[SEQUENTIALWORKFLOW][FIX]

pull/299/head
Kye 1 year ago
parent 072f129d85
commit a01711fd23

@ -7,7 +7,9 @@ load_dotenv()
api_key = os.environ["GEMINI_API_KEY"]
# Initialize the model
model = Gemini(gemini_api_key=api_key)
model = Gemini(
gemini_api_key="AIzaSyCUMFvG3TwwuZIniSpvDeP2AW5USyJUgJM"
)
# Establish the prompt and image
task = "What is your name"

@ -62,7 +62,7 @@ class ChromaDB:
top_results_num: int = 3,
limit_tokens: Optional[int] = 1000,
*args,
**kwargs
**kwargs,
):
self.metric = metric
self.RESULTS_STORE_NAME = RESULTS_STORE_NAME
@ -93,7 +93,9 @@ class ChromaDB:
embedding_function=embedding_function,
)
def add(self, task: Dict, result: str, result_id: str, *args, **kwargs):
def add(
self, task: Dict, result: str, result_id: str, *args, **kwargs
):
"""Adds a result to the ChromaDB collection
Args:
@ -140,19 +142,14 @@ class ChromaDB:
"result": result,
},
*args,
**kwargs
**kwargs,
)
except Exception as error:
print(
colored(f"Error adding to ChromaDB: {error}", "red")
)
def query(
self,
query: str,
*args,
**kwargs
) -> List[dict]:
def query(self, query: str, *args, **kwargs) -> List[dict]:
"""Queries the ChromaDB collection with a query for the top results
Args:
@ -171,7 +168,7 @@ class ChromaDB:
n_results=min(self.top_results_num, count),
include=["metadatas"],
*args,
**kwargs
**kwargs,
)
out = [item["task"] for item in results["metadatas"][0]]
out = limit_tokens_from_string(

@ -264,14 +264,6 @@ class Agent:
if preset_stopping_token:
self.stopping_token = "<DONE>"
# If memory then add the json to the memory vector database
if memory:
# Add all of the state to the memory
self.add_message_to_memory_db(
{"message": self.state_to_str()},
{"agent_id": self.id},
)
# If tools exist then add the tool docs usage to the sop
if self.tools:
self.sop_list.append(

@ -6,74 +6,7 @@ from typing import Any, Callable, Dict, List, Optional, Union
from termcolor import colored
from swarms.structs.agent import Agent
# Define a generic Task that can handle different types of callable objects
@dataclass
class Task:
"""
Task class for running a task in a sequential workflow.
Args:
description (str): The description of the task.
agent (Union[Callable, Agent]): The model or agent to execute the task.
args (List[Any]): Additional arguments to pass to the task execution.
kwargs (Dict[str, Any]): Additional keyword arguments to pass to the task execution.
result (Any): The result of the task execution.
history (List[Any]): The history of the task execution.
Methods:
execute: Execute the task.
Examples:
>>> from swarms.structs import Task, Agent
>>> from swarms.models import OpenAIChat
>>> agent = Agent(llm=OpenAIChat(openai_api_key=""), max_loops=1, dashboard=False)
>>> task = Task(description="What's the weather in miami", agent=agent)
>>> task.execute()
>>> task.result
"""
description: str
agent: Union[Callable, Agent]
args: List[Any] = field(default_factory=list)
kwargs: Dict[str, Any] = field(default_factory=dict)
result: Any = None
history: List[Any] = field(default_factory=list)
# logger = logging.getLogger(__name__)
def execute(self):
"""
Execute the task.
Raises:
ValueError: If a Agent instance is used as a task and the 'task' argument is not provided.
"""
if isinstance(self.agent, Agent):
# Add a prompt to notify the Agent of the sequential workflow
if "prompt" in self.kwargs:
self.kwargs["prompt"] += (
f"\n\nPrevious output: {self.result}"
if self.result
else ""
)
else:
self.kwargs["prompt"] = (
f"Main task: {self.description}"
+ (
f"\n\nPrevious output: {self.result}"
if self.result
else ""
)
)
self.result = self.agent.run(*self.args, **self.kwargs)
else:
self.result = self.agent(*self.args, **self.kwargs)
self.history.append(self.result)
from swarms.structs.task import Task
# SequentialWorkflow class definition using dataclasses
@ -361,7 +294,10 @@ class SequentialWorkflow:
)
def workflow_bootup(self, **kwargs) -> None:
"""Bootup the workflow."""
"""
Workflow bootup.
"""
print(
colored(
"""

@ -1,132 +1,80 @@
from dataclass import dataclass, field
from dataclasses import dataclass, field
from typing import (
Any,
Callable,
Dict,
List,
Optional,
Sequence,
Union,
)
from swarms.structs.agent import Agent
from typing import Optional
from typing import List, Dict, Any, Sequence
# Define a generic Task that can handle different types of callable objects
@dataclass
class Task:
"""
Task is a unit of work that can be executed by a set of agents.
Task class for running a task in a sequential workflow.
A task is defined by a task name and a set of agents that can execute the task.
The task can also have a set of dependencies, which are the names of other tasks
that must be executed before this task can be executed.
Args:
id (str): The name of the task.
description (Optional[str]): A description of the task.
task (str): The name of the task.
result (Any): The result of the task.
agents (Sequence[Agent]): A list of agents that can execute the task.
dependencies (List[str], optional): A list of task names that must be executed before this task can be executed. Defaults to [].
args (List[Any], optional): A list of arguments to pass to the agents. Defaults to field(default_factory=list).
kwargs (List[Any], optional): A list of keyword arguments to pass to the agents. Defaults to field(default_factory=list).
description (str): The description of the task.
agent (Union[Callable, Agent]): The model or agent to execute the task.
args (List[Any]): Additional arguments to pass to the task execution.
kwargs (Dict[str, Any]): Additional keyword arguments to pass to the task execution.
result (Any): The result of the task execution.
history (List[Any]): The history of the task execution.
Methods:
execute: Executes the task by passing the results of the parent tasks to the agents.
Examples:
import os
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow
from dotenv import load_dotenv
load_dotenv()
# Load the environment variables
api_key = os.getenv("OPENAI_API_KEY")
execute: Execute the task.
# Initialize the language agent
llm = OpenAIChat(
openai_api_key=api_key,
temperature=0.5,
max_tokens=3000,
)
# Initialize the agent with the language agent
agent1 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
agent2 = Agent(llm=llm, max_loops=1)
# Create the workflow
workflow = SequentialWorkflow(max_loops=1)
# Add tasks to the workflow
workflow.add(
agent1, "Generate a 10,000 word blog on health and wellness.",
)
# Suppose the next task takes the output of the first task as input
workflow.add(
agent2, "Summarize the generated blog",
)
# Run the workflow
workflow.run()
# Output the results
for task in workflow.tasks:
print(f"Task: {task.description}, Result: {task.result}")
Examples:
>>> from swarms.structs import Task, Agent
>>> from swarms.models import OpenAIChat
>>> agent = Agent(llm=OpenAIChat(openai_api_key=""), max_loops=1, dashboard=False)
>>> task = Task(description="What's the weather in miami", agent=agent)
>>> task.execute()
>>> task.result
"""
def __init__(
self,
id: str,
description: Optional[str],
task: str,
result: Any,
agents: Sequence[Agent],
dependencies: List[str] = [],
args: List[Any] = field(default_factory=list),
kwargs: List[Any] = field(default_factory=list),
):
self.id = id
self.description = description
self.task = task
self.result = result
self.agents = agents
self.dependencies = dependencies
self.results = []
self.args = args
self.kwargs = kwargs
def execute(self, parent_results: Dict[str, Any]):
"""Executes the task by passing the results of the parent tasks to the agents.
description: str
agent: Union[Callable, Agent]
args: List[Any] = field(default_factory=list)
kwargs: Dict[str, Any] = field(default_factory=dict)
result: Any = None
history: List[Any] = field(default_factory=list)
# logger = logging.getLogger(__name__)
Args:
parent_results (Dict[str, Any]): A dictionary of task names and their results.
def execute(self):
"""
Execute the task.
Examples:
Raises:
ValueError: If a Agent instance is used as a task and the 'task' argument is not provided.
"""
args = [parent_results[dep] for dep in self.dependencies]
for agent in self.agents:
if isinstance(agent, Agent):
if isinstance(self.agent, Agent):
# Add a prompt to notify the Agent of the sequential workflow
if "prompt" in self.kwargs:
self.kwargs["prompt"] += (
f"\n\nPrevious output: {self.results[-1]}"
if self.results
f"\n\nPrevious output: {self.result}"
if self.result
else ""
)
else:
self.kwargs["prompt"] = (
f"Main task: {self.description}"
+ (
f"\n\nPrevious output: {self.results[-1]}"
if self.results
f"\n\nPrevious output: {self.result}"
if self.result
else ""
)
)
result = agent.run(
self.description, *args, **self.kwargs
)
self.result = self.agent.run(*self.args, **self.kwargs)
else:
result = agent(self.description, *args, **self.kwargs)
self.results.append(result)
args = [result]
self.history.append(result)
self.result = self.agent(*self.args, **self.kwargs)
self.history.append(self.result)

@ -108,3 +108,36 @@ def test_task_execute_with_mocked_agents(task, mocker):
parent_results = {}
task.execute(parent_results)
assert len(task.results) == 5
def test_task_creation():
agent = Agent()
task = Task(id="1", task="Task1", result=None, agents=[agent])
assert task.id == "1"
assert task.task == "Task1"
assert task.result is None
assert task.agents == [agent]
def test_task_with_dependencies():
agent = Agent()
task = Task(id="2", task="Task2", result=None, agents=[agent], dependencies=["Task1"])
assert task.dependencies == ["Task1"]
def test_task_with_args():
agent = Agent()
task = Task(id="3", task="Task3", result=None, agents=[agent], args=["arg1", "arg2"])
assert task.args == ["arg1", "arg2"]
def test_task_with_kwargs():
agent = Agent()
task = Task(id="4", task="Task4", result=None, agents=[agent], kwargs={"kwarg1": "value1"})
assert task.kwargs == {"kwarg1": "value1"}
# ... continue creating tests for different scenarios
# Test execute method
def test_execute():
agent = Agent()
task = Task(id="5", task="Task5", result=None, agents=[agent])
# Assuming execute method returns True on successful execution
assert task.execute() == True
Loading…
Cancel
Save