parent
5759a9f42f
commit
9afde2ab86
@ -0,0 +1,920 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from core.prompts.input import EVAL_PREFIX, EVAL_SUFFIX
|
||||
from core.tools.base import BaseToolSet
|
||||
from core.tools.factory import ToolsFactory
|
||||
from env import settings
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.schema import BaseOutputParser
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
|
||||
from .chat_agent import ConversationalChatAgent
|
||||
from .llm import ChatOpenAI
|
||||
from .parser import EvalOutputParser
|
||||
|
||||
|
||||
class AgentBuilder:
|
||||
def __init__(self, toolsets: list[BaseToolSet] = []):
|
||||
self.llm: BaseChatModel = None
|
||||
self.parser: BaseOutputParser = None
|
||||
self.global_tools: list = None
|
||||
self.toolsets = toolsets
|
||||
|
||||
def build_llm(self, callback_manager: BaseCallbackManager = None):
|
||||
self.llm = ChatOpenAI(
|
||||
temperature=0, callback_manager=callback_manager, verbose=True
|
||||
)
|
||||
self.llm.check_access()
|
||||
|
||||
def build_parser(self):
|
||||
self.parser = EvalOutputParser()
|
||||
|
||||
def build_global_tools(self):
|
||||
if self.llm is None:
|
||||
raise ValueError("LLM must be initialized before tools")
|
||||
|
||||
toolnames = ["wikipedia"]
|
||||
|
||||
if settings["SERPAPI_API_KEY"]:
|
||||
toolnames.append("serpapi")
|
||||
if settings["BING_SEARCH_URL"] and settings["BING_SUBSCRIPTION_KEY"]:
|
||||
toolnames.append("bing-search")
|
||||
|
||||
self.global_tools = [
|
||||
*ToolsFactory.create_global_tools_from_names(toolnames, llm=self.llm),
|
||||
*ToolsFactory.create_global_tools(self.toolsets),
|
||||
]
|
||||
|
||||
def get_parser(self):
|
||||
if self.parser is None:
|
||||
raise ValueError("Parser is not initialized yet")
|
||||
|
||||
return self.parser
|
||||
|
||||
def get_global_tools(self):
|
||||
if self.global_tools is None:
|
||||
raise ValueError("Global tools are not initialized yet")
|
||||
|
||||
return self.global_tools
|
||||
|
||||
def get_agent(self):
|
||||
if self.llm is None:
|
||||
raise ValueError("LLM must be initialized before agent")
|
||||
|
||||
if self.parser is None:
|
||||
raise ValueError("Parser must be initialized before agent")
|
||||
|
||||
if self.global_tools is None:
|
||||
raise ValueError("Global tools must be initialized before agent")
|
||||
|
||||
return ConversationalChatAgent.from_llm_and_tools(
|
||||
llm=self.llm,
|
||||
tools=[
|
||||
*self.global_tools,
|
||||
*ToolsFactory.create_per_session_tools(
|
||||
self.toolsets
|
||||
), # for names and descriptions
|
||||
],
|
||||
system_message=EVAL_PREFIX.format(bot_name=settings["BOT_NAME"]),
|
||||
human_message=EVAL_SUFFIX.format(bot_name=settings["BOT_NAME"]),
|
||||
output_parser=self.parser,
|
||||
max_iterations=30,
|
||||
)
|
||||
#===================================> callback
|
||||
|
||||
#===================================> callback
|
||||
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
|
||||
from langchain.callbacks.base import BaseCallbackHandler
|
||||
from langchain.schema import AgentAction, AgentFinish, LLMResult
|
||||
from celery import Task
|
||||
|
||||
from ansi import ANSI, Color, Style, dim_multiline
|
||||
from logger import logger
|
||||
|
||||
|
||||
class EVALCallbackHandler(BaseCallbackHandler):
|
||||
@property
|
||||
def ignore_llm(self) -> bool:
|
||||
return False
|
||||
|
||||
def set_parser(self, parser) -> None:
|
||||
self.parser = parser
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
text = response.generations[0][0].text
|
||||
|
||||
parsed = self.parser.parse_all(text)
|
||||
|
||||
logger.info(ANSI("Plan").to(Color.blue().bright()) + ": " + parsed["plan"])
|
||||
logger.info(ANSI("What I Did").to(Color.blue()) + ": " + parsed["what_i_did"])
|
||||
logger.info(
|
||||
ANSI("Action").to(Color.cyan())
|
||||
+ ": "
|
||||
+ ANSI(parsed["action"]).to(Style.bold())
|
||||
)
|
||||
logger.info(
|
||||
ANSI("Input").to(Color.cyan())
|
||||
+ ": "
|
||||
+ dim_multiline(parsed["action_input"])
|
||||
)
|
||||
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
logger.info(ANSI(f"on_llm_new_token {token}").to(Color.green(), Style.italic()))
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_chain_start(
|
||||
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
|
||||
) -> None:
|
||||
logger.info(ANSI(f"Entering new chain.").to(Color.green(), Style.italic()))
|
||||
logger.info(ANSI("Prompted Text").to(Color.yellow()) + f': {inputs["input"]}\n')
|
||||
|
||||
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
||||
logger.info(ANSI(f"Finished chain.").to(Color.green(), Style.italic()))
|
||||
|
||||
def on_chain_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
logger.error(
|
||||
ANSI(f"Chain Error").to(Color.red()) + ": " + dim_multiline(str(error))
|
||||
)
|
||||
|
||||
def on_tool_start(
|
||||
self,
|
||||
serialized: Dict[str, Any],
|
||||
input_str: str,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
|
||||
pass
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
output: str,
|
||||
observation_prefix: Optional[str] = None,
|
||||
llm_prefix: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
logger.info(
|
||||
ANSI("Observation").to(Color.magenta()) + ": " + dim_multiline(output)
|
||||
)
|
||||
logger.info(ANSI("Thinking...").to(Color.green(), Style.italic()))
|
||||
|
||||
def on_tool_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
logger.error(ANSI("Tool Error").to(Color.red()) + f": {error}")
|
||||
|
||||
def on_text(
|
||||
self,
|
||||
text: str,
|
||||
color: Optional[str] = None,
|
||||
end: str = "",
|
||||
**kwargs: Optional[str],
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_agent_finish(
|
||||
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
|
||||
) -> None:
|
||||
logger.info(
|
||||
ANSI("Final Answer").to(Color.yellow())
|
||||
+ ": "
|
||||
+ dim_multiline(finish.return_values.get("output", ""))
|
||||
)
|
||||
|
||||
|
||||
class ExecutionTracingCallbackHandler(BaseCallbackHandler):
|
||||
def __init__(self, execution: Task):
|
||||
self.execution = execution
|
||||
self.index = 0
|
||||
|
||||
def set_parser(self, parser) -> None:
|
||||
self.parser = parser
|
||||
|
||||
def on_llm_start(
|
||||
self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
|
||||
text = response.generations[0][0].text
|
||||
parsed = self.parser.parse_all(text)
|
||||
self.index += 1
|
||||
parsed["index"] = self.index
|
||||
self.execution.update_state(state="LLM_END", meta=parsed)
|
||||
|
||||
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
|
||||
pass
|
||||
|
||||
def on_llm_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_chain_start(
|
||||
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
|
||||
pass
|
||||
|
||||
def on_chain_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
self.execution.update_state(state="CHAIN_ERROR", meta={"error": str(error)})
|
||||
|
||||
def on_tool_start(
|
||||
self,
|
||||
serialized: Dict[str, Any],
|
||||
input_str: str,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
|
||||
pass
|
||||
|
||||
def on_tool_end(
|
||||
self,
|
||||
output: str,
|
||||
observation_prefix: Optional[str] = None,
|
||||
llm_prefix: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
previous = self.execution.AsyncResult(self.execution.request.id)
|
||||
self.execution.update_state(
|
||||
state="TOOL_END", meta={**previous.info, "observation": output}
|
||||
)
|
||||
|
||||
def on_tool_error(
|
||||
self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
|
||||
) -> None:
|
||||
previous = self.execution.AsyncResult(self.execution.request.id)
|
||||
self.execution.update_state(
|
||||
state="TOOL_ERROR", meta={**previous.info, "error": str(error)}
|
||||
)
|
||||
|
||||
def on_text(
|
||||
self,
|
||||
text: str,
|
||||
color: Optional[str] = None,
|
||||
end: str = "",
|
||||
**kwargs: Optional[str],
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def on_agent_finish(
|
||||
self, finish: AgentFinish, color: Optional[str] = None, **kwargs: Any
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
#===================================> callback
|
||||
#===================================> callback
|
||||
|
||||
|
||||
#===================================> callback
|
||||
|
||||
from typing import Any, List, Optional, Sequence, Tuple
|
||||
|
||||
from langchain.agents.agent import Agent
|
||||
from langchain.callbacks.base import BaseCallbackManager
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.schema import BaseOutputParser
|
||||
from langchain.prompts.base import BasePromptTemplate
|
||||
from langchain.prompts.chat import (
|
||||
ChatPromptTemplate,
|
||||
HumanMessagePromptTemplate,
|
||||
MessagesPlaceholder,
|
||||
SystemMessagePromptTemplate,
|
||||
)
|
||||
from langchain.schema import (
|
||||
AgentAction,
|
||||
AIMessage,
|
||||
BaseLanguageModel,
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
)
|
||||
from langchain.tools.base import BaseTool
|
||||
|
||||
# from core.prompts.input import EVAL_TOOL_RESPONSE
|
||||
|
||||
from swarms.prompts.prompts import EVAL_FORMAT_INSTRUCTIONS
|
||||
|
||||
|
||||
class ConversationalChatAgent(Agent):
|
||||
"""An agent designed to hold a conversation in addition to using tools."""
|
||||
|
||||
output_parser: BaseOutputParser
|
||||
|
||||
@property
|
||||
def _agent_type(self) -> str:
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def observation_prefix(self) -> str:
|
||||
"""Prefix to append the observation with."""
|
||||
return "Observation: "
|
||||
|
||||
@property
|
||||
def llm_prefix(self) -> str:
|
||||
"""Prefix to append the llm call with."""
|
||||
return "Thought: "
|
||||
|
||||
@classmethod
|
||||
def create_prompt(
|
||||
cls,
|
||||
tools: Sequence[BaseTool],
|
||||
system_message: str,
|
||||
human_message: str,
|
||||
output_parser: BaseOutputParser,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
) -> BasePromptTemplate:
|
||||
tool_strings = "\n".join(
|
||||
[f"> {tool.name}: {tool.description}" for tool in tools]
|
||||
)
|
||||
tool_names = ", ".join([tool.name for tool in tools])
|
||||
format_instructions = human_message.format(
|
||||
format_instructions=output_parser.get_format_instructions()
|
||||
)
|
||||
final_prompt = format_instructions.format(
|
||||
tool_names=tool_names, tools=tool_strings
|
||||
)
|
||||
if input_variables is None:
|
||||
input_variables = ["input", "chat_history", "agent_scratchpad"]
|
||||
messages = [
|
||||
SystemMessagePromptTemplate.from_template(system_message),
|
||||
MessagesPlaceholder(variable_name="chat_history"),
|
||||
HumanMessagePromptTemplate.from_template(final_prompt),
|
||||
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
||||
]
|
||||
return ChatPromptTemplate(input_variables=input_variables, messages=messages)
|
||||
|
||||
def _extract_tool_and_input(self, llm_output: str) -> Optional[Tuple[str, str]]:
|
||||
try:
|
||||
response = self.output_parser.parse(llm_output)
|
||||
return response["action"], response["action_input"]
|
||||
except Exception:
|
||||
raise ValueError(f"Could not parse LLM output: {llm_output}")
|
||||
|
||||
def _construct_scratchpad(
|
||||
self, intermediate_steps: List[Tuple[AgentAction, str]]
|
||||
) -> List[BaseMessage]:
|
||||
"""Construct the scratchpad that lets the agent continue its thought process."""
|
||||
thoughts: List[BaseMessage] = []
|
||||
for action, observation in intermediate_steps:
|
||||
thoughts.append(AIMessage(content=action.log))
|
||||
human_message = HumanMessage(
|
||||
content=EVAL_TOOL_RESPONSE.format(observation=observation)
|
||||
)
|
||||
thoughts.append(human_message)
|
||||
return thoughts
|
||||
|
||||
@classmethod
|
||||
def from_llm_and_tools(
|
||||
cls,
|
||||
llm: BaseLanguageModel,
|
||||
tools: Sequence[BaseTool],
|
||||
system_message: str,
|
||||
human_message: str,
|
||||
output_parser: BaseOutputParser,
|
||||
callback_manager: Optional[BaseCallbackManager] = None,
|
||||
input_variables: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> Agent:
|
||||
"""Construct an agent from an LLM and tools."""
|
||||
cls._validate_tools(tools)
|
||||
prompt = cls.create_prompt(
|
||||
tools,
|
||||
system_message=system_message,
|
||||
human_message=human_message,
|
||||
input_variables=input_variables,
|
||||
output_parser=output_parser,
|
||||
)
|
||||
llm_chain = LLMChain(
|
||||
llm=llm,
|
||||
prompt=prompt,
|
||||
callback_manager=callback_manager,
|
||||
)
|
||||
tool_names = [tool.name for tool in tools]
|
||||
return cls(
|
||||
llm_chain=llm_chain,
|
||||
allowed_tools=tool_names,
|
||||
output_parser=output_parser,
|
||||
**kwargs,
|
||||
)
|
||||
#===================================> CHAT AGENT
|
||||
|
||||
|
||||
|
||||
#####===============================>
|
||||
|
||||
"""OpenAI chat wrapper."""
|
||||
|
||||
import logging
|
||||
import sys
|
||||
from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple
|
||||
|
||||
import openai
|
||||
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.schema import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
ChatGeneration,
|
||||
ChatMessage,
|
||||
ChatResult,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from logger import logger
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
from tenacity import (
|
||||
before_sleep_log,
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from env import settings
|
||||
from ansi import ANSI, Color, Style
|
||||
|
||||
|
||||
def _create_retry_decorator(llm: ChatOpenAI) -> Callable[[Any], Any]:
|
||||
import openai
|
||||
|
||||
min_seconds = 4
|
||||
max_seconds = 10
|
||||
# Wait 2^x * 1 second between each retry starting with
|
||||
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
||||
return retry(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(llm.max_retries),
|
||||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||||
retry=(
|
||||
retry_if_exception_type(openai.error.Timeout)
|
||||
| retry_if_exception_type(openai.error.APIError)
|
||||
| retry_if_exception_type(openai.error.APIConnectionError)
|
||||
| retry_if_exception_type(openai.error.RateLimitError)
|
||||
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)
|
||||
|
||||
|
||||
async def acompletion_with_retry(llm: ChatOpenAI, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the async completion call."""
|
||||
retry_decorator = _create_retry_decorator(llm)
|
||||
|
||||
@retry_decorator
|
||||
async def _completion_with_retry(**kwargs: Any) -> Any:
|
||||
# Use OpenAI's async api https://github.com/openai/openai-python#async-api
|
||||
return await llm.client.acreate(**kwargs)
|
||||
|
||||
return await _completion_with_retry(**kwargs)
|
||||
|
||||
|
||||
def _convert_dict_to_message(_dict: dict) -> BaseMessage:
|
||||
role = _dict["role"]
|
||||
if role == "user":
|
||||
return HumanMessage(content=_dict["content"])
|
||||
elif role == "assistant":
|
||||
return AIMessage(content=_dict["content"])
|
||||
elif role == "system":
|
||||
return SystemMessage(content=_dict["content"])
|
||||
else:
|
||||
return ChatMessage(content=_dict["content"], role=role)
|
||||
|
||||
|
||||
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
if isinstance(message, ChatMessage):
|
||||
message_dict = {"role": message.role, "content": message.content}
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
if "name" in message.additional_kwargs:
|
||||
message_dict["name"] = message.additional_kwargs["name"]
|
||||
return message_dict
|
||||
|
||||
|
||||
def _create_chat_result(response: Mapping[str, Any]) -> ChatResult:
|
||||
generations = []
|
||||
for res in response["choices"]:
|
||||
message = _convert_dict_to_message(res["message"])
|
||||
gen = ChatGeneration(message=message)
|
||||
generations.append(gen)
|
||||
return ChatResult(generations=generations)
|
||||
|
||||
|
||||
class ModelNotFoundException(Exception):
|
||||
"""Exception raised when the model is not found."""
|
||||
|
||||
def __init__(self, model_name: str):
|
||||
self.model_name = model_name
|
||||
super().__init__(
|
||||
f"\n\nModel {ANSI(self.model_name).to(Color.red())} does not exist.\nMake sure if you have access to the model.\n"
|
||||
+ f"You can set the model name with the environment variable {ANSI('MODEL_NAME').to(Style.bold())} on {ANSI('.env').to(Style.bold())}.\n"
|
||||
+ "\nex) MODEL_NAME=gpt-4\n"
|
||||
+ ANSI(
|
||||
"\nLooks like you don't have access to gpt-4 yet. Try using `gpt-3.5-turbo`."
|
||||
if self.model_name == "gpt-4"
|
||||
else ""
|
||||
).to(Style.italic())
|
||||
)
|
||||
|
||||
|
||||
class ChatOpenAI(BaseChatModel, BaseModel):
|
||||
"""Wrapper around OpenAI Chat large language models.
|
||||
|
||||
To use, you should have the ``openai`` python package installed, and the
|
||||
environment variable ``OPENAI_API_KEY`` set with your API key.
|
||||
|
||||
Any parameters that are valid to be passed to the openai.create call can be passed
|
||||
in, even if not explicitly saved on this class.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
openai = ChatOpenAI(model_name="gpt-3.5-turbo")
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
model_name: str = settings["MODEL_NAME"]
|
||||
"""Model name to use."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||||
openai_api_key: Optional[str] = None
|
||||
max_retries: int = 6
|
||||
"""Maximum number of retries to make when generating."""
|
||||
streaming: bool = False
|
||||
"""Whether to stream the results or not."""
|
||||
n: int = 1
|
||||
"""Number of chat completions to generate for each prompt."""
|
||||
max_tokens: int = 2048
|
||||
"""Maximum number of tokens to generate."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.ignore
|
||||
|
||||
def check_access(self) -> None:
|
||||
"""Check that the user has access to the model."""
|
||||
|
||||
try:
|
||||
openai.Engine.retrieve(self.model_name)
|
||||
except openai.error.InvalidRequestError:
|
||||
raise ModelNotFoundException(self.model_name)
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = {field.alias for field in cls.__fields__.values()}
|
||||
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name not in all_required_field_names:
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
extra[field_name] = values.pop(field_name)
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
openai_api_key = get_from_dict_or_env(
|
||||
values, "openai_api_key", "OPENAI_API_KEY"
|
||||
)
|
||||
try:
|
||||
import openai
|
||||
|
||||
openai.api_key = openai_api_key
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import openai python package. "
|
||||
"Please it install it with `pip install openai`."
|
||||
)
|
||||
try:
|
||||
values["client"] = openai.ChatCompletion
|
||||
except AttributeError:
|
||||
raise ValueError(
|
||||
"`openai` has no `ChatCompletion` attribute, this is likely "
|
||||
"due to an old version of the openai package. Try upgrading it "
|
||||
"with `pip install --upgrade openai`."
|
||||
)
|
||||
if values["n"] < 1:
|
||||
raise ValueError("n must be at least 1.")
|
||||
if values["n"] > 1 and values["streaming"]:
|
||||
raise ValueError("n must be 1 when streaming.")
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling OpenAI API."""
|
||||
return {
|
||||
"model": self.model_name,
|
||||
"max_tokens": self.max_tokens,
|
||||
"stream": self.streaming,
|
||||
"n": self.n,
|
||||
**self.model_kwargs,
|
||||
}
|
||||
|
||||
def _create_retry_decorator(self) -> Callable[[Any], Any]:
|
||||
import openai
|
||||
|
||||
min_seconds = 4
|
||||
max_seconds = 10
|
||||
# Wait 2^x * 1 second between each retry starting with
|
||||
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
||||
return retry(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(self.max_retries),
|
||||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||||
retry=(
|
||||
retry_if_exception_type(openai.error.Timeout)
|
||||
| retry_if_exception_type(openai.error.APIError)
|
||||
| retry_if_exception_type(openai.error.APIConnectionError)
|
||||
| retry_if_exception_type(openai.error.RateLimitError)
|
||||
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)
|
||||
|
||||
def completion_with_retry(self, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the completion call."""
|
||||
retry_decorator = self._create_retry_decorator()
|
||||
|
||||
@retry_decorator
|
||||
def _completion_with_retry(**kwargs: Any) -> Any:
|
||||
response = self.client.create(**kwargs)
|
||||
logger.debug("Response:\n\t%s", response)
|
||||
return response
|
||||
|
||||
return _completion_with_retry(**kwargs)
|
||||
|
||||
def _generate(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
||||
) -> ChatResult:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
logger.debug("Messages:\n")
|
||||
for item in message_dicts:
|
||||
for k, v in item.items():
|
||||
logger.debug(f"\t\t{k}: {v}")
|
||||
logger.debug("\t-------")
|
||||
logger.debug("===========")
|
||||
|
||||
if self.streaming:
|
||||
inner_completion = ""
|
||||
role = "assistant"
|
||||
params["stream"] = True
|
||||
for stream_resp in self.completion_with_retry(
|
||||
messages=message_dicts, **params
|
||||
):
|
||||
role = stream_resp["choices"][0]["delta"].get("role", role)
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
inner_completion += token
|
||||
self.callback_manager.on_llm_new_token(
|
||||
token,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
message = _convert_dict_to_message(
|
||||
{"content": inner_completion, "role": role}
|
||||
)
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
response = self.completion_with_retry(messages=message_dicts, **params)
|
||||
return _create_chat_result(response)
|
||||
|
||||
def _create_message_dicts(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
||||
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||||
params: Dict[str, Any] = {**{"model": self.model_name}, **self._default_params}
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||||
return message_dicts, params
|
||||
|
||||
async def _agenerate(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]] = None
|
||||
) -> ChatResult:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
if self.streaming:
|
||||
inner_completion = ""
|
||||
role = "assistant"
|
||||
params["stream"] = True
|
||||
async for stream_resp in await acompletion_with_retry(
|
||||
self, messages=message_dicts, **params
|
||||
):
|
||||
role = stream_resp["choices"][0]["delta"].get("role", role)
|
||||
token = stream_resp["choices"][0]["delta"].get("content", "")
|
||||
inner_completion += token
|
||||
if self.callback_manager.is_async:
|
||||
await self.callback_manager.on_llm_new_token(
|
||||
token,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
else:
|
||||
self.callback_manager.on_llm_new_token(
|
||||
token,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
message = _convert_dict_to_message(
|
||||
{"content": inner_completion, "role": role}
|
||||
)
|
||||
return ChatResult(generations=[ChatGeneration(message=message)])
|
||||
else:
|
||||
response = await acompletion_with_retry(
|
||||
self, messages=message_dicts, **params
|
||||
)
|
||||
return _create_chat_result(response)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {**{"model_name": self.model_name}, **self._default_params}
|
||||
|
||||
def get_num_tokens(self, text: str) -> int:
|
||||
"""Calculate num tokens with tiktoken package."""
|
||||
# tiktoken NOT supported for Python 3.8 or below
|
||||
if sys.version_info[1] <= 8:
|
||||
return super().get_num_tokens(text)
|
||||
try:
|
||||
import tiktoken
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import tiktoken python package. "
|
||||
"This is needed in order to calculate get_num_tokens. "
|
||||
"Please it install it with `pip install tiktoken`."
|
||||
)
|
||||
# create a GPT-3.5-Turbo encoder instance
|
||||
enc = tiktoken.encoding_for_model(self.model_name)
|
||||
|
||||
# encode the text using the GPT-3.5-Turbo encoder
|
||||
tokenized_text = enc.encode(text)
|
||||
|
||||
# calculate the number of tokens in the encoded text
|
||||
return len(tokenized_text)
|
||||
|
||||
|
||||
###############LLM END =>
|
||||
|
||||
|
||||
|
||||
from typing import Dict, Optional
|
||||
from celery import Task
|
||||
|
||||
from langchain.agents.agent import AgentExecutor
|
||||
from langchain.callbacks.base import CallbackManager
|
||||
from langchain.callbacks import set_handler
|
||||
from langchain.chains.conversation.memory import ConversationBufferMemory
|
||||
from langchain.memory.chat_memory import BaseChatMemory
|
||||
|
||||
# from core.tools.base import BaseToolSet
|
||||
# from core.tools.factory import ToolsFactory
|
||||
|
||||
# from .builder import AgentBuilder
|
||||
# from .callback import EVALCallbackHandler, ExecutionTracingCallbackHandler
|
||||
|
||||
|
||||
set_handler(EVALCallbackHandler())
|
||||
|
||||
|
||||
class AgentManager:
|
||||
def __init__(
|
||||
self,
|
||||
toolsets: list[BaseToolSet] = [],
|
||||
):
|
||||
self.toolsets: list[BaseToolSet] = toolsets
|
||||
self.memories: Dict[str, BaseChatMemory] = {}
|
||||
self.executors: Dict[str, AgentExecutor] = {}
|
||||
|
||||
def create_memory(self) -> BaseChatMemory:
|
||||
return ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
||||
|
||||
def get_or_create_memory(self, session: str) -> BaseChatMemory:
|
||||
if not (session in self.memories):
|
||||
self.memories[session] = self.create_memory()
|
||||
return self.memories[session]
|
||||
|
||||
def create_executor(
|
||||
self, session: str, execution: Optional[Task] = None
|
||||
) -> AgentExecutor:
|
||||
builder = AgentBuilder(self.toolsets)
|
||||
builder.build_parser()
|
||||
|
||||
callbacks = []
|
||||
eval_callback = EVALCallbackHandler()
|
||||
eval_callback.set_parser(builder.get_parser())
|
||||
callbacks.append(eval_callback)
|
||||
if execution:
|
||||
execution_callback = ExecutionTracingCallbackHandler(execution)
|
||||
execution_callback.set_parser(builder.get_parser())
|
||||
callbacks.append(execution_callback)
|
||||
|
||||
callback_manager = CallbackManager(callbacks)
|
||||
|
||||
builder.build_llm(callback_manager)
|
||||
builder.build_global_tools()
|
||||
|
||||
memory: BaseChatMemory = self.get_or_create_memory(session)
|
||||
tools = [
|
||||
*builder.get_global_tools(),
|
||||
*ToolsFactory.create_per_session_tools(
|
||||
self.toolsets,
|
||||
get_session=lambda: (session, self.executors[session]),
|
||||
),
|
||||
]
|
||||
|
||||
for tool in tools:
|
||||
tool.callback_manager = callback_manager
|
||||
|
||||
executor = AgentExecutor.from_agent_and_tools(
|
||||
agent=builder.get_agent(),
|
||||
tools=tools,
|
||||
memory=memory,
|
||||
callback_manager=callback_manager,
|
||||
verbose=True,
|
||||
)
|
||||
self.executors[session] = executor
|
||||
return executor
|
||||
|
||||
@staticmethod
|
||||
def create(toolsets: list[BaseToolSet]) -> "AgentManager":
|
||||
return AgentManager(
|
||||
toolsets=toolsets,
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#PARSER=============================+> PARSER
|
||||
import re
|
||||
from typing import Dict
|
||||
|
||||
from langchain.schema import BaseOutputParser
|
||||
|
||||
from core.prompts.input import EVAL_FORMAT_INSTRUCTIONS
|
||||
|
||||
|
||||
class EvalOutputParser(BaseOutputParser):
|
||||
@staticmethod
|
||||
def parse_all(text: str) -> Dict[str, str]:
|
||||
regex = r"Action: (.*?)[\n]Plan:(.*)[\n]What I Did:(.*)[\n]Action Input: (.*)"
|
||||
match = re.search(regex, text, re.DOTALL)
|
||||
if not match:
|
||||
raise Exception("parse error")
|
||||
|
||||
action = match.group(1).strip()
|
||||
plan = match.group(2)
|
||||
what_i_did = match.group(3)
|
||||
action_input = match.group(4).strip(" ")
|
||||
|
||||
return {
|
||||
"action": action,
|
||||
"plan": plan,
|
||||
"what_i_did": what_i_did,
|
||||
"action_input": action_input,
|
||||
}
|
||||
|
||||
def get_format_instructions(self) -> str:
|
||||
return EVAL_FORMAT_INSTRUCTIONS
|
||||
|
||||
def parse(self, text: str) -> Dict[str, str]:
|
||||
regex = r"Action: (.*?)[\n]Plan:(.*)[\n]What I Did:(.*)[\n]Action Input: (.*)"
|
||||
match = re.search(regex, text, re.DOTALL)
|
||||
if not match:
|
||||
raise Exception("parse error")
|
||||
|
||||
parsed = EvalOutputParser.parse_all(text)
|
||||
|
||||
return {"action": parsed["action"], "action_input": parsed["action_input"]}
|
||||
|
||||
def __str__(self):
|
||||
return "EvalOutputParser"
|
||||
|
||||
#PARSER=============================+> PARSER
|
@ -0,0 +1,100 @@
|
||||
ERROR_PROMPT = "An error has occurred for the following text: \n{promptedQuery} Please explain this error.\n {e}"
|
||||
|
||||
IMAGE_PROMPT = """
|
||||
provide a figure named {filename}. The description is: {description}.
|
||||
|
||||
Please understand and answer the image based on this information. The image understanding is complete, so don't try to understand the image again.
|
||||
|
||||
USER INPUT
|
||||
============
|
||||
"""
|
||||
|
||||
|
||||
AUDIO_PROMPT = """
|
||||
provide a audio named {filename}. The description is: {description}.
|
||||
|
||||
Please understand and answer the audio based on this information. The audio understanding is complete, so don't try to understand the audio again.
|
||||
|
||||
USER INPUT
|
||||
============
|
||||
"""
|
||||
|
||||
VIDEO_PROMPT = """
|
||||
provide a video named {filename}. The description is: {description}.
|
||||
|
||||
Please understand and answer the video based on this information. The video understanding is complete, so don't try to understand the video again.
|
||||
|
||||
USER INPUT
|
||||
============
|
||||
"""
|
||||
|
||||
DATAFRAME_PROMPT = """
|
||||
provide a dataframe named {filename}. The description is: {description}.
|
||||
|
||||
You are able to use the dataframe to answer the question.
|
||||
You have to act like an data analyst who can do an effective analysis through dataframe.
|
||||
|
||||
USER INPUT
|
||||
============
|
||||
"""
|
||||
|
||||
|
||||
EVAL_PREFIX = """{bot_name} can execute any user's request.
|
||||
|
||||
{bot_name} has permission to handle one instance and can handle the environment in it at will.
|
||||
You can code, run, debug, and test yourself. You can correct the code appropriately by looking at the error message.
|
||||
|
||||
I can understand, process, and create various types of files.
|
||||
{bot_name} can do whatever it takes to execute the user's request. Let's think step by step.
|
||||
"""
|
||||
|
||||
EVAL_FORMAT_INSTRUCTIONS = """RESPONSE FORMAT INSTRUCTIONS
|
||||
----------------------------
|
||||
|
||||
When responding to me please, please output a response in one of two formats. No explanation is allowed after action input.:
|
||||
|
||||
**Option #1:**
|
||||
Use this if you want the human to use a tool.
|
||||
Your response should be in the following schema:
|
||||
|
||||
Action: the action to take, should be one of [{tool_names}]
|
||||
Plan: All remaining detailed plans after this action in check box. Each plan should be concise and clear to achieve the goal. Write it in the following schema: - [ ] plan
|
||||
What I Did: What you just did to achieve the goal. If you have not done anything, write None.
|
||||
Action Input: the input to the action
|
||||
|
||||
**Option #2:**
|
||||
Use this if you want to respond directly to the human.
|
||||
You should replace sensitive data or encrypted data with "d1dy0uth1nk7hat1t1s7haAAat3aSy?" in action_input.
|
||||
Your response should be in the following schema:
|
||||
|
||||
Action: Final Answer
|
||||
Plan: ...
|
||||
What I Did: ...
|
||||
Action Input: string \\ You should put what you want to return to use here.
|
||||
"""
|
||||
|
||||
EVAL_SUFFIX = """TOOLS
|
||||
------
|
||||
{bot_name} can ask the user to use tools to look up information that may be helpful in answering the users original question.
|
||||
You are very strict to the filename correctness and will never fake a file name if it does not exist.
|
||||
You will remember to provide the file name loyally if it's provided in the last tool observation.
|
||||
If you have to include files in your response, you must provide the filepath in [file://filepath] format. It must be wrapped in square brackets.
|
||||
|
||||
The tools the human can use are:
|
||||
|
||||
{{{{tools}}}}
|
||||
|
||||
{{format_instructions}}
|
||||
|
||||
USER'S INPUT
|
||||
--------------------
|
||||
Here is the user's input:
|
||||
|
||||
{{{{{{{{input}}}}}}}}"""
|
||||
|
||||
EVAL_TOOL_RESPONSE = """TOOL RESPONSE:
|
||||
---------------------
|
||||
{observation}
|
||||
--------------------
|
||||
After exiting conversation, you must choose Final Answer Action.
|
||||
"""
|
Loading…
Reference in new issue