pull/709/head
harshalmore31 4 months ago
parent 4f265f3e35
commit 9fc582aea1

@ -0,0 +1,877 @@
import os
from dotenv import load_dotenv
from typing import List, Dict, Any, Tuple, Optional
import json
import time
import asyncio
import gradio as gr
import re
# Import necessary classes and functions from swarms library
from swarms.structs.agent import Agent
from swarms.structs.concurrent_workflow import ConcurrentWorkflow
from swarms.structs.mixture_of_agents import MixtureOfAgents
from swarms.structs.rearrange import AgentRearrange
from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm
from swarms.structs.swarm_matcher import swarm_matcher, SwarmMatcher, SwarmMatcherConfig, initialize_swarm_types
from swarms.structs.swarm_router import SwarmRouter
from swarms.utils.loguru_logger import initialize_logger
from groq_model import OpenAIChat # Import OpenAIChat from the correct location
from swarms.utils.file_processing import create_file_in_folder
from doc_master import doc_master
# Initialize logger
logger = initialize_logger(log_folder="swarm_ui")
# Load environment variables
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("GROQ_API_KEY")
# Model initialization
model = OpenAIChat(
openai_api_base="https://api.groq.com/openai/v1",
openai_api_key=api_key,
model_name="llama-3.1-70b-versatile",
temperature=0.1,
)
# Define the path to agent_prompts.json
PROMPT_JSON_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "agent_prompts.json")
logger.info(f"Loading prompts from: {PROMPT_JSON_PATH}")
# Global log storage
execution_logs = []
def log_event(level: str, message: str, metadata: Optional[Dict] = None):
"""
Log an event and store it in the execution logs.
Args:
level: Log level (info, warning, error, etc.)
message: Log message
metadata: Optional metadata dictionary
"""
timestamp = time.strftime("%Y-%m-%d %H:%M:%S")
log_entry = {
"timestamp": timestamp,
"level": level,
"message": message,
"metadata": metadata or {}
}
execution_logs.append(log_entry)
# Also log to the logger
log_func = getattr(logger, level.lower(), logger.info)
log_func(message)
def get_logs(router: Optional['SwarmRouter'] = None) -> List[str]:
"""
Get formatted logs from both the execution logs and router logs if available.
Args:
router: Optional SwarmRouter instance to get additional logs from
Returns:
List of formatted log strings
"""
formatted_logs = []
# Add execution logs
for log in execution_logs:
metadata_str = ""
if log["metadata"]:
metadata_str = f" | Metadata: {json.dumps(log['metadata'])}"
formatted_logs.append(
f"[{log['timestamp']}] {log['level'].upper()}: {log['message']}{metadata_str}"
)
# Add router logs if available
if router and hasattr(router, 'get_logs'):
try:
router_logs = router.get_logs()
formatted_logs.extend([
f"[{log.timestamp}] ROUTER - {log.level}: {log.message}"
for log in router_logs
])
except Exception as e:
formatted_logs.append(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] ERROR: Failed to get router logs: {str(e)}")
return formatted_logs
def clear_logs():
"""Clear the execution logs."""
execution_logs.clear()
def load_prompts_from_json() -> Dict[str, str]:
"""Robust prompt loading with comprehensive error handling."""
try:
if not os.path.exists(PROMPT_JSON_PATH):
error_msg = f"Prompts file not found at: {PROMPT_JSON_PATH}"
log_event("error", error_msg)
# Load default prompts
return {
"agent.data_extractor": "You are a data extraction agent...",
"agent.summarizer": "You are a summarization agent...",
"agent.onboarding_agent": "You are an onboarding agent..."
}
with open(PROMPT_JSON_PATH, 'r', encoding='utf-8') as f:
try:
data = json.load(f)
except json.JSONDecodeError as e:
error_msg = f"Invalid JSON in prompts file: {str(e)}"
log_event("error", error_msg)
raise
if not isinstance(data, dict):
error_msg = "Prompts file must contain a JSON object"
log_event("error", error_msg)
raise ValueError(error_msg)
prompts = {}
for agent_name, details in data.items():
if not isinstance(details, dict) or "system_prompt" not in details:
log_event("warning", f"Skipping invalid agent config: {agent_name}")
continue
prompts[f"agent.{agent_name}"] = details["system_prompt"]
if not prompts:
error_msg = "No valid prompts found in prompts file"
log_event("error", error_msg)
# Load default prompts
return {
"agent.data_extractor": "You are a data extraction agent...",
"agent.summarizer": "You are a summarization agent...",
"agent.onboarding_agent": "You are an onboarding agent..."
}
log_event("info", f"Successfully loaded {len(prompts)} prompts from JSON")
return prompts
except Exception as e:
error_msg = f"Error loading prompts: {str(e)}"
log_event("error", error_msg)
# Load default prompts
return {
"agent.data_extractor": "You are a data extraction agent...",
"agent.summarizer": "You are a summarization agent...",
"agent.onboarding_agent": "You are an onboarding agent..."
}
# Load prompts
AGENT_PROMPTS = load_prompts_from_json()
def initialize_agents(
data_temp: float,
sum_temp: float,
agent_keys: List[str]
) -> List[Agent]:
"""Enhanced agent initialization with more robust configuration."""
agents = []
seen_names = set()
for agent_key in agent_keys:
if agent_key not in AGENT_PROMPTS:
raise ValueError(f"Invalid agent key: {agent_key}")
agent_prompt = AGENT_PROMPTS[agent_key]
agent_name = agent_key.split('.')[-1]
# Ensure unique agent names
base_name = agent_name
counter = 1
while agent_name in seen_names:
agent_name = f"{base_name}_{counter}"
counter += 1
seen_names.add(agent_name)
agent = Agent(
agent_name=f"Agent-{agent_name}",
system_prompt=agent_prompt,
llm=model,
max_loops=1,
autosave=True,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path=f"agent_{agent_name}.json",
user_name="pe_firm",
retry_attempts=1,
context_length=200000,
output_type="string",
temperature=data_temp,
)
agents.append(agent)
return agents
def get_safe_filename(base_name: str) -> str:
"""
Create a safe filename by removing or replacing invalid characters.
Args:
base_name: The original filename
Returns:
A sanitized filename safe for all operating systems
"""
# Replace invalid characters with underscores
invalid_chars = '<>:"/\\|?*'
filename = ''.join('_' if c in invalid_chars else c for c in base_name)
# Ensure the filename isn't too long (max 255 characters)
if len(filename) > 255:
name_part, ext_part = os.path.splitext(filename)
filename = name_part[:255-len(ext_part)] + ext_part
return filename
async def execute_task(task: str, max_loops: int, data_temp: float, sum_temp: float,
swarm_type: str, agent_keys: List[str], flow: str = None) -> Tuple[Dict[str, str], 'SwarmRouter', str]:
"""
Enhanced task execution with comprehensive error handling and result processing.
"""
start_time = time.time()
log_event("info", f"Starting task execution: {task}")
try:
# Initialize agents
try:
agents = initialize_agents(data_temp, sum_temp, agent_keys)
log_event("info", f"Successfully initialized {len(agents)} agents")
except Exception as e:
error_msg = f"Agent initialization error: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
# Create a SwarmRouter to manage the different swarm types
router_kwargs = {
"name": "multi-agent-workflow",
"description": f"Executing {swarm_type} workflow",
"max_loops": max_loops,
"agents": agents,
"autosave": True,
"return_json": True,
"output_type": "string"
}
# Swarm-specific configurations
if swarm_type == "SpreadSheetSwarm":
output_dir = "swarm_outputs"
os.makedirs(output_dir, exist_ok=True)
# Create a simple filename with just a timestamp for uniqueness
timestamp = time.strftime("%Y%m%d_%H%M%S")
output_file = f"output_{timestamp}.csv"
output_path = os.path.join(output_dir, output_file)
# Initialize SpreadSheetSwarm with the model
try:
swarm = SpreadSheetSwarm(
agents=agents,
max_loops=max_loops,
name="spreadsheet-swarm",
description="SpreadSheet processing workflow",
save_file_path=output_path, # Use our custom output path
workspace_dir=output_dir,
llm=model,
autosave=True,
# Remove append_timestamp and append_run_id as they might not be supported
)
# Set the filename directly on the swarm object if possible
if hasattr(swarm, 'filename'):
swarm.filename = output_file
# Execute the swarm with task
result = await asyncio.wait_for(
asyncio.to_thread(lambda: swarm.run(task=task)),
timeout=900
)
# Verify the file exists and handle potential filename changes
actual_output_path = output_path
if not os.path.exists(output_path):
# Look for files matching our base pattern
possible_files = [f for f in os.listdir(output_dir) if f.startswith("output_")]
if possible_files:
actual_output_path = os.path.join(output_dir, possible_files[-1])
# Process SpreadSheetSwarm result
try:
if isinstance(result, dict):
processed_result = {
"CSV File Path": actual_output_path,
"Status": "Success",
"Message": "Spreadsheet processing completed successfully",
"Analysis": result.get("analysis", "No analysis provided"),
"Summary": result.get("summary", "No summary provided")
}
else:
processed_result = {
"CSV File Path": actual_output_path,
"Status": "Success",
"Message": "Spreadsheet processing completed successfully",
"Result": str(result)
}
return processed_result, swarm, ""
except Exception as e:
error_msg = f"Failed to process SpreadSheetSwarm result: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
except Exception as e:
error_msg = f"SpreadSheetSwarm execution error: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
# Create router and execute task for non-SpreadSheetSwarm types
if swarm_type != "SpreadSheetSwarm":
try:
timeout = 450
await asyncio.sleep(0.5)
router = SwarmRouter(**router_kwargs)
router.swarm_type = swarm_type
result = await asyncio.wait_for(
asyncio.to_thread(router.run, task=task),
timeout=timeout
)
# Process results based on swarm type
if swarm_type == "ConcurrentWorkflow":
responses = _extract_concurrent_responses(str(result), agents)
elif swarm_type == "SequentialWorkflow":
if isinstance(result, dict):
responses = {f"Step {i+1}": str(v) for i, v in enumerate(result.values())}
else:
responses = {"Final Output": str(result)}
elif swarm_type == "AgentRearrange":
if isinstance(result, dict):
responses = {f"Step {i+1}": str(v) for i, v in enumerate(result.values())}
else:
flow_steps = flow.split("->")
responses = {f"Step {i+1} ({step.strip()})": str(part)
for i, (step, part) in enumerate(zip(flow_steps, str(result).split("[NEXT]")))}
elif swarm_type == "MixtureOfAgents":
if isinstance(result, dict):
responses = {
**{f"Agent {i+1}": str(v) for i, v in enumerate(result.get("individual_outputs", []))},
"Aggregated Summary": str(result.get("aggregated_output", "No aggregated output"))
}
else:
responses = {"Final Output": str(result)}
else: # Auto or unknown type
if isinstance(result, dict):
responses = {str(k): str(v) for k, v in result.items()}
else:
responses = {"Final Output": str(result)}
return responses, router, ""
except asyncio.TimeoutError:
error_msg = f"Task execution timed out after {timeout} seconds"
log_event("error", error_msg)
return {}, None, error_msg
except Exception as e:
error_msg = f"Task execution error: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
except Exception as e:
error_msg = f"Unexpected error in task execution: {str(e)}"
log_event("error", error_msg)
return {}, None, error_msg
def _extract_concurrent_responses(result: str, agents: List[Agent]) -> Dict[str, str]:
"""
Extract unique responses for each agent in a ConcurrentWorkflow.
Args:
result (str): Full output from SwarmRouter
agents (List[Agent]): List of agents used in the task
Returns:
Dict[str, str]: Unique responses for each agent
"""
agent_responses = {}
for agent in agents:
# Pattern to capture "Agent Name: ... Response: ... " format
pattern = rf"Agent Name:\s*{re.escape(agent.agent_name)}\s*Response:\s*(.+?)(?=Agent Name:|$)"
match = re.search(pattern, result, re.DOTALL | re.IGNORECASE | re.MULTILINE)
if match:
agent_responses[agent.agent_name] = match.group(1).strip()
else:
agent_responses[agent.agent_name] = "No response from the Agent"
return agent_responses
class UI:
def __init__(self, theme):
self.theme = theme
self.blocks = gr.Blocks(theme=self.theme)
self.components = {} # Dictionary to store UI components
def create_markdown(self, text, is_header=False):
if is_header:
markdown = gr.Markdown(f"<h1 style='color: #ffffff; text-align: center;'>{text}</h1>")
else:
markdown = gr.Markdown(f"<p style='color: #cccccc; text-align: center;'>{text}</p>")
self.components[f'markdown_{text}'] = markdown
return markdown
def create_text_input(self, label, lines=3, placeholder=""):
text_input = gr.Textbox(
label=label,
lines=lines,
placeholder=placeholder,
elem_classes=["custom-input"],
)
self.components[f'text_input_{label}'] = text_input
return text_input
def create_slider(self, label, minimum=0, maximum=1, value=0.5, step=0.1):
slider = gr.Slider(
minimum=minimum,
maximum=maximum,
value=value,
step=step,
label=label,
interactive=True,
)
self.components[f'slider_{label}']
return slider
def create_dropdown(self, label, choices, value=None, multiselect=False):
if not choices:
choices = ["No options available"]
if value is None and choices:
value = choices[0] if not multiselect else [choices[0]]
dropdown = gr.Dropdown(
label=label,
choices=choices,
value=value,
interactive=True,
multiselect=multiselect,
)
self.components[f'dropdown_{label}'] = dropdown
return dropdown
def create_button(self, text, variant="primary"):
button = gr.Button(text, variant=variant)
self.components[f'button_{text}'] = button
return button
def create_text_output(self, label, lines=10, placeholder=""):
text_output = gr.Textbox(
label=label,
interactive=False,
placeholder=placeholder,
lines=lines,
elem_classes=["custom-output"],
)
self.components[f'text_output_{label}'] = text_output
return text_output
def create_tab(self, label, content_function):
with gr.Tab(label):
content_function(self)
def set_event_listener(self, button, function, inputs, outputs):
button.click(function, inputs=inputs, outputs=outputs)
def get_components(self, *keys):
if not keys:
return self.components # return all components
return [self.components[key] for key in keys]
def create_json_output(self, label, placeholder=""):
json_output = gr.JSON(
label=label,
value = {},
elem_classes=["custom-output"],
)
self.components[f'json_output_{label}'] = json_output
return json_output
def build(self):
return self.blocks
def create_conditional_input(self, component, visible_when, watch_component):
"""Create an input that's only visible under certain conditions"""
watch_component.change(
fn=lambda x: gr.update(visible=visible_when(x)),
inputs=[watch_component],
outputs=[component]
)
@staticmethod
def create_ui_theme(primary_color="red"):
return gr.themes.Soft(
primary_hue=primary_color,
secondary_hue="gray",
neutral_hue="gray",
).set(
body_background_fill="#20252c",
body_text_color="#f0f0f0",
button_primary_background_fill=primary_color,
button_primary_text_color="#ffffff",
button_secondary_background_fill=primary_color,
button_secondary_text_color="#ffffff",
shadow_drop="0px 2px 4px rgba(0, 0, 0, 0.3)",
)
def create_agent_details_tab(self):
"""Create the agent details tab content."""
with gr.Column():
gr.Markdown("### Agent Details")
gr.Markdown("""
**Available Agent Types:**
- Data Extraction Agent: Specialized in extracting relevant information
- Summary Agent: Creates concise summaries of information
- Analysis Agent: Performs detailed analysis of data
**Swarm Types:**
- ConcurrentWorkflow: Agents work in parallel
- SequentialWorkflow: Agents work in sequence
- AgentRearrange: Custom agent execution flow
- MixtureOfAgents: Combines multiple agents with an aggregator
- SpreadSheetSwarm: Specialized for spreadsheet operations
- Auto: Automatically determines optimal workflow
""")
return gr.Column()
def create_logs_tab(self):
"""Create the logs tab content."""
with gr.Column():
gr.Markdown("### Execution Logs")
logs_display = gr.Textbox(
label="System Logs",
placeholder="Execution logs will appear here...",
interactive=False,
lines=10
)
return logs_display
def create_app():
# Initialize UI
theme = UI.create_ui_theme(primary_color="red")
ui = UI(theme=theme)
with ui.blocks:
with gr.Row():
with gr.Column(scale=4): # Left column (80% width)
ui.create_markdown("Swarms", is_header=True)
ui.create_markdown(
"<b>The Enterprise-Grade Production-Ready Multi-Agent Orchestration Framework</b>"
)
with gr.Row():
with gr.Column(scale=4):
with gr.Row():
task_input = gr.Textbox(
label="Task Description",
placeholder="Describe your task here...",
lines=3
)
with gr.Row():
with gr.Column(scale=1):
# Get available agent prompts
available_prompts = list(AGENT_PROMPTS.keys()) if AGENT_PROMPTS else ["No agents available"]
agent_prompt_selector = gr.Dropdown(
label="Select Agent Prompts",
choices=available_prompts,
value=[available_prompts[0]] if available_prompts else None,
multiselect=True,
interactive=True
)
with gr.Column(scale=1):
# Get available swarm types
swarm_types = [
"SequentialWorkflow", "ConcurrentWorkflow", "AgentRearrange",
"MixtureOfAgents", "SpreadSheetSwarm", "auto"
]
agent_selector = gr.Dropdown(
label="Select Swarm",
choices=swarm_types,
value=swarm_types[0],
multiselect=False,
interactive=True
)
# Flow configuration components for AgentRearrange
with gr.Column(visible=False) as flow_config:
flow_text = gr.Textbox(
label="Agent Flow Configuration",
placeholder="Enter agent flow (e.g., Agent1 -> Agent2 -> Agent3)",
lines=2
)
gr.Markdown(
"""
**Flow Configuration Help:**
- Enter agent names separated by ' -> '
- Example: Agent1 -> Agent2 -> Agent3
- Use exact agent names from the prompts above
"""
)
with gr.Column(scale=2, min_width=200):
with gr.Row():
max_loops_slider = gr.Slider(
label="Max Loops",
minimum=1,
maximum=10,
value=1,
step=1
)
with gr.Row():
dynamic_slider = gr.Slider(
label="Dynamic Temp",
minimum=0,
maximum=1,
value=0.1,
step=0.01
)
with gr.Row():
loading_status = gr.Textbox(
label="Status",
value="Ready",
interactive=False
)
with gr.Row():
run_button = gr.Button("Run Task", variant="primary")
cancel_button = gr.Button("Cancel", variant="secondary")
# Add loading indicator and status
with gr.Row():
agent_output_display = gr.Textbox(
label="Agent Responses",
placeholder="Responses will appear here...",
interactive=False,
lines=10
)
def update_flow_agents(agent_keys):
"""Update flow agents based on selected agent prompts."""
if not agent_keys:
log_event("warning", "No agents selected for flow configuration")
return [], "No agents selected"
agent_names = [key.split('.')[-1] for key in agent_keys]
log_event("info", f"Updated flow agents with {len(agent_names)} agents")
return agent_names, "Select agents in execution order"
def update_flow_preview(selected_flow_agents):
"""Update flow preview based on selected agents."""
if not selected_flow_agents:
return "Flow will be shown here..."
flow = " -> ".join(selected_flow_agents)
log_event("info", f"Updated flow preview: {flow}")
return flow
def update_ui_for_swarm_type(swarm_type):
"""Update UI components based on selected swarm type."""
is_agent_rearrange = swarm_type == "AgentRearrange"
is_mixture = swarm_type == "MixtureOfAgents"
is_spreadsheet = swarm_type == "SpreadSheetSwarm"
max_loops = 5 if is_mixture or is_spreadsheet else 10
log_event("info", f"Swarm type changed to {swarm_type}, max loops set to {max_loops}")
# Return visibility state for flow configuration and max loops update
return (
gr.update(visible=is_agent_rearrange), # For flow_config
gr.update(maximum=max_loops), # For max_loops_slider
f"Selected {swarm_type}" # For loading_status
)
async def run_task_wrapper(task, max_loops, data_temp, swarm_type, agent_prompt_selector, flow_text, sum_temp):
"""Execute the task and update the UI with progress."""
try:
if not task:
yield "Please provide a task description.", "Error: Missing task"
return
if not agent_prompt_selector or len(agent_prompt_selector) == 0:
yield "Please select at least one agent.", "Error: No agents selected"
return
log_event("info", f"Starting task with agents: {agent_prompt_selector}")
# Update status
yield "Processing...", "Running task..."
# Prepare flow for AgentRearrange
flow = None
if swarm_type == "AgentRearrange":
if not flow_text:
yield "Please provide the agent flow configuration.", "Error: Flow not configured"
return
flow = flow_text
# Execute task
responses, router, error = await execute_task(
task=task,
max_loops=max_loops,
data_temp=data_temp,
sum_temp=sum_temp,
swarm_type=swarm_type,
agent_keys=agent_prompt_selector,
flow=flow
)
if error:
yield f"Error: {error}", "Error occurred"
return
# Format output based on swarm type
output_lines = []
if swarm_type == "SpreadSheetSwarm":
output_lines.append("=== Spreadsheet Swarm Results ===\n")
output_lines.append(f"CSV File: {responses.get('CSV File Path', 'No file generated')}")
output_lines.append(f"Status: {responses.get('Status', 'Unknown')}")
output_lines.append(f"Message: {responses.get('Message', '')}")
if 'Analysis' in responses:
output_lines.append("\n=== Analysis ===")
output_lines.append(responses['Analysis'])
if 'Summary' in responses:
output_lines.append("\n=== Summary ===")
output_lines.append(responses['Summary'])
if 'Result' in responses:
output_lines.append("\n=== Additional Results ===")
output_lines.append(responses['Result'])
elif swarm_type == "ConcurrentWorkflow":
output_lines.append("=== Concurrent Workflow Results ===\n")
for agent_name, response in responses.items():
output_lines.append(f"\n--- {agent_name} ---")
output_lines.append(response.strip())
output_lines.append("-" * 50)
elif swarm_type == "SequentialWorkflow":
output_lines.append("=== Sequential Workflow Results ===\n")
for step, response in responses.items():
output_lines.append(f"\n--- {step} ---")
output_lines.append(response.strip())
output_lines.append("-" * 50)
elif swarm_type == "AgentRearrange":
output_lines.append("=== Agent Rearrange Results ===\n")
for step, response in responses.items():
output_lines.append(f"\n--- {step} ---")
output_lines.append(response.strip())
output_lines.append("-" * 50)
elif swarm_type == "MixtureOfAgents":
output_lines.append("=== Mixture of Agents Results ===\n")
# First show individual agent outputs
for key, value in responses.items():
if key != "Aggregated Summary":
output_lines.append(f"\n--- {key} ---")
output_lines.append(value.strip())
output_lines.append("-" * 50)
# Then show the aggregated summary at the end
if "Aggregated Summary" in responses:
output_lines.append("\n=== Aggregated Summary ===")
output_lines.append(responses["Aggregated Summary"])
output_lines.append("=" * 50)
else: # Auto or unknown type
output_lines.append("=== Results ===\n")
for key, value in responses.items():
output_lines.append(f"\n--- {key} ---")
output_lines.append(value.strip())
output_lines.append("-" * 50)
yield "\n".join(output_lines), "Completed"
except Exception as e:
error_msg = f"Error: {str(e)}"
log_event("error", error_msg)
yield error_msg, "Error occurred"
# Connect the update functions
agent_selector.change(
fn=update_ui_for_swarm_type,
inputs=[agent_selector],
outputs=[flow_config, max_loops_slider, loading_status]
)
# Create event trigger
# Create event trigger for run button
run_event = run_button.click(
fn=run_task_wrapper,
inputs=[
task_input,
max_loops_slider,
dynamic_slider,
agent_selector,
agent_prompt_selector,
flow_text
],
outputs=[agent_output_display, loading_status]
)
# Connect cancel button to interrupt processing
def cancel_task():
log_event("info", "Task cancelled by user")
return "Task cancelled.", "Cancelled"
cancel_button.click(
fn=cancel_task,
inputs=None,
outputs=[agent_output_display, loading_status],
cancels=run_event
)
# with gr.Column(scale=1): # Right column
# with gr.Tabs():
# with gr.Tab("Agent Details"):
# gr.Markdown("""
# ### Available Agent Types
# - **Data Extraction Agent**: Specialized in extracting relevant information
# - **Summary Agent**: Creates concise summaries of information
# - **Analysis Agent**: Performs detailed analysis of data
with gr.Column(scale=1): # Right column
with gr.Tabs():
with gr.Tab("Agent Details"):
ui.create_agent_details_tab()
with gr.Tab("Logs"):
logs_display = ui.create_logs_tab()
def update_logs_display():
"""Update logs display with current logs."""
logs = get_logs()
formatted_logs = "\n".join(logs)
return formatted_logs
# Update logs when tab is selected
logs_tab = gr.Tab("Logs")
logs_tab.select(fn=update_logs_display, inputs=None, outputs=[logs_display])
return ui.build()
# Launch the app
if __name__ == "__main__":
app = create_app()
app.launch()
Loading…
Cancel
Save