BaseChatMemory:
return ConversationBufferMemory(memory_key="chat_history", return_messages=True)
def get_or_create_memory(self, session: str) -> BaseChatMemory:
if not (session in self.memories):
self.memories[session] = self.create_memory()
return self.memories[session]
def create_executor(
self, session: str, execution: Optional[Task] = None
) -> AgentExecutor:
builder = AgentBuilder(self.toolsets)
builder.build_parser()
callbacks = []
eval_callback = EVALCallbackHandler()
eval_callback.set_parser(builder.get_parser())
callbacks.append(eval_callback)
if execution:
execution_callback = ExecutionTracingCallbackHandler(execution)
execution_callback.set_parser(builder.get_parser())
callbacks.append(execution_callback)
callback_manager = CallbackManager(callbacks)
builder.build_llm(callback_manager)
builder.build_global_tools()
memory: BaseChatMemory = self.get_or_create_memory(session)
tools = [
*builder.get_global_tools(),
*ToolsFactory.create_per_session_tools(
self.toolsets,
get_session=lambda: (session, self.executors[session]),
),
]
for tool in tools:
tool.callback_manager = callback_manager
executor = AgentExecutor.from_agent_and_tools(
agent=builder.get_agent(),
tools=tools,
memory=memory,
callback_manager=callback_manager,
verbose=True,
)
self.executors[session] = executor
return executor
@staticmethod
def create(toolsets: list[BaseToolSet]) -> "AgentManager":
return AgentManager(
toolsets=toolsets,
)
#PARSER=============================+> PARSER
import re
from typing import Dict
from langchain.schema import BaseOutputParser
from core.prompts.input import EVAL_FORMAT_INSTRUCTIONS
class EvalOutputParser(BaseOutputParser):
@staticmethod
def parse_all(text: str) -> Dict[str, str]:
regex = r"Action: (.*?)[\n]Plan:(.*)[\n]What I Did:(.*)[\n]Action Input: (.*)"
match = re.search(regex, text, re.DOTALL)
if not match:
raise Exception("parse error")
action = match.group(1).strip()
plan = match.group(2)
what_i_did = match.group(3)
action_input = match.group(4).strip(" ")
return {
"action": action,
"plan": plan,
"what_i_did": what_i_did,
"action_input": action_input,
}
def get_format_instructions(self) -> str:
return EVAL_FORMAT_INSTRUCTIONS
def parse(self, text: str) -> Dict[str, str]:
regex = r"Action: (.*?)[\n]Plan:(.*)[\n]What I Did:(.*)[\n]Action Input: (.*)"
match = re.search(regex, text, re.DOTALL)
if not match:
raise Exception("parse error")
parsed = EvalOutputParser.parse_all(text)
return {"action": parsed["action"], "action_input": parsed["action_input"]}
def __str__(self):
return "EvalOutputParser"
#PARSER=============================+> PARSER

@ -0,0 +1,100 @@
ERROR_PROMPT = "An error has occurred for the following text: \n{promptedQuery} Please explain this error.\n {e}"
IMAGE_PROMPT = """
provide a figure named {filename}. The description is: {description}.
Please understand and answer the image based on this information. The image understanding is complete, so don't try to understand the image again.
USER INPUT
============
"""
AUDIO_PROMPT = """
provide a audio named {filename}. The description is: {description}.
Please understand and answer the audio based on this information. The audio understanding is complete, so don't try to understand the audio again.
USER INPUT
============
"""
VIDEO_PROMPT = """
provide a video named {filename}. The description is: {description}.
Please understand and answer the video based on this information. The video understanding is complete, so don't try to understand the video again.
USER INPUT
============
"""
DATAFRAME_PROMPT = """
provide a dataframe named {filename}. The description is: {description}.
You are able to use the dataframe to answer the question.
You have to act like an data analyst who can do an effective analysis through dataframe.
USER INPUT
============
"""
EVAL_PREFIX = """{bot_name} can execute any user's request.
{bot_name} has permission to handle one instance and can handle the environment in it at will.
You can code, run, debug, and test yourself. You can correct the code appropriately by looking at the error message.
I can understand, process, and create various types of files.
{bot_name} can do whatever it takes to execute the user's request. Let's think step by step.
"""
EVAL_FORMAT_INSTRUCTIONS = """RESPONSE FORMAT INSTRUCTIONS
----------------------------
When responding to me please, please output a response in one of two formats. No explanation is allowed after action input.:
**Option #1:**
Use this if you want the human to use a tool.
Your response should be in the following schema:
Action: the action to take, should be one of [{tool_names}]
Plan: All remaining detailed plans after this action in check box. Each plan should be concise and clear to achieve the goal. Write it in the following schema: - [ ] plan
What I Did: What you just did to achieve the goal. If you have not done anything, write None.
Action Input: the input to the action
**Option #2:**
Use this if you want to respond directly to the human.
You should replace sensitive data or encrypted data with "d1dy0uth1nk7hat1t1s7haAAat3aSy?" in action_input.
Your response should be in the following schema:
Action: Final Answer
Plan: ...
What I Did: ...
Action Input: string \\ You should put what you want to return to use here.
"""
EVAL_SUFFIX = """TOOLS
------
{bot_name} can ask the user to use tools to look up information that may be helpful in answering the users original question.
You are very strict to the filename correctness and will never fake a file name if it does not exist.
You will remember to provide the file name loyally if it's provided in the last tool observation.
If you have to include files in your response, you must provide the filepath in [file://filepath] format. It must be wrapped in square brackets.
The tools the human can use are:
{{{{tools}}}}
{{format_instructions}}
USER'S INPUT
--------------------
Here is the user's input:
{{{{{{{{input}}}}}}}}"""
EVAL_TOOL_RESPONSE = """TOOL RESPONSE:
---------------------
{observation}
--------------------
After exiting conversation, you must choose Final Answer Action.
"""

@ -291,3 +291,183 @@ class StaticUploader(AbstractUploader):
shutil.copy(filepath, file_path) shutil.copy(filepath, file_path)
endpoint_path = self.endpoint / relative_path endpoint_path = self.endpoint / relative_path
return f"{self.server}/{endpoint_path}" return f"{self.server}/{endpoint_path}"
#========================> handlers/base
import os
import shutil
import uuid
from enum import Enum
from pathlib import Path
from typing import Dict
import requests
from env import settings
class FileType(Enum):
IMAGE = "image"
AUDIO = "audio"
VIDEO = "video"
DATAFRAME = "dataframe"
UNKNOWN = "unknown"
@staticmethod
def from_filename(url: str) -> "FileType":
filename = url.split("?")[0]
if filename.endswith(".png") or filename.endswith(".jpg"):
return FileType.IMAGE
elif filename.endswith(".mp3") or filename.endswith(".wav"):
return FileType.AUDIO
elif filename.endswith(".mp4") or filename.endswith(".avi"):
return FileType.VIDEO
elif filename.endswith(".csv"):
return FileType.DATAFRAME
else:
return FileType.UNKNOWN
@staticmethod
def from_url(url: str) -> "FileType":
return FileType.from_filename(url.split("?")[0])
def to_extension(self) -> str:
if self == FileType.IMAGE:
return ".png"
elif self == FileType.AUDIO:
return ".mp3"
elif self == FileType.VIDEO:
return ".mp4"
elif self == FileType.DATAFRAME:
return ".csv"
else:
return ".unknown"
class BaseHandler:
def handle(self, filename: str) -> str:
raise NotImplementedError
class FileHandler:
def __init__(self, handlers: Dict[FileType, BaseHandler], path: Path):
self.handlers = handlers
self.path = path
def register(self, filetype: FileType, handler: BaseHandler) -> "FileHandler":
self.handlers[filetype] = handler
return self
def download(self, url: str) -> str:
filetype = FileType.from_url(url)
data = requests.get(url).content
local_filename = os.path.join(
"file", str(uuid.uuid4())[0:8] + filetype.to_extension()
)
os.makedirs(os.path.dirname(local_filename), exist_ok=True)
with open(local_filename, "wb") as f:
size = f.write(data)
print(f"Inputs: {url} ({size//1000}MB) => {local_filename}")
return local_filename
def handle(self, url: str) -> str:
try:
if url.startswith(settings["SERVER"]):
local_filepath = url[len(settings["SERVER"]) + 1 :]
local_filename = Path("file") / local_filepath.split("/")[-1]
src = self.path / local_filepath
dst = self.path / settings["PLAYGROUND_DIR"] / local_filename
os.makedirs(os.path.dirname(dst), exist_ok=True)
shutil.copy(src, dst)
else:
local_filename = self.download(url)
try:
handler = self.handlers[FileType.from_url(url)]
except KeyError:
if FileType.from_url(url) == FileType.IMAGE:
raise Exception(
f"No handler for {FileType.from_url(url)}. "
f"Please set USE_GPU to True in env/settings.py"
)
else:
raise Exception(f"No handler for {FileType.from_url(url)}")
handler.handle(local_filename)
except Exception as e:
raise e
########################### => base end
#############===========================>
import pandas as pd
from core.prompts.file import DATAFRAME_PROMPT
class CsvToDataframe(BaseHandler):
def handle(self, filename: str):
df = pd.read_csv(filename)
description = (
f"Dataframe with {len(df)} rows and {len(df.columns)} columns. "
"Columns are: "
f"{', '.join(df.columns)}"
)
print(
f"\nProcessed CsvToDataframe, Input CSV: {filename}, Output Description: {description}"
)
return DATAFRAME_PROMPT.format(filename=filename, description=description)
#========================> handlers/image
import torch
from PIL import Image
from transformers import BlipForConditionalGeneration, BlipProcessor
from core.prompts.file import IMAGE_PROMPT
class ImageCaptioning(BaseHandler):
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
).to(self.device)
def handle(self, filename: str):
img = Image.open(filename)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert("RGB")
img.save(filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
inputs = self.processor(Image.open(filename), return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
description = self.processor.decode(out[0], skip_special_tokens=True)
print(
f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}"
)
return IMAGE_PROMPT.format(filename=filename, description=description)
Loading…
Cancel
Save