Merge branch 'kyegomez:master' into master

pull/681/head
evelynmitchell 1 month ago committed by GitHub
commit a444440117
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

@ -22,4 +22,4 @@ jobs:
- run: ruff format . - run: ruff format .
- run: ruff check --fix . - run: ruff check --fix .
- uses: autofix-ci/action@dd55f44df8f7cdb7a6bf74c78677eb8acd40cd0a - uses: autofix-ci/action@ff86a557419858bb967097bfc916833f5647fa8c

@ -0,0 +1,43 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
#
# This workflow file requires a free account on Bearer.com to manage findings, notifications and more.
# See https://docs.bearer.com/guides/bearer-cloud/
name: Bearer
on:
push:
branches: ["master" ]
pull_request:
# The branches below must be a subset of the branches above
branches: ["master"]
schedule:
- cron: '24 22 * * 6'
permissions:
contents: read # for actions/checkout to fetch code
security-events: write # for github/codeql-action/upload-sarif to upload SARIF results
actions: read # only required for a private repository by github/codeql-action/upload-sarif to get the Action run status
jobs:
bearer:
runs-on: ubuntu-latest
steps:
# Checkout project source
- uses: actions/checkout@v4
# Scan code using Bearer CLI
- name: Run Report
id: report
uses: bearer/bearer-action@828eeb928ce2f4a7ca5ed57fb8b59508cb8c79bc
with:
api-key: ${{ secrets.BEARER_TOKEN }}
format: sarif
output: results.sarif
exit-code: 0
# Upload SARIF file generated in previous step
- name: Upload SARIF file
uses: github/codeql-action/upload-sarif@v3
with:
sarif_file: results.sarif

@ -0,0 +1,39 @@
# Dependency Review Action
#
# This Action will scan dependency manifest files that change as part of a Pull Request,
# surfacing known-vulnerable versions of the packages declared or updated in the PR.
# Once installed, if the workflow run is marked as required, PRs introducing known-vulnerable
# packages will be blocked from merging.
#
# Source repository: https://github.com/actions/dependency-review-action
# Public documentation: https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/about-dependency-review#dependency-review-enforcement
name: 'Dependency review'
on:
pull_request:
branches: [ "master" ]
# If using a dependency submission action in this workflow this permission will need to be set to:
#
# permissions:
# contents: write
#
# https://docs.github.com/en/enterprise-cloud@latest/code-security/supply-chain-security/understanding-your-software-supply-chain/using-the-dependency-submission-api
permissions:
contents: read
# Write permissions for pull-requests are required for using the `comment-summary-in-pr` option, comment out if you aren't using this option
pull-requests: write
jobs:
dependency-review:
runs-on: ubuntu-latest
steps:
- name: 'Checkout repository'
uses: actions/checkout@v4
- name: 'Dependency Review'
uses: actions/dependency-review-action@v4
# Commonly enabled options, see https://github.com/actions/dependency-review-action#configuration-options for all available options.
with:
comment-summary-in-pr: always
# fail-on-severity: moderate
# deny-licenses: GPL-1.0-or-later, LGPL-2.0-or-later
# retry-on-snapshot-warnings: true

@ -0,0 +1,18 @@
name: Docker Image CI
on:
push:
branches: [ "master" ]
pull_request:
branches: [ "master" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build the Docker image
run: docker build . --file Dockerfile --tag my-image-name:$(date +%s)

@ -0,0 +1,46 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
# This workflow integrates Pyre with GitHub's
# Code Scanning feature.
#
# Pyre is a performant type checker for Python compliant with
# PEP 484. Pyre can analyze codebases with millions of lines
# of code incrementally providing instantaneous feedback
# to developers as they write code.
#
# See https://pyre-check.org
name: Pyre
on:
workflow_dispatch:
push:
branches: [ "master" ]
pull_request:
branches: [ "master" ]
permissions:
contents: read
jobs:
pyre:
permissions:
actions: read
contents: read
security-events: write
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Run Pyre
uses: facebook/pyre-action@60697a7858f7cc8470d8cc494a3cf2ad6b06560d
with:
# To customize these inputs:
# See https://github.com/facebook/pyre-action#inputs
repo-directory: './'
requirements-path: 'requirements.txt'

@ -0,0 +1,50 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
# This workflow integrates Python Static Analyzer (Pysa) with
# GitHub's Code Scanning feature.
#
# Python Static Analyzer (Pysa) is a security-focused static
# analysis tool that tracks flows of data from where they
# originate to where they terminate in a dangerous location.
#
# See https://pyre-check.org/docs/pysa-basics/
name: Pysa
on:
workflow_dispatch:
push:
branches: [ "master" ]
pull_request:
branches: [ "master" ]
schedule:
- cron: '43 5 * * 3'
permissions:
contents: read
jobs:
pysa:
permissions:
actions: read
contents: read
security-events: write
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Run Pysa
uses: facebook/pysa-action@f46a63777e59268613bd6e2ff4e29f144ca9e88b
with:
# To customize these inputs:
# See https://github.com/facebook/pysa-action#inputs
repo-directory: './'
requirements-path: 'requirements.txt'
infer-types: true
include-default-sapp-filters: true

@ -0,0 +1,34 @@
name: Python Package using Conda
on: [push]
jobs:
build-linux:
runs-on: ubuntu-latest
strategy:
max-parallel: 5
steps:
- uses: actions/checkout@v4
- name: Set up Python 3.10
uses: actions/setup-python@v3
with:
python-version: '3.10'
- name: Add conda to system path
run: |
# $CONDA is an environment variable pointing to the root of the miniconda directory
echo $CONDA/bin >> $GITHUB_PATH
- name: Install dependencies
run: |
conda env update --file environment.yml --name base
- name: Lint with flake8
run: |
conda install flake8
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- name: Test with pytest
run: |
conda install pytest
pytest

@ -0,0 +1,49 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
# This workflow file requires a free account on Semgrep.dev to
# manage rules, file ignores, notifications, and more.
#
# See https://semgrep.dev/docs
name: Semgrep
on:
push:
branches: [ "master" ]
pull_request:
# The branches below must be a subset of the branches above
branches: [ "master" ]
schedule:
- cron: '19 7 * * 3'
permissions:
contents: read
jobs:
semgrep:
permissions:
contents: read # for actions/checkout to fetch code
security-events: write # for github/codeql-action/upload-sarif to upload SARIF results
actions: read # only required for a private repository by github/codeql-action/upload-sarif to get the Action run status
name: Scan
runs-on: ubuntu-latest
steps:
# Checkout project source
- uses: actions/checkout@v4
# Scan code using project's configuration on https://semgrep.dev/manage
- uses: returntocorp/semgrep-action@fcd5ab7459e8d91cb1777481980d1b18b4fc6735
with:
publishToken: ${{ secrets.SEMGREP_APP_TOKEN }}
publishDeployment: ${{ secrets.SEMGREP_DEPLOYMENT_ID }}
generateSarif: "1"
# Upload SARIF file generated in previous step
- name: Upload SARIF file
uses: github/codeql-action/upload-sarif@v3
with:
sarif_file: semgrep.sarif
if: always()

@ -0,0 +1,48 @@
# This workflow uses actions that are not certified by GitHub.
# They are provided by a third-party and are governed by
# separate terms of service, privacy policy, and support
# documentation.
name: trivy
on:
push:
branches: [ "master" ]
pull_request:
# The branches below must be a subset of the branches above
branches: [ "master" ]
schedule:
- cron: '31 0 * * 5'
permissions:
contents: read
jobs:
build:
permissions:
contents: read # for actions/checkout to fetch code
security-events: write # for github/codeql-action/upload-sarif to upload SARIF results
actions: read # only required for a private repository by github/codeql-action/upload-sarif to get the Action run status
name: Build
runs-on: "ubuntu-20.04"
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Build an image from Dockerfile
run: |
docker build -t docker.io/my-organization/my-app:${{ github.sha }} .
- name: Run Trivy vulnerability scanner
uses: aquasecurity/trivy-action@7b7aa264d83dc58691451798b4d117d53d21edfe
with:
image-ref: 'docker.io/my-organization/my-app:${{ github.sha }}'
format: 'template'
template: '@/contrib/sarif.tpl'
output: 'trivy-results.sarif'
severity: 'CRITICAL,HIGH'
- name: Upload Trivy scan results to GitHub Security tab
uses: github/codeql-action/upload-sarif@v3
with:
sarif_file: 'trivy-results.sarif'

3
.gitignore vendored

@ -8,7 +8,8 @@ audio/
video/ video/
artifacts_three artifacts_three
dataframe/ dataframe/
.ruff_cache
.pytest_cache
static/generated static/generated
runs runs
Financial-Analysis-Agent_state.json Financial-Analysis-Agent_state.json

@ -81,9 +81,10 @@ Refer to our documentation for production grade implementation details.
## Install 💻 ## Install 💻
Install the following packages with copy and paste
```bash ```bash
$ pip3 install -U swarms $ pip3 install -U swarms swarm-models swarms-memory
``` ```
@ -113,15 +114,37 @@ Here are some example scripts to get you started. For more comprehensive documen
| Swarms Examples | A collection of simple examples to demonstrate Swarms capabilities. | Basic Usage | [https://github.com/The-Swarm-Corporation/swarms-examples?tab=readme-ov-file](https://github.com/The-Swarm-Corporation/swarms-examples?tab=readme-ov-file) | | Swarms Examples | A collection of simple examples to demonstrate Swarms capabilities. | Basic Usage | [https://github.com/The-Swarm-Corporation/swarms-examples?tab=readme-ov-file](https://github.com/The-Swarm-Corporation/swarms-examples?tab=readme-ov-file) |
| Cookbook | A comprehensive guide with recipes for various use cases and scenarios. | Advanced Usage | [https://github.com/The-Swarm-Corporation/Cookbook](https://github.com/The-Swarm-Corporation/Cookbook) | | Cookbook | A comprehensive guide with recipes for various use cases and scenarios. | Advanced Usage | [https://github.com/The-Swarm-Corporation/Cookbook](https://github.com/The-Swarm-Corporation/Cookbook) |
--- ---
## `Agent` Class ## `Agent` Class
The `Agent` class is a fundamental component of the Swarms framework, designed to execute tasks autonomously. It fuses llms, tools and long-term memory capabilities to create a full stack agent. The `Agent` class is highly customizable, allowing for fine-grained control over its behavior and interactions. The `Agent` class is a fundamental component of the Swarms framework, designed to execute tasks autonomously. It fuses llms, tools and long-term memory capabilities to create a full stack agent. The `Agent` class is highly customizable, allowing for fine-grained control over its behavior and interactions.
### `run` Method ### `run` Method
The `run` method is the primary entry point for executing tasks with an `Agent` instance. It accepts a task string as the main input task and processes it according to the agent's configuration. And, it can also accept an `img` parameter such as `img="image_filepath.png` to process images if you have a VLM The `run` method is the primary entry point for executing tasks with an `Agent` instance. It accepts a task string as the main input task and processes it according to the agent's configuration. And, it can also accept an `img` parameter such as `img="image_filepath.png` to process images if you have a VLM attached such as `GPT4VisionAPI`
## Simple Example
```python
from swarms import Agent
agent = Agent(
agent_name="Stock-Analysis-Agent",
model_name="gpt-4o-mini",
max_loops="auto",
interactive=True,
streaming_on=True,
)
agent.run("What is the current market trend for tech stocks?")
```
### Settings and Customization ### Settings and Customization
The `Agent` class offers a range of settings to tailor its behavior to specific needs. Some key settings include: The `Agent` class offers a range of settings to tailor its behavior to specific needs. Some key settings include:
@ -146,28 +169,15 @@ The `Agent` class offers a range of settings to tailor its behavior to specific
```python ```python
import os import os
from swarms import Agent from swarms import Agent
from swarm_models import OpenAIChat
from swarms.prompts.finance_agent_sys_prompt import ( from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT, FINANCIAL_AGENT_SYS_PROMPT,
) )
from dotenv import load_dotenv
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize the agent # Initialize the agent
agent = Agent( agent = Agent(
agent_name="Financial-Analysis-Agent", agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT, system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o-mini",
max_loops=1, max_loops=1,
autosave=True, autosave=True,
dashboard=False, dashboard=False,
@ -189,11 +199,10 @@ agent.run(
``` ```
----- -----
### Integrating RAG with Swarms for Enhanced Long-Term Memory ### Integrating RAG with Swarms for Enhanced Long-Term Memory
`Agent` equipped with quasi-infinite long term memory using RAG (Relational Agent Graph) for advanced document understanding, analysis, and retrieval capabilities. `Agent` equipped with quasi-infinite long term memory using RAG (Relational Agent Graph) for advanced document understanding, analysis, and retrieval capabilities.
**Mermaid Diagram for RAG Integration** **Mermaid Diagram for RAG Integration**
```mermaid ```mermaid
graph TD graph TD
@ -205,8 +214,11 @@ graph TD
F --> G[Return Output] F --> G[Return Output]
``` ```
**Step 1: Initialize the ChromaDB Client**
```python ```python
from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
import os import os
from swarms_memory import ChromaDB from swarms_memory import ChromaDB
@ -217,29 +229,13 @@ chromadb = ChromaDB(
output_dir="finance_agent_rag", # Directory for storing RAG data output_dir="finance_agent_rag", # Directory for storing RAG data
# docs_folder="artifacts", # Uncomment and specify the folder containing your documents # docs_folder="artifacts", # Uncomment and specify the folder containing your documents
) )
```
**Step 2: Define the Model**
```python
from swarm_models import Anthropic
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
# Define the Anthropic model for language processing
model = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"))
```
**Step 3: Initialize the Agent with RAG**
```python
from swarms import Agent
# Initialize the agent with RAG capabilities # Initialize the agent with RAG capabilities
agent = Agent( agent = Agent(
agent_name="Financial-Analysis-Agent", agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT, system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
agent_description="Agent creates a comprehensive financial analysis", agent_description="Agent creates a comprehensive financial analysis",
llm=model, model_name="gpt-4o-mini",
max_loops="auto", # Auto-adjusts loops based on task complexity max_loops="auto", # Auto-adjusts loops based on task complexity
autosave=True, # Automatically saves agent state autosave=True, # Automatically saves agent state
dashboard=False, # Disables dashboard for this example dashboard=False, # Disables dashboard for this example
@ -356,7 +352,6 @@ The following is an example of an agent that intakes a pydantic basemodel and ou
```python ```python
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from swarms import Agent from swarms import Agent
from swarm_models import Anthropic
# Initialize the schema for the person's information # Initialize the schema for the person's information
@ -388,7 +383,7 @@ agent = Agent(
), ),
# Set the tool schema to the JSON string -- this is the key difference # Set the tool schema to the JSON string -- this is the key difference
tool_schema=tool_schema, tool_schema=tool_schema,
llm=Anthropic(), model_name="gpt-4o",
max_loops=3, max_loops=3,
autosave=True, autosave=True,
dashboard=False, dashboard=False,
@ -467,7 +462,7 @@ from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms import ToolAgent from swarms import ToolAgent
from swarms.utils.json_utils import base_model_to_json from swarms.tools.json_utils import base_model_to_json
# Load the pre-trained model and tokenizer # Load the pre-trained model and tokenizer
model = AutoModelForCausalLM.from_pretrained( model = AutoModelForCausalLM.from_pretrained(
@ -516,87 +511,8 @@ print(f"Generated data: {generated_data}")
``` ```
## Integrating External Agents
Integrating external agents from other agent frameworks is easy with swarms.
Steps:
1. Create a new class that inherits `Agent`
2. Create a `.run(task: str) -> str` method that runs the agent and returns the response.
3. The new Agent must return a string of the response. But you may add additional methods to save the output to JSON.
### Griptape Example
For example, here's an example on how to create an agent from griptape.
Heres how you can create a custom **Griptape** agent that integrates with the **Swarms** framework by inheriting from the `Agent` class in **Swarms** and overriding the `run(task: str) -> str` method.
```python
from swarms import (
Agent as SwarmsAgent,
) # Import the base Agent class from Swarms
from griptape.structures import Agent as GriptapeAgent
from griptape.tools import (
WebScraperTool,
FileManagerTool,
PromptSummaryTool,
)
# Create a custom agent class that inherits from SwarmsAgent
class GriptapeSwarmsAgent(SwarmsAgent):
def __init__(self, *args, **kwargs):
# Initialize the Griptape agent with its tools
self.agent = GriptapeAgent(
input="Load {{ args[0] }}, summarize it, and store it in a file called {{ args[1] }}.",
tools=[
WebScraperTool(off_prompt=True),
PromptSummaryTool(off_prompt=True),
FileManagerTool(),
],
*args,
**kwargs,
# Add additional settings
)
# Override the run method to take a task and execute it using the Griptape agent
def run(self, task: str) -> str:
# Extract URL and filename from task (you can modify this parsing based on task structure)
url, filename = task.split(
","
) # Example of splitting task string
# Execute the Griptape agent with the task inputs
result = self.agent.run(url.strip(), filename.strip())
# Return the final result as a string
return str(result)
# Example usage:
griptape_swarms_agent = GriptapeSwarmsAgent()
output = griptape_swarms_agent.run(
"https://griptape.ai, griptape.txt"
)
print(output)
```
### Key Components:
1. **GriptapeSwarmsAgent**: A custom class that inherits from the `SwarmsAgent` class and integrates the Griptape agent.
2. **run(task: str) -> str**: A method that takes a task string, processes it (e.g., splitting into a URL and filename), and runs the Griptape agent with the provided inputs.
3. **Griptape Tools**: The tools integrated into the Griptape agent (e.g., `WebScraperTool`, `PromptSummaryTool`, `FileManagerTool`) allow for web scraping, summarization, and file management.
You can now easily plug this custom Griptape agent into the **Swarms Framework** and use it to run tasks!
## Understanding Swarms ## Understanding Swarms
### What is a Swarm?
A swarm refers to a group of more than two agents working collaboratively to achieve a common goal. These agents can be software entities, such as llms that interact with each other to perform complex tasks. The concept of a swarm is inspired by natural systems like ant colonies or bird flocks, where simple individual behaviors lead to complex group dynamics and problem-solving capabilities. A swarm refers to a group of more than two agents working collaboratively to achieve a common goal. These agents can be software entities, such as llms that interact with each other to perform complex tasks. The concept of a swarm is inspired by natural systems like ant colonies or bird flocks, where simple individual behaviors lead to complex group dynamics and problem-solving capabilities.
### How Swarm Architectures Facilitate Communication ### How Swarm Architectures Facilitate Communication
@ -609,9 +525,6 @@ Swarm architectures are designed to establish and manage communication between a
3. **Sequential Communication**: Sequential swarms process tasks in a linear order, where each agent's output becomes the input for the next agent. This ensures that tasks with dependencies are handled in the correct sequence, maintaining the integrity of the workflow. 3. **Sequential Communication**: Sequential swarms process tasks in a linear order, where each agent's output becomes the input for the next agent. This ensures that tasks with dependencies are handled in the correct sequence, maintaining the integrity of the workflow.
4. **Mesh Communication**: In mesh swarms, agents are fully connected, allowing any agent to communicate with any other agent. This setup provides high flexibility and redundancy, making it ideal for complex systems requiring dynamic interactions.
5. **Federated Communication**: Federated swarms involve multiple independent swarms that collaborate by sharing information and results. Each swarm operates autonomously but can contribute to a larger task, enabling distributed problem-solving across different nodes.
Swarm architectures leverage these communication patterns to ensure that agents work together efficiently, adapting to the specific requirements of the task at hand. By defining clear communication protocols and interaction models, swarm architectures enable the seamless orchestration of multiple agents, leading to enhanced performance and problem-solving capabilities. Swarm architectures leverage these communication patterns to ensure that agents work together efficiently, adapting to the specific requirements of the task at hand. By defining clear communication protocols and interaction models, swarm architectures enable the seamless orchestration of multiple agents, leading to enhanced performance and problem-solving capabilities.
@ -889,14 +802,12 @@ The `run` method returns the final output after all agents have processed the in
from swarms import Agent, AgentRearrange from swarms import Agent, AgentRearrange
from swarm_models import Anthropic
# Initialize the director agent # Initialize the director agent
director = Agent( director = Agent(
agent_name="Director", agent_name="Director",
system_prompt="Directs the tasks for the workers", system_prompt="Directs the tasks for the workers",
llm=Anthropic(), model_name="claude-2",
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -912,7 +823,7 @@ director = Agent(
worker1 = Agent( worker1 = Agent(
agent_name="Worker1", agent_name="Worker1",
system_prompt="Generates a transcript for a youtube video on what swarms are", system_prompt="Generates a transcript for a youtube video on what swarms are",
llm=Anthropic(), model_name="claude-2",
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -927,7 +838,7 @@ worker1 = Agent(
worker2 = Agent( worker2 = Agent(
agent_name="Worker2", agent_name="Worker2",
system_prompt="Summarizes the transcript generated by Worker1", system_prompt="Summarizes the transcript generated by Worker1",
llm=Anthropic(), model_name="claude-2",
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -1081,20 +992,12 @@ The `run` method returns the final output after all agents have processed the in
```python ```python
import os import os
from swarm_models import OpenAIChat
from swarms import Agent, MixtureOfAgents from swarms import Agent, MixtureOfAgents
api_key = os.getenv("OPENAI_API_KEY")
# Create individual agents with the OpenAIChat model
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4", temperature=0.1
)
# Agent 1: Financial Statement Analyzer # Agent 1: Financial Statement Analyzer
agent1 = Agent( agent1 = Agent(
agent_name="FinancialStatementAnalyzer", agent_name="FinancialStatementAnalyzer",
llm=model, model_name="gpt-4o",
system_prompt="""You are a Financial Statement Analyzer specializing in 10-K SEC reports. Your primary focus is on analyzing the financial statements, including the balance sheet, income statement, and cash flow statement. system_prompt="""You are a Financial Statement Analyzer specializing in 10-K SEC reports. Your primary focus is on analyzing the financial statements, including the balance sheet, income statement, and cash flow statement.
Key responsibilities: Key responsibilities:
@ -1120,7 +1023,7 @@ When analyzing, consider industry standards and compare the company's performanc
# Agent 2: Risk Assessment Specialist # Agent 2: Risk Assessment Specialist
agent2 = Agent( agent2 = Agent(
agent_name="RiskAssessmentSpecialist", agent_name="RiskAssessmentSpecialist",
llm=model, model_name="gpt-4o",
system_prompt="""You are a Risk Assessment Specialist focusing on 10-K SEC reports. Your primary role is to identify, analyze, and evaluate potential risks disclosed in the report. system_prompt="""You are a Risk Assessment Specialist focusing on 10-K SEC reports. Your primary role is to identify, analyze, and evaluate potential risks disclosed in the report.
Key responsibilities: Key responsibilities:
@ -1147,7 +1050,7 @@ Your analysis should provide a comprehensive overview of the company's risk land
# Agent 3: Business Strategy Evaluator # Agent 3: Business Strategy Evaluator
agent3 = Agent( agent3 = Agent(
agent_name="BusinessStrategyEvaluator", agent_name="BusinessStrategyEvaluator",
llm=model, model_name="gpt-4o",
system_prompt="""You are a Business Strategy Evaluator specializing in analyzing 10-K SEC reports. Your focus is on assessing the company's overall strategy, market position, and future outlook. system_prompt="""You are a Business Strategy Evaluator specializing in analyzing 10-K SEC reports. Your focus is on assessing the company's overall strategy, market position, and future outlook.
Key responsibilities: Key responsibilities:
@ -1175,7 +1078,7 @@ Your analysis should provide insights into the company's strategic direction, it
# Aggregator Agent # Aggregator Agent
aggregator_agent = Agent( aggregator_agent = Agent(
agent_name="10KReportAggregator", agent_name="10KReportAggregator",
llm=model, model_name="gpt-4o",
system_prompt="""You are the 10-K Report Aggregator, responsible for synthesizing and summarizing the analyses provided by the Financial Statement Analyzer, Risk Assessment Specialist, and Business Strategy Evaluator. Your goal is to create a comprehensive, coherent, and insightful summary of the 10-K SEC report. system_prompt="""You are the 10-K Report Aggregator, responsible for synthesizing and summarizing the analyses provided by the Financial Statement Analyzer, Risk Assessment Specialist, and Business Strategy Evaluator. Your goal is to create a comprehensive, coherent, and insightful summary of the 10-K SEC report.
Key responsibilities: Key responsibilities:
@ -1265,9 +1168,8 @@ The `run` method returns a dictionary containing the outputs of each agent that
```python ```python
import os import os
from swarms import Agent from swarms import Agent, SpreadSheetSwarm
from swarm_models import OpenAIChat from swarm_models import OpenAIChat
from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm
# Define custom system prompts for each social media platform # Define custom system prompts for each social media platform
TWITTER_AGENT_SYS_PROMPT = """ TWITTER_AGENT_SYS_PROMPT = """
@ -1290,20 +1192,12 @@ EMAIL_AGENT_SYS_PROMPT = """
You are an Email marketing expert specializing in real estate. Your task is to write compelling email campaigns to promote properties, focusing on personalization, subject lines, and effective call-to-action strategies to drive conversions. You are an Email marketing expert specializing in real estate. Your task is to write compelling email campaigns to promote properties, focusing on personalization, subject lines, and effective call-to-action strategies to drive conversions.
""" """
# Example usage:
api_key = os.getenv("OPENAI_API_KEY")
# Model
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize your agents for different social media platforms # Initialize your agents for different social media platforms
agents = [ agents = [
Agent( Agent(
agent_name="Twitter-RealEstate-Agent", agent_name="Twitter-RealEstate-Agent",
system_prompt=TWITTER_AGENT_SYS_PROMPT, system_prompt=TWITTER_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="twitter_realestate_agent.json", saved_state_path="twitter_realestate_agent.json",
@ -1313,7 +1207,7 @@ agents = [
Agent( Agent(
agent_name="Instagram-RealEstate-Agent", agent_name="Instagram-RealEstate-Agent",
system_prompt=INSTAGRAM_AGENT_SYS_PROMPT, system_prompt=INSTAGRAM_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="instagram_realestate_agent.json", saved_state_path="instagram_realestate_agent.json",
@ -1323,7 +1217,7 @@ agents = [
Agent( Agent(
agent_name="Facebook-RealEstate-Agent", agent_name="Facebook-RealEstate-Agent",
system_prompt=FACEBOOK_AGENT_SYS_PROMPT, system_prompt=FACEBOOK_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="facebook_realestate_agent.json", saved_state_path="facebook_realestate_agent.json",
@ -1333,7 +1227,7 @@ agents = [
Agent( Agent(
agent_name="LinkedIn-RealEstate-Agent", agent_name="LinkedIn-RealEstate-Agent",
system_prompt=LINKEDIN_AGENT_SYS_PROMPT, system_prompt=LINKEDIN_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="linkedin_realestate_agent.json", saved_state_path="linkedin_realestate_agent.json",
@ -1343,7 +1237,7 @@ agents = [
Agent( Agent(
agent_name="Email-RealEstate-Agent", agent_name="Email-RealEstate-Agent",
system_prompt=EMAIL_AGENT_SYS_PROMPT, system_prompt=EMAIL_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="email_realestate_agent.json", saved_state_path="email_realestate_agent.json",
@ -1452,7 +1346,7 @@ The `run` method returns the output from the most relevant agent selected based
```python ```python
from swarms.structs.tree_swarm import TreeAgent, Tree, ForestSwarm from swarms import TreeAgent, Tree, ForestSwarm
# Create agents with varying system prompts and dynamically generated distances/keywords # Create agents with varying system prompts and dynamically generated distances/keywords
agents_tree1 = [ agents_tree1 = [

@ -0,0 +1,629 @@
import os
from fastapi import (
FastAPI,
HTTPException,
status,
Query,
BackgroundTasks,
)
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, Field
from typing import Optional, Dict, Any, List
from loguru import logger
import uvicorn
from datetime import datetime, timedelta
from uuid import UUID, uuid4
from enum import Enum
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor
import traceback
from swarms import Agent
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure Loguru
logger.add(
"logs/api_{time}.log",
rotation="500 MB",
retention="10 days",
level="INFO",
format="{time} {level} {message}",
backtrace=True,
diagnose=True,
)
class AgentStatus(str, Enum):
"""Enum for agent status."""
IDLE = "idle"
PROCESSING = "processing"
ERROR = "error"
MAINTENANCE = "maintenance"
class AgentConfig(BaseModel):
"""Configuration model for creating a new agent."""
agent_name: str = Field(..., description="Name of the agent")
model_name: str = Field(
...,
description="Name of the llm you want to use provided by litellm",
)
description: str = Field(
default="", description="Description of the agent's purpose"
)
system_prompt: str = Field(
..., description="System prompt for the agent"
)
model_name: str = Field(
default="gpt-4", description="Model name to use"
)
temperature: float = Field(
default=0.1,
ge=0.0,
le=2.0,
description="Temperature for the model",
)
max_loops: int = Field(
default=1, ge=1, description="Maximum number of loops"
)
autosave: bool = Field(
default=True, description="Enable autosave"
)
dashboard: bool = Field(
default=False, description="Enable dashboard"
)
verbose: bool = Field(
default=True, description="Enable verbose output"
)
dynamic_temperature_enabled: bool = Field(
default=True, description="Enable dynamic temperature"
)
user_name: str = Field(
default="default_user", description="Username for the agent"
)
retry_attempts: int = Field(
default=1, ge=1, description="Number of retry attempts"
)
context_length: int = Field(
default=200000, ge=1000, description="Context length"
)
output_type: str = Field(
default="string", description="Output type (string or json)"
)
streaming_on: bool = Field(
default=False, description="Enable streaming"
)
tags: List[str] = Field(
default_factory=list,
description="Tags for categorizing the agent",
)
class AgentUpdate(BaseModel):
"""Model for updating agent configuration."""
description: Optional[str] = None
system_prompt: Optional[str] = None
temperature: Optional[float] = None
max_loops: Optional[int] = None
tags: Optional[List[str]] = None
status: Optional[AgentStatus] = None
class AgentSummary(BaseModel):
"""Summary model for agent listing."""
agent_id: UUID
agent_name: str
description: str
created_at: datetime
last_used: datetime
total_completions: int
tags: List[str]
status: AgentStatus
class AgentMetrics(BaseModel):
"""Model for agent performance metrics."""
total_completions: int
average_response_time: float
error_rate: float
last_24h_completions: int
total_tokens_used: int
uptime_percentage: float
success_rate: float
peak_tokens_per_minute: int
class CompletionRequest(BaseModel):
"""Model for completion requests."""
prompt: str = Field(..., description="The prompt to process")
agent_id: UUID = Field(..., description="ID of the agent to use")
max_tokens: Optional[int] = Field(
None, description="Maximum tokens to generate"
)
temperature_override: Optional[float] = None
stream: bool = Field(
default=False, description="Enable streaming response"
)
class CompletionResponse(BaseModel):
"""Model for completion responses."""
agent_id: UUID
response: str
metadata: Dict[str, Any]
timestamp: datetime
processing_time: float
token_usage: Dict[str, int]
class AgentStore:
"""Enhanced store for managing agents."""
def __init__(self):
self.agents: Dict[UUID, Agent] = {}
self.agent_metadata: Dict[UUID, Dict[str, Any]] = {}
self.executor = ThreadPoolExecutor(max_workers=4)
self._ensure_directories()
def _ensure_directories(self):
"""Ensure required directories exist."""
Path("logs").mkdir(exist_ok=True)
Path("states").mkdir(exist_ok=True)
async def create_agent(self, config: AgentConfig) -> UUID:
"""Create a new agent with the given configuration."""
try:
agent = Agent(
agent_name=config.agent_name,
system_prompt=config.system_prompt,
model_name=config.model_name,
max_loops=config.max_loops,
autosave=config.autosave,
dashboard=config.dashboard,
verbose=config.verbose,
dynamic_temperature_enabled=config.dynamic_temperature_enabled,
saved_state_path=f"states/{config.agent_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
user_name=config.user_name,
retry_attempts=config.retry_attempts,
context_length=config.context_length,
return_step_meta=True,
output_type="str",
streaming_on=config.streaming_on,
)
agent_id = uuid4()
self.agents[agent_id] = agent
self.agent_metadata[agent_id] = {
"description": config.description,
"created_at": datetime.utcnow(),
"last_used": datetime.utcnow(),
"total_completions": 0,
"tags": config.tags,
"total_tokens": 0,
"error_count": 0,
"response_times": [],
"status": AgentStatus.IDLE,
"start_time": datetime.utcnow(),
"downtime": timedelta(),
"successful_completions": 0,
}
logger.info(f"Created agent with ID: {agent_id}")
return agent_id
except Exception as e:
logger.error(f"Error creating agent: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to create agent: {str(e)}",
)
async def get_agent(self, agent_id: UUID) -> Agent:
"""Retrieve an agent by ID."""
agent = self.agents.get(agent_id)
if not agent:
logger.error(f"Agent not found: {agent_id}")
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Agent {agent_id} not found",
)
return agent
async def update_agent(
self, agent_id: UUID, update: AgentUpdate
) -> None:
"""Update agent configuration."""
agent = await self.get_agent(agent_id)
metadata = self.agent_metadata[agent_id]
if update.system_prompt:
agent.system_prompt = update.system_prompt
if update.temperature is not None:
agent.llm.temperature = update.temperature
if update.max_loops is not None:
agent.max_loops = update.max_loops
if update.tags is not None:
metadata["tags"] = update.tags
if update.description is not None:
metadata["description"] = update.description
if update.status is not None:
metadata["status"] = update.status
if update.status == AgentStatus.MAINTENANCE:
metadata["downtime"] += (
datetime.utcnow() - metadata["last_used"]
)
logger.info(f"Updated agent {agent_id}")
async def list_agents(
self,
tags: Optional[List[str]] = None,
status: Optional[AgentStatus] = None,
) -> List[AgentSummary]:
"""List all agents, optionally filtered by tags and status."""
summaries = []
for agent_id, agent in self.agents.items():
metadata = self.agent_metadata[agent_id]
# Apply filters
if tags and not any(
tag in metadata["tags"] for tag in tags
):
continue
if status and metadata["status"] != status:
continue
summaries.append(
AgentSummary(
agent_id=agent_id,
agent_name=agent.agent_name,
description=metadata["description"],
created_at=metadata["created_at"],
last_used=metadata["last_used"],
total_completions=metadata["total_completions"],
tags=metadata["tags"],
status=metadata["status"],
)
)
return summaries
async def get_agent_metrics(self, agent_id: UUID) -> AgentMetrics:
"""Get performance metrics for an agent."""
metadata = self.agent_metadata[agent_id]
response_times = metadata["response_times"]
# Calculate metrics
total_time = datetime.utcnow() - metadata["start_time"]
uptime = total_time - metadata["downtime"]
uptime_percentage = (
uptime.total_seconds() / total_time.total_seconds()
) * 100
success_rate = (
metadata["successful_completions"]
/ metadata["total_completions"]
* 100
if metadata["total_completions"] > 0
else 0
)
return AgentMetrics(
total_completions=metadata["total_completions"],
average_response_time=(
sum(response_times) / len(response_times)
if response_times
else 0
),
error_rate=(
metadata["error_count"]
/ metadata["total_completions"]
if metadata["total_completions"] > 0
else 0
),
last_24h_completions=sum(
1
for t in response_times
if (datetime.utcnow() - t).days < 1
),
total_tokens_used=metadata["total_tokens"],
uptime_percentage=uptime_percentage,
success_rate=success_rate,
peak_tokens_per_minute=max(
metadata.get("tokens_per_minute", [0])
),
)
async def clone_agent(
self, agent_id: UUID, new_name: str
) -> UUID:
"""Clone an existing agent with a new name."""
original_agent = await self.get_agent(agent_id)
original_metadata = self.agent_metadata[agent_id]
config = AgentConfig(
agent_name=new_name,
description=f"Clone of {original_agent.agent_name}",
system_prompt=original_agent.system_prompt,
model_name=original_agent.llm.model_name,
temperature=original_agent.llm.temperature,
max_loops=original_agent.max_loops,
tags=original_metadata["tags"],
)
return await self.create_agent(config)
async def delete_agent(self, agent_id: UUID) -> None:
"""Delete an agent."""
if agent_id not in self.agents:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Agent {agent_id} not found",
)
# Clean up any resources
agent = self.agents[agent_id]
if agent.autosave and os.path.exists(agent.saved_state_path):
os.remove(agent.saved_state_path)
del self.agents[agent_id]
del self.agent_metadata[agent_id]
logger.info(f"Deleted agent {agent_id}")
async def process_completion(
self,
agent: Agent,
prompt: str,
agent_id: UUID,
max_tokens: Optional[int] = None,
temperature_override: Optional[float] = None,
) -> CompletionResponse:
"""Process a completion request using the specified agent."""
start_time = datetime.utcnow()
metadata = self.agent_metadata[agent_id]
try:
# Update agent status
metadata["status"] = AgentStatus.PROCESSING
metadata["last_used"] = start_time
# Apply temporary overrides if specified
original_temp = agent.llm.temperature
if temperature_override is not None:
agent.llm.temperature = temperature_override
# Process the completion
response = agent.run(prompt)
# Reset overrides
if temperature_override is not None:
agent.llm.temperature = original_temp
# Update metrics
processing_time = (
datetime.utcnow() - start_time
).total_seconds()
metadata["response_times"].append(processing_time)
metadata["total_completions"] += 1
metadata["successful_completions"] += 1
# Estimate token usage (this is a rough estimate)
prompt_tokens = len(prompt.split()) * 1.3
completion_tokens = len(response.split()) * 1.3
total_tokens = int(prompt_tokens + completion_tokens)
metadata["total_tokens"] += total_tokens
# Update tokens per minute tracking
current_minute = datetime.utcnow().replace(
second=0, microsecond=0
)
if "tokens_per_minute" not in metadata:
metadata["tokens_per_minute"] = {}
metadata["tokens_per_minute"][current_minute] = (
metadata["tokens_per_minute"].get(current_minute, 0)
+ total_tokens
)
return CompletionResponse(
agent_id=agent_id,
response=response,
metadata={
"agent_name": agent.agent_name,
"model_name": agent.llm.model_name,
"temperature": agent.llm.temperature,
},
timestamp=datetime.utcnow(),
processing_time=processing_time,
token_usage={
"prompt_tokens": int(prompt_tokens),
"completion_tokens": int(completion_tokens),
"total_tokens": total_tokens,
},
)
except Exception as e:
metadata["error_count"] += 1
metadata["status"] = AgentStatus.ERROR
logger.error(
f"Error in completion processing: {str(e)}\n{traceback.format_exc()}"
)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing completion: {str(e)}",
)
finally:
metadata["status"] = AgentStatus.IDLE
class SwarmsAPI:
"""Enhanced API class for Swarms agent integration."""
def __init__(self):
self.app = FastAPI(
title="Swarms Agent API",
description="Production-grade API for Swarms agent interaction",
version="1.0.0",
docs_url="/v1/docs",
redoc_url="/v1/redoc",
)
self.store = AgentStore()
# Configure CORS
self.app.add_middleware(
CORSMiddleware,
allow_origins=[
"*"
], # Configure appropriately for production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
self._setup_routes()
def _setup_routes(self):
"""Set up API routes."""
@self.app.post("/v1/agent", response_model=Dict[str, UUID])
async def create_agent(config: AgentConfig):
"""Create a new agent with the specified configuration."""
agent_id = await self.store.create_agent(config)
return {"agent_id": agent_id}
@self.app.get("/v1/agents", response_model=List[AgentSummary])
async def list_agents(
tags: Optional[List[str]] = Query(None),
status: Optional[AgentStatus] = None,
):
"""List all agents, optionally filtered by tags and status."""
return await self.store.list_agents(tags, status)
@self.app.patch(
"/v1/agent/{agent_id}", response_model=Dict[str, str]
)
async def update_agent(agent_id: UUID, update: AgentUpdate):
"""Update an existing agent's configuration."""
await self.store.update_agent(agent_id, update)
return {"status": "updated"}
@self.app.get(
"/v1/agent/{agent_id}/metrics",
response_model=AgentMetrics,
)
async def get_agent_metrics(agent_id: UUID):
"""Get performance metrics for a specific agent."""
return await self.store.get_agent_metrics(agent_id)
@self.app.post(
"/v1/agent/{agent_id}/clone",
response_model=Dict[str, UUID],
)
async def clone_agent(agent_id: UUID, new_name: str):
"""Clone an existing agent with a new name."""
new_id = await self.store.clone_agent(agent_id, new_name)
return {"agent_id": new_id}
@self.app.delete("/v1/agent/{agent_id}")
async def delete_agent(agent_id: UUID):
"""Delete an agent."""
await self.store.delete_agent(agent_id)
return {"status": "deleted"}
@self.app.post(
"/v1/agent/completions", response_model=CompletionResponse
)
async def create_completion(
request: CompletionRequest,
background_tasks: BackgroundTasks,
):
"""Process a completion request with the specified agent."""
try:
agent = await self.store.get_agent(request.agent_id)
# Process completion
response = await self.store.process_completion(
agent,
request.prompt,
request.agent_id,
request.max_tokens,
request.temperature_override,
)
# Schedule background cleanup
background_tasks.add_task(
self._cleanup_old_metrics, request.agent_id
)
return response
except Exception as e:
logger.error(f"Error processing completion: {str(e)}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Error processing completion: {str(e)}",
)
@self.app.get("/v1/agent/{agent_id}/status")
async def get_agent_status(agent_id: UUID):
"""Get the current status of an agent."""
metadata = self.store.agent_metadata.get(agent_id)
if not metadata:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Agent {agent_id} not found",
)
return {
"agent_id": agent_id,
"status": metadata["status"],
"last_used": metadata["last_used"],
"total_completions": metadata["total_completions"],
"error_count": metadata["error_count"],
}
async def _cleanup_old_metrics(self, agent_id: UUID):
"""Clean up old metrics data to prevent memory bloat."""
metadata = self.store.agent_metadata.get(agent_id)
if metadata:
# Keep only last 24 hours of response times
cutoff = datetime.utcnow() - timedelta(days=1)
metadata["response_times"] = [
t
for t in metadata["response_times"]
if isinstance(t, (int, float))
and t > cutoff.timestamp()
]
# Clean up old tokens per minute data
if "tokens_per_minute" in metadata:
metadata["tokens_per_minute"] = {
k: v
for k, v in metadata["tokens_per_minute"].items()
if k > cutoff
}
def create_app() -> FastAPI:
"""Create and configure the FastAPI application."""
api = SwarmsAPI()
return api.app
if __name__ == "__main__":
# Configure uvicorn logging
logger.info("API Starting")
uvicorn.run(
"main:create_app",
host="0.0.0.0",
port=8000,
reload=True,
workers=4,
)

@ -0,0 +1,107 @@
import requests
from loguru import logger
import time
# Configure loguru
logger.add(
"api_tests_{time}.log",
rotation="100 MB",
level="DEBUG",
format="{time} {level} {message}",
)
BASE_URL = "http://localhost:8000/v1"
def test_create_agent():
"""Test creating a new agent."""
logger.info("Testing agent creation")
payload = {
"agent_name": "Test Agent",
"system_prompt": "You are a helpful assistant",
"model_name": "gpt-4",
"description": "Test agent",
"tags": ["test"],
}
response = requests.post(f"{BASE_URL}/agent", json=payload)
logger.debug(f"Create response: {response.json()}")
if response.status_code == 200:
logger.success("Successfully created agent")
return response.json()["agent_id"]
else:
logger.error(f"Failed to create agent: {response.text}")
return None
def test_list_agents():
"""Test listing all agents."""
logger.info("Testing agent listing")
response = requests.get(f"{BASE_URL}/agents")
logger.debug(f"List response: {response.json()}")
if response.status_code == 200:
logger.success(f"Found {len(response.json())} agents")
else:
logger.error(f"Failed to list agents: {response.text}")
def test_completion(agent_id):
"""Test running a completion."""
logger.info("Testing completion")
payload = {
"prompt": "What is the weather like today?",
"agent_id": agent_id,
}
response = requests.post(
f"{BASE_URL}/agent/completions", json=payload
)
logger.debug(f"Completion response: {response.json()}")
if response.status_code == 200:
logger.success("Successfully got completion")
else:
logger.error(f"Failed to get completion: {response.text}")
def test_delete_agent(agent_id):
"""Test deleting an agent."""
logger.info("Testing agent deletion")
response = requests.delete(f"{BASE_URL}/agent/{agent_id}")
logger.debug(f"Delete response: {response.json()}")
if response.status_code == 200:
logger.success("Successfully deleted agent")
else:
logger.error(f"Failed to delete agent: {response.text}")
def run_tests():
"""Run all tests in sequence."""
logger.info("Starting API tests")
# Create agent and get ID
agent_id = test_create_agent()
if not agent_id:
logger.error("Cannot continue tests without agent ID")
return
# Wait a bit for agent to be ready
time.sleep(1)
# Run other tests
test_list_agents()
test_completion(agent_id)
test_delete_agent(agent_id)
logger.info("Tests completed")
if __name__ == "__main__":
run_tests()

@ -0,0 +1,898 @@
from enum import Enum
from typing import Union, Optional
import io
from PIL import Image
import numpy as np
import torch
import struct
from enum import auto
from typing import List, Dict, Tuple
import wave
from dataclasses import dataclass
import torch.nn as nn
import torch.nn.functional as F
from loguru import logger
from einops import rearrange
from torch import Tensor
@dataclass
class ModelConfig:
"""Configuration for the enhanced BytePredictor model."""
vocab_size: int = 256 # Standard byte range
hidden_size: int = 1024
num_layers: int = 12
num_key_value_heads: int = 8 # For multi-query attention
num_query_heads: int = 32 # More query heads than kv heads
dropout: float = 0.1
max_sequence_length: int = 8192
rope_theta: float = 10000.0
layer_norm_eps: float = 1e-5
vocab_parallel: bool = False
qk_norm: bool = True
qk_norm_scale: float = None
attention_bias: bool = False
class MultiQueryAttention(nn.Module):
"""Fixed Multi-Query Attention implementation."""
def __init__(self, config: ModelConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.num_query_heads = config.num_query_heads
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // config.num_query_heads
self.qk_scale = config.qk_norm_scale or (self.head_dim**-0.5)
self.q_proj = nn.Linear(
config.hidden_size, config.num_query_heads * self.head_dim
)
self.k_proj = nn.Linear(
config.hidden_size,
config.num_key_value_heads * self.head_dim,
)
self.v_proj = nn.Linear(
config.hidden_size,
config.num_key_value_heads * self.head_dim,
)
self.o_proj = nn.Linear(
config.num_query_heads * self.head_dim, config.hidden_size
)
self.qk_norm = config.qk_norm
if self.qk_norm:
self.q_norm = nn.LayerNorm(self.head_dim)
self.k_norm = nn.LayerNorm(self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, seq_length, _ = hidden_states.shape
# Project and reshape
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Reshape to [seq_len, batch, heads, head_dim]
q = q.view(
batch_size,
seq_length,
self.num_query_heads,
self.head_dim,
).permute(1, 0, 2, 3)
k = k.view(
batch_size,
seq_length,
self.num_key_value_heads,
self.head_dim,
).permute(1, 0, 2, 3)
v = v.view(
batch_size,
seq_length,
self.num_key_value_heads,
self.head_dim,
).permute(1, 0, 2, 3)
# Apply rotary embeddings
# q, k = self.rotary(q, k, seq_length)
# Apply QK normalization if enabled
if self.qk_norm:
q = self.q_norm(q)
k = self.k_norm(k)
# Handle MQA head expansion
if self.num_key_value_heads != self.num_query_heads:
k = k.repeat_interleave(
self.num_query_heads // self.num_key_value_heads,
dim=2,
)
v = v.repeat_interleave(
self.num_query_heads // self.num_key_value_heads,
dim=2,
)
# Compute attention
# Reshape for matmul: [batch, heads, seq_length, head_dim]
q = q.permute(1, 2, 0, 3)
k = k.permute(1, 2, 0, 3)
v = v.permute(1, 2, 0, 3)
attn_weights = (
torch.matmul(q, k.transpose(-2, -1)) * self.qk_scale
)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1)
output = torch.matmul(attn_weights, v)
# Reshape back to [batch, seq_length, hidden_size]
output = (
output.transpose(1, 2)
.contiguous()
.view(batch_size, seq_length, -1)
)
output = self.o_proj(output)
return output
class EnhancedBytePredictor(nn.Module):
"""Enhanced byte prediction model with state-of-the-art features."""
def __init__(self, config: ModelConfig):
super().__init__()
self.config = config
# Token embeddings
self.tok_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size
)
# Transformer layers
self.layers = nn.ModuleList(
[
nn.ModuleDict(
{
"attention": MultiQueryAttention(config),
"attention_norm": nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
),
"feed_forward": nn.Sequential(
nn.Linear(
config.hidden_size,
4 * config.hidden_size,
),
nn.GELU(),
nn.Linear(
4 * config.hidden_size,
config.hidden_size,
),
),
"feed_forward_norm": nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
),
}
)
for _ in range(config.num_layers)
]
)
self.norm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.output = nn.Linear(
config.hidden_size, config.vocab_size, bias=False
)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module: nn.Module) -> None:
"""Initialize weights with scaled normal distribution."""
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass of the model.
Args:
input_ids: Tensor of shape (batch_size, sequence_length)
attention_mask: Optional attention mask
Returns:
Tensor of logits with shape (batch_size, sequence_length, vocab_size)
"""
hidden_states = self.tok_embeddings(input_ids)
# Create causal mask if needed
if attention_mask is None:
attention_mask = torch.triu(
torch.ones(
(input_ids.size(1), input_ids.size(1)),
device=input_ids.device,
dtype=torch.bool,
),
diagonal=1,
)
attention_mask = attention_mask.masked_fill(
attention_mask == 1, float("-inf")
)
# Apply transformer layers
for layer in self.layers:
# Attention block
hidden_states = hidden_states + layer["attention"](
layer["attention_norm"](hidden_states), attention_mask
)
# Feed-forward block
hidden_states = hidden_states + layer["feed_forward"](
layer["feed_forward_norm"](hidden_states)
)
hidden_states = self.norm(hidden_states)
logits = self.output(hidden_states)
return logits
def compute_loss(
self,
input_ids: torch.Tensor,
target_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Compute cross entropy loss.
Args:
input_ids: Input token ids
target_ids: Target token ids
attention_mask: Optional attention mask
Returns:
Loss value
"""
logits = self(input_ids, attention_mask)
loss = F.cross_entropy(
rearrange(logits, "b s v -> (b s) v"),
rearrange(target_ids, "b s -> (b s)"),
)
return loss
@torch.no_grad()
def _generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: float = 1.0,
) -> torch.Tensor:
"""
Generate new tokens autoregressively.
Args:
input_ids: Starting sequence
max_new_tokens: Number of tokens to generate
temperature: Sampling temperature
top_k: K for top-k sampling
top_p: P for nucleus sampling
repetition_penalty: Penalty for repeating tokens
Returns:
Generated sequence
"""
batch_size, seq_length = input_ids.shape
generated = input_ids.clone()
for _ in range(max_new_tokens):
if generated.size(1) >= self.config.max_sequence_length:
break
# Forward pass
logits = self(generated)[:, -1, :]
# Apply temperature
logits = logits / temperature
# Apply repetition penalty
if repetition_penalty != 1.0:
for i in range(batch_size):
for token_id in set(generated[i].tolist()):
logits[i, token_id] /= repetition_penalty
# Apply top-k sampling
if top_k is not None:
indices_to_remove = (
logits
< torch.topk(logits, top_k)[0][..., -1, None]
)
logits[indices_to_remove] = float("-inf")
# Apply nucleus (top-p) sampling
if top_p is not None:
sorted_logits, sorted_indices = torch.sort(
logits, descending=True
)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1
)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = (
sorted_indices_to_remove[..., :-1].clone()
)
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = torch.zeros_like(
logits, dtype=torch.bool
)
indices_to_remove.scatter_(
1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = float("-inf")
# Sample next token
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append to sequence
generated = torch.cat([generated, next_token], dim=1)
return generated
def generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: float = 1.0,
):
tensor_data = self._generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
return tensor_to_data(tensor_data)
# import torch
# from typing import Optional
class DataType(Enum):
TEXT = "text"
IMAGE = "image"
AUDIO = "audio"
VIDEO = "video"
BINARY = "binary"
class ByteDetokenizer:
"""Utility class for converting model output bytes back to original data formats."""
@staticmethod
def tensor_to_bytes(tensor: torch.Tensor) -> bytes:
"""Convert model output tensor to bytes."""
# Convert logits/probabilities to byte values
if tensor.dim() > 1:
# If we have logits, convert to byte indices
byte_indices = tensor.argmax(dim=-1)
else:
byte_indices = tensor
# Convert to Python bytes
return bytes(
byte_indices.cpu().numpy().astype(np.uint8).tolist()
)
@staticmethod
def decode_text(byte_sequence: bytes) -> str:
"""Convert bytes to text."""
try:
return byte_sequence.decode("utf-8")
except UnicodeDecodeError:
# Try with error handling
return byte_sequence.decode("utf-8", errors="replace")
@staticmethod
def decode_image(
byte_sequence: bytes,
mode: str = "RGB",
size: Optional[tuple] = None,
) -> Image.Image:
"""Convert bytes to image.
Args:
byte_sequence: Raw image bytes
mode: Image mode (RGB, RGBA, L, etc.)
size: Optional tuple of (width, height)
"""
try:
# Try to load as-is first (for standard image formats)
img = Image.open(io.BytesIO(byte_sequence))
if size:
img = img.resize(size)
return img
except:
# If failed, assume raw pixel data
if not size:
# Try to determine size from byte count
pixel_count = len(byte_sequence) // len(mode)
size = (
int(np.sqrt(pixel_count)),
int(np.sqrt(pixel_count)),
)
# Convert raw bytes to pixel array
pixels = np.frombuffer(byte_sequence, dtype=np.uint8)
pixels = pixels.reshape((*size, len(mode)))
return Image.fromarray(pixels, mode=mode)
@staticmethod
def decode_audio(
byte_sequence: bytes,
sample_rate: int = 44100,
channels: int = 2,
sample_width: int = 2,
) -> np.ndarray:
"""Convert bytes to audio samples.
Args:
byte_sequence: Raw audio bytes
sample_rate: Audio sample rate in Hz
channels: Number of audio channels
sample_width: Bytes per sample (1, 2, or 4)
"""
# Determine format string based on sample width
format_str = {
1: "b", # signed char
2: "h", # short
4: "i", # int
}[sample_width]
# Unpack bytes to samples
sample_count = len(byte_sequence) // (channels * sample_width)
samples = struct.unpack(
f"<{sample_count * channels}{format_str}", byte_sequence
)
# Reshape to [samples, channels]
return np.array(samples).reshape(-1, channels)
def decode_data(
self,
model_output: Union[torch.Tensor, bytes],
data_type: DataType,
**kwargs,
) -> Union[str, Image.Image, np.ndarray, bytes]:
"""Main method to decode model output to desired format.
Args:
model_output: Either tensor from model or raw bytes
data_type: Type of data to decode to
**kwargs: Additional parameters for specific decoders
Returns:
Decoded data in specified format
"""
# Convert tensor to bytes if needed
if isinstance(model_output, torch.Tensor):
byte_sequence = self.tensor_to_bytes(model_output)
else:
byte_sequence = model_output
# Decode based on type
if data_type == DataType.TEXT:
return self.decode_text(byte_sequence)
elif data_type == DataType.IMAGE:
return self.decode_image(byte_sequence, **kwargs)
elif data_type == DataType.AUDIO:
return self.decode_audio(byte_sequence, **kwargs)
elif data_type == DataType.VIDEO:
raise NotImplementedError(
"Video decoding not yet implemented"
)
else: # BINARY
return byte_sequence
# Usage example
class Modality(Enum):
TEXT = auto()
IMAGE = auto()
AUDIO = auto()
VIDEO = auto()
BINARY = auto()
MULTIMODAL = auto()
@dataclass
class ModalityInfo:
"""Information about detected modality."""
modality: Modality
confidence: float
metadata: Dict[str, any]
sub_modalities: Optional[List["ModalityInfo"]] = None
class ModalityDetector:
"""Detects data modalities from byte sequences."""
# Common file signatures (magic numbers)
SIGNATURES = {
# Images
b"\xFF\xD8\xFF": "JPEG",
b"\x89PNG\r\n\x1a\n": "PNG",
b"GIF87a": "GIF",
b"GIF89a": "GIF",
b"RIFF": "WEBP",
# Audio
b"RIFF....WAVE": "WAV",
b"ID3": "MP3",
b"\xFF\xFB": "MP3",
b"OggS": "OGG",
# Video
b"\x00\x00\x00\x18ftypmp42": "MP4",
b"\x00\x00\x00\x1Cftypav01": "MP4",
b"\x1A\x45\xDF\xA3": "WEBM",
}
def __init__(self):
self.magic = magic.Magic(mime=True)
def _check_text_probability(self, data: bytes) -> float:
"""Estimate probability that data is text."""
# Check if data is valid UTF-8
try:
data.decode("utf-8")
# Count printable ASCII characters
printable = sum(1 for b in data if 32 <= b <= 126)
return printable / len(data)
except UnicodeDecodeError:
return 0.0
def _check_image_validity(self, data: bytes) -> Tuple[bool, Dict]:
"""Check if data is a valid image and extract metadata."""
try:
with io.BytesIO(data) as bio:
img = Image.open(bio)
return True, {
"format": img.format,
"size": img.size,
"mode": img.mode,
}
except:
return False, {}
def _check_audio_validity(self, data: bytes) -> Tuple[bool, Dict]:
"""Check if data is valid audio and extract metadata."""
try:
with io.BytesIO(data) as bio:
# Try to parse as WAV
with wave.open(bio) as wav:
return True, {
"channels": wav.getnchannels(),
"sample_width": wav.getsampwidth(),
"framerate": wav.getframerate(),
"frames": wav.getnframes(),
}
except:
# Check for other audio signatures
for sig in [b"ID3", b"\xFF\xFB", b"OggS"]:
if data.startswith(sig):
return True, {"format": "compressed_audio"}
return False, {}
def _detect_boundaries(
self, data: bytes
) -> List[Tuple[int, int, Modality]]:
"""Detect boundaries between different modalities in the data."""
boundaries = []
current_pos = 0
while current_pos < len(data):
# Look for known signatures
for sig, format_type in self.SIGNATURES.items():
if data[current_pos:].startswith(sig):
# Found a signature, determine its length
if format_type in ["JPEG", "PNG", "GIF"]:
# Find image end
try:
with io.BytesIO(
data[current_pos:]
) as bio:
img = Image.open(bio)
img.verify()
size = bio.tell()
boundaries.append(
(
current_pos,
current_pos + size,
Modality.IMAGE,
)
)
current_pos += size
continue
except:
pass
# Check for text sections
text_prob = self._check_text_probability(
data[current_pos : current_pos + 1024]
)
if text_prob > 0.8:
# Look for end of text section
end_pos = current_pos + 1
while end_pos < len(data):
if (
self._check_text_probability(
data[end_pos : end_pos + 32]
)
< 0.5
):
break
end_pos += 1
boundaries.append(
(current_pos, end_pos, Modality.TEXT)
)
current_pos = end_pos
continue
current_pos += 1
return boundaries
def detect_modality(self, data: bytes) -> ModalityInfo:
"""Detect modality of byte sequence."""
# First check for single modality
mime_type = self.magic.from_buffer(data)
# Check text
text_prob = self._check_text_probability(data)
if text_prob > 0.9:
return ModalityInfo(
modality=Modality.TEXT,
confidence=text_prob,
metadata={"mime_type": mime_type},
)
# Check image
is_image, image_meta = self._check_image_validity(data)
if is_image:
return ModalityInfo(
modality=Modality.IMAGE,
confidence=1.0,
metadata={**image_meta, "mime_type": mime_type},
)
# Check audio
is_audio, audio_meta = self._check_audio_validity(data)
if is_audio:
return ModalityInfo(
modality=Modality.AUDIO,
confidence=1.0,
metadata={**audio_meta, "mime_type": mime_type},
)
# Check for multimodal content
boundaries = self._detect_boundaries(data)
if len(boundaries) > 1:
sub_modalities = []
for start, end, modality in boundaries:
chunk_data = data[start:end]
sub_info = self.detect_modality(chunk_data)
if sub_info.modality != Modality.BINARY:
sub_modalities.append(sub_info)
if sub_modalities:
return ModalityInfo(
modality=Modality.MULTIMODAL,
confidence=0.8,
metadata={"mime_type": "multipart/mixed"},
sub_modalities=sub_modalities,
)
# Default to binary
return ModalityInfo(
modality=Modality.BINARY,
confidence=0.5,
metadata={"mime_type": mime_type},
)
def split_modalities(
self, data: bytes
) -> List[Tuple[Modality, bytes, Dict]]:
"""Split multimodal data into separate modalities."""
boundaries = self._detect_boundaries(data)
result = []
for start, end, modality in boundaries:
chunk = data[start:end]
info = self.detect_modality(chunk)
result.append((modality, chunk, info.metadata))
return result
class AutoDetectBytesDecoder:
"""Decoder that automatically detects and decodes different modalities."""
def __init__(self):
self.detector = ModalityDetector()
self.text_decoder = ByteDetokenizer() # From previous example
def decode(
self, data: bytes
) -> Union[str, Image.Image, np.ndarray, List[any]]:
"""Automatically detect and decode byte sequence."""
info = self.detector.detect_modality(data)
if info.modality == Modality.MULTIMODAL:
# Handle multimodal content
parts = self.detector.split_modalities(data)
return [
self.decode(chunk) for modality, chunk, _ in parts
]
if info.modality == Modality.TEXT:
return self.text_decoder.decode_text(data)
elif info.modality == Modality.IMAGE:
return self.text_decoder.decode_image(data)
elif info.modality == Modality.AUDIO:
return self.text_decoder.decode_audio(data)
else:
return data
# # Example usage
# def demo_auto_detection():
# """Demonstrate auto modality detection."""
# # Create mixed content
# text = "Hello, World!".encode('utf-8')
# # Create a small test image
# img = Image.new('RGB', (100, 100), color='red')
# img_bytes = io.BytesIO()
# img.save(img_bytes, format='PNG')
# # Combine into multimodal content
# mixed_content = text + img_bytes.getvalue()
# # Initialize decoder
# decoder = AutoDetectBytesDecoder()
# # Decode
# result = decoder.decode(mixed_content)
# if isinstance(result, list):
# print("Detected multimodal content:")
# for i, part in enumerate(result):
# print(f"Part {i+1}: {type(part)}")
# if __name__ == "__main__":
# demo_auto_detection()
def tensor_to_data(tensor: Tensor):
byte_sequence = ByteDetokenizer.tensor_to_bytes(tensor)
# Initialize auto-detector
decoder = AutoDetectBytesDecoder()
# Decode with automatic detection
result = decoder.decode(byte_sequence)
return result
def demo_byte_predictor():
"""Demo with smaller dimensions to test."""
# Initialize model configuration with adjusted dimensions
config = ModelConfig(
vocab_size=256,
hidden_size=128, # Smaller for testing
num_layers=2, # Fewer layers for testing
num_key_value_heads=2,
num_query_heads=4,
dropout=0.1,
max_sequence_length=1024,
)
# Initialize model
model = EnhancedBytePredictor(config)
logger.info("Model initialized")
# Move to GPU if available
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
model = model.to(device)
logger.info(f"Using device: {device}")
# Create sample input data
batch_size = 2
seq_length = 16 # Shorter sequence for testing
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seq_length), device=device
)
logger.info(f"Created input tensor of shape: {input_ids.shape}")
# Test forward pass
try:
logits = model(input_ids)
logger.info(
f"Forward pass successful! Output shape: {logits.shape}"
)
# Test loss computation
target_ids = torch.randint(
0,
config.vocab_size,
(batch_size, seq_length),
device=device,
)
loss = model.compute_loss(input_ids, target_ids)
logger.info(
f"Loss computation successful! Loss value: {loss.item():.4f}"
)
# Test generation
prompt = torch.randint(
0,
config.vocab_size,
(1, 4), # Very short prompt for testing
device=device,
)
generated = model.generate(
prompt, max_new_tokens=8, temperature=0.8, top_k=50
)
logger.info(
f"Generation successful! Generated shape: {generated.shape}"
)
except Exception as e:
logger.error(f"Error during execution: {str(e)}")
raise
if __name__ == "__main__":
# Set up logging
# logger.remove() # Remove default handler
# logger.add(sys.stderr, format="<green>{time:HH:mm:ss}</green> | {level} | {message}")
demo_byte_predictor()

@ -8,7 +8,7 @@
display: table; display: table;
} }
/* Dark mode */ /* Dark mode
[data-md-color-scheme="slate"] { [data-md-color-scheme="slate"] {
--md-default-bg-color: black; --md-default-bg-color: black;
} }
@ -24,4 +24,4 @@
.md-header.md-header--shadow { .md-header.md-header--shadow {
color: black; color: black;
} } */

@ -157,6 +157,7 @@ nav:
# - Build Custom Agents: "swarms/structs/diy_your_own_agent.md" # - Build Custom Agents: "swarms/structs/diy_your_own_agent.md"
- Agent Architecture: "swarms/framework/agents_explained.md" - Agent Architecture: "swarms/framework/agents_explained.md"
- Complete Agent API: "swarms/structs/agent.md" - Complete Agent API: "swarms/structs/agent.md"
- OpenAI Assistant: "swarms/agents/openai_assistant.md"
- Create and Run Agents from YAML: "swarms/agents/create_agents_yaml.md" - Create and Run Agents from YAML: "swarms/agents/create_agents_yaml.md"
- Integrating External Agents from Griptape, Langchain, etc: "swarms/agents/external_party_agents.md" - Integrating External Agents from Griptape, Langchain, etc: "swarms/agents/external_party_agents.md"
- Tools: - Tools:

@ -0,0 +1,135 @@
# OpenAI Assistant
The OpenAI Assistant class provides a wrapper around OpenAI's Assistants API, integrating it with the swarms framework.
## Overview
The `OpenAIAssistant` class allows you to create and interact with OpenAI Assistants, providing a simple interface for:
- Creating assistants with specific roles and capabilities
- Adding custom functions that the assistant can call
- Managing conversation threads
- Handling tool calls and function execution
- Getting responses from the assistant
## Insstallation
```bash
pip install swarms
```
## Basic Usage
```python
from swarms import OpenAIAssistant
#Create an assistant
assistant = OpenAIAssistant(
name="Math Tutor",
instructions="You are a helpful math tutor.",
model="gpt-4o",
tools=[{"type": "code_interpreter"}]
)
#Run a Task
response = assistant.run("Solve the equation: 3x + 11 = 14")
print(response)
# Continue the conversation in the same thread
follow_up = assistant.run("Now explain how you solved it")
print(follow_up)
```
## Function Calling
The assistant supports custom function integration:
```python
def get_weather(location: str, unit: str = "celsius") -> str:
# Mock weather function
return f"The weather in {location} is 22 degrees {unit}"
# Add function to assistant
assistant.add_function(
description="Get the current weather in a location",
parameters={
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "City name"
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
"default": "celsius"
}
},
"required": ["location"]
}
)
```
## API Reference
### Constructor
```python
OpenAIAssistant(
name: str,
instructions: Optional[str] = None,
model: str = "gpt-4o",
tools: Optional[List[Dict[str, Any]]] = None,
file_ids: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
)
```
### Methods
#### run(task: str) -> str
Sends a task to the assistant and returns its response. The conversation thread is maintained between calls.
#### add_function(func: Callable, description: str, parameters: Dict[str, Any]) -> None
Adds a callable function that the assistant can use during conversations.
#### add_message(content: str, file_ids: Optional[List[str]] = None) -> None
Adds a message to the current conversation thread.
## Error Handling
The assistant implements robust error handling:
- Retries on rate limits
- Graceful handling of API errors
- Clear error messages for debugging
- Status monitoring for runs and completions
## Best Practices
1. Thread Management
- Use the same assistant instance for related conversations
- Create new instances for unrelated tasks
- Monitor thread status during long-running operations
2. Function Integration
- Keep functions simple and focused
- Provide clear descriptions and parameter schemas
- Handle errors gracefully in custom functions
- Test functions independently before integration
3. Performance
- Reuse assistant instances when possible
- Monitor and handle rate limits appropriately
- Use appropriate polling intervals for status checks
- Consider implementing timeouts for long-running operations
## References
- [OpenAI Assistants API Documentation](https://platform.openai.com/docs/assistants/overview)
- [OpenAI Function Calling Guide](https://platform.openai.com/docs/guides/function-calling)
- [OpenAI Rate Limits](https://platform.openai.com/docs/guides/rate-limits)

@ -127,7 +127,7 @@ Before you begin, ensure you have the following installed:
poetry install --extras "desktop" poetry install --extras "desktop"
``` ```
=== "Using Docker" === "Using Docker COMING SOON [DOES NOT WORK YET]"
Docker is an excellent option for creating isolated and reproducible environments, suitable for both development and production. Docker is an excellent option for creating isolated and reproducible environments, suitable for both development and production.

@ -204,3 +204,63 @@ await workflow.add(tasks=[task_1, task_2])
results = await workflow.run() results = await workflow.run()
print(results) # Output: ["Task 1 Completed", "Task 2 Completed"] print(results) # Output: ["Task 1 Completed", "Task 2 Completed"]
``` ```
# Async Workflow
The AsyncWorkflow allows multiple agents to process tasks concurrently using Python's asyncio framework.
## Usage Example
```python
import asyncio
from swarms import Agent, AsyncWorkflow
from swarm_models import OpenAIChat
# Initialize model
model = OpenAIChat(
openai_api_key="your-api-key",
model_name="gpt-4",
temperature=0.7
)
# Create agents
agents = [
Agent(
agent_name=f"Analysis-Agent-{i}",
llm=model,
max_loops=1,
dashboard=False,
verbose=True,
)
for i in range(3)
]
# Initialize workflow
workflow = AsyncWorkflow(
name="Analysis-Workflow",
agents=agents,
max_workers=3,
verbose=True
)
# Run workflow
async def main():
task = "Analyze the potential impact of AI on healthcare"
results = await workflow.run(task)
for i, result in enumerate(results):
print(f"Agent {i} result: {result}")
# Execute
asyncio.run(main())
```
## Parameters
| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `name` | str | "AsyncWorkflow" | Name of the workflow |
| `agents` | List[Agent] | None | List of agents to execute tasks |
| `max_workers` | int | 5 | Maximum number of concurrent workers |
| `dashboard` | bool | False | Enable/disable dashboard |
| `autosave` | bool | False | Enable/disable autosaving results |
| `verbose` | bool | False | Enable/disable verbose logging |

@ -1,4 +0,0 @@
timestamp,transaction_hash,from_address,to_address,value_eth,gas_used,gas_price_gwei,block_number,analysis
2024-11-27T13:50:35,ddbb665bc75fe848e7ce3d3ce1729243e92466c38ca407deccce8bf629987652,0x267be1C1D684F78cb4F6a176C4911b741E4Ffdc0,0xa40dFEE99E1C85DC97Fdc594b16A460717838703,3200.0,21000,19.968163737,21281878,"Transaction Analysis: This transaction represents a significant transfer of value in the Ethereum network with 3200 ETH (~$6.72 million USD at the current rate) moved from one address to another. It is essential to note that this transaction did not involve smart contract interaction, suggesting it could be a straightforward transfer of funds rather than part of a more complex operation. Looking at the broader market context, large transactions like this can potentially indicate major investment activities or redistribution of assets, which can have ripple effects in the market. If this transaction is part of a larger pattern of significant transfers, it could suggest substantial liquidity moving in the Ethereum ecosystem, possibly affecting the ETH prices. From a DeFi point of view, since there's no contract interaction, it's difficult to infer any direct implications. However, given the substantial value involved, it could be a step in preparation for involvement in DeFi protocols or a move from one DeFi platform to another by a large investor. The transaction fee paid, calculated from the given Gas Used and Gas Price, appears to be within reasonable range. This suggests that the transaction was not rushed and that the sender was willing to wait for this transaction to be confirmed, which might hint towards the non-urgent nature of the transaction. As for potential risk factors or security concerns, the transaction itself appears to be standard and doesn't raise any immediate red flags. However, the parties involved should always be cautious about the address security, maintaining privacy, and avoiding social engineering attacks. For traders and investors, this transaction can be interpreted as a potential bullish sign if it signifies increased liquidity and investment in the Ethereum market, especially if it's followed by similar large transfers. However, due to the anonymous nature of the transaction, it's critical to combine this with other market indicators and not to rely solely on transaction analysis for investment decisions."
2024-11-27T13:52:23,b98bcbf6d57a158b67a126d8f023766e03fb15c3e74becc1189d4244fda61a13,0xEae7380dD4CeF6fbD1144F49E4D1e6964258A4F4,0x28C6c06298d514Db089934071355E5743bf21d60,401.99463589018103,21000,14.978063737,21281887,"Ethereum-Analysis-Agent: Transaction Analysis: This transaction marks a significant transfer of 401.99 ETH, approximately $845,000 at the current rate. The transaction did not involve any smart contract interaction, suggesting a simple fund transfer rather than a complicated operation or interaction with a DeFi protocol. From a broader market perspective, this transaction is meaningful but not as potentially impactful as larger transactions. It can nonetheless be part of a larger pattern of asset movement within the Ethereum ecosystem. If this transaction is part of larger investment activities, it could suggest an increase in demand for ETH and potentially impact its price. Without contract interaction, it's challenging to assess direct implications for DeFi protocols. However, the substantial ETH transfer could suggest a step towards participation in DeFi activities, or a movement of funds between different DeFi platforms. The transaction fee appears reasonable, given the Gas Used and Gas Price. This implies that the transaction wasn't urgent, and the sender was willing to wait for the transaction to be confirmed, indicating a non-critical movement of funds. In terms of security and risk factors, there are no immediate concerns from the transaction itself. Nevertheless, as with any crypto transaction, the parties involved should ensure secure storage of their keys, maintain privacy, and be wary of potential phishing or social engineering attacks. For traders and investors, this transaction could be seen as a bullish sign if it forms part of a trend of increased investment activities in the Ethereum market. However, it's important to remember that transaction analysis should be combined with other market indicators due to the anonymous nature of blockchain transactions."
2024-11-27T13:59:47,a985b74fd3dfee09cbe4a2e6890509e583a3f0ce13f68c98e82996e0f66428be,0xf7858Da8a6617f7C6d0fF2bcAFDb6D2eeDF64840,0xA294cCa691e4C83B1fc0c8d63D9a3eeF0A196DE1,136.0668,494665.408728,3635.46,21000,18.866443971,21281923,"1. MARKET CONTEXT The transaction of 136.07 ETH, equivalent to $494,665.41, is a significant movement in the Ethereum market. However, compared to the daily trading volume of Ethereum, which often exceeds billions of dollars, this transaction is not large enough to significantly impact the ETH price on its own. 2. BEHAVIORAL ANALYSIS The transaction does not appear to be a protocol movement as there is no contract interaction involved. It could be a whale movement, given the substantial amount of ETH transferred. However, without additional information about the wallets involved, it's difficult to definitively determine the nature of the transaction. The gas price of 18.87 Gwei is relatively standard, suggesting that the transaction was not urgent or time-sensitive. 3. RISK & IMPLICATIONS The transaction does not show signs of market manipulation or unusual activity. The absence of contract interaction suggests that this transaction does not directly involve DeFi protocols, reducing the risk of smart contract vulnerabilities or DeFi-related risks. However, the large amount of ETH transferred could potentially influence market sentiment if it is part of a larger trend of similar transactions. 4. STRATEGIC INSIGHTS Traders should note this transaction as part of the broader market activity. While a single transaction of this size is unlikely to significantly impact the market, a series of similar transactions could indicate a larger trend. If this is part of a larger movement of ETH out of exchanges, it could suggest a decrease in selling pressure, which could be bullish for ETH. Conversely, if this is part of a larger movement into exchanges, it could indicate an increase in selling pressure, which could be bearish for ETH. Traders should monitor the market for further similar transactions to gain a better understanding of the potential market trends."
Can't render this file because it has a wrong number of fields in line 4.

@ -7,7 +7,7 @@ from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import ( from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT, FINANCIAL_AGENT_SYS_PROMPT,
) )
from async_executor import HighSpeedExecutor from new_features_examples.async_executor import HighSpeedExecutor
load_dotenv() load_dotenv()

@ -0,0 +1,188 @@
import json
import os
from contextlib import suppress
from typing import Any, Callable, Dict, Optional, Type, Union
from dotenv import load_dotenv
from pydantic import BaseModel, Field, ValidationError, create_model
from swarm_models.openai_function_caller import OpenAIFunctionCaller
class DynamicParser:
@staticmethod
def extract_fields(model: Type[BaseModel]) -> Dict[str, Any]:
return {
field_name: (field.annotation, ... if field.is_required() else None)
for field_name, field in model.model_fields.items()
}
@staticmethod
def create_partial_model(model: Type[BaseModel], data: Dict[str, Any]) -> Type[BaseModel]:
fields = {
field_name: (field.annotation, ... if field.is_required() else None)
for field_name, field in model.model_fields.items()
if field_name in data
}
return create_model(f"Partial{model.__name__}", **fields)
@classmethod
def parse(cls, data: Union[str, Dict[str, Any]], model: Type[BaseModel]) -> Optional[BaseModel]:
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
return None
# Try full model first
with suppress(ValidationError):
return model.model_validate(data)
# Create and try partial model
partial_model = cls.create_partial_model(model, data)
with suppress(ValidationError):
return partial_model.model_validate(data)
return None
load_dotenv()
# Define the Thoughts schema
class Thoughts(BaseModel):
text: str = Field(..., description="Current thoughts or observations regarding the task.")
reasoning: str = Field(..., description="Logical reasoning behind the thought process.")
plan: str = Field(..., description="A short bulleted list that conveys the immediate and long-term plan.")
criticism: str = Field(..., description="Constructive self-criticism to improve future responses.")
speak: str = Field(..., description="A concise summary of thoughts intended for the user.")
# Define the Command schema
class Command(BaseModel):
name: str = Field(..., description="Command name to execute from the provided list of commands.")
args: Dict[str, Any] = Field(..., description="Arguments required to execute the command.")
# Define the AgentResponse schema
class AgentResponse(BaseModel):
thoughts: Thoughts = Field(..., description="The agent's current thoughts and reasoning.")
command: Command = Field(..., description="The command to execute along with its arguments.")
# Define tool functions
def fluid_api_command(task: str):
"""Execute a fluid API request."""
# response = fluid_api_request(task)
print(response.model_dump_json(indent=4))
return response
def send_tweet_command(text: str):
"""Simulate sending a tweet."""
print(f"Tweet sent: {text}")
return {"status": "success", "message": f"Tweet sent: {text}"}
def do_nothing_command():
"""Do nothing."""
print("Doing nothing...")
return {"status": "success", "message": "No action taken."}
def task_complete_command(reason: str):
"""Mark the task as complete and provide a reason."""
print(f"Task completed: {reason}")
return {"status": "success", "message": f"Task completed: {reason}"}
# Dynamic command execution
def execute_command(name: str, args: Dict[str, Any]):
"""Dynamically execute a command based on its name and arguments."""
command_map: Dict[str, Callable] = {
"fluid_api": lambda **kwargs: fluid_api_command(task=kwargs.get("task")),
"send_tweet": lambda **kwargs: send_tweet_command(text=kwargs.get("text")),
"do_nothing": lambda **kwargs: do_nothing_command(),
"task_complete": lambda **kwargs: task_complete_command(reason=kwargs.get("reason")),
}
if name not in command_map:
raise ValueError(f"Unknown command: {name}")
# Execute the command with the provided arguments
return command_map[name](**args)
def parse_and_execute_command(response: Union[str, Dict[str, Any]], base_model: Type[BaseModel] = AgentResponse) -> Any:
"""Enhanced command parser with flexible input handling"""
parsed = DynamicParser.parse(response, base_model)
if not parsed:
raise ValueError("Failed to parse response")
if hasattr(parsed, 'command'):
command_name = parsed.command.name
command_args = parsed.command.args
return execute_command(command_name, command_args)
return parsed
ainame = "AutoAgent"
userprovided = "assistant"
SYSTEM_PROMPT = f"""
You are {ainame}, an advanced and autonomous {userprovided}.
Your role is to make decisions and complete tasks independently without seeking user assistance. Leverage your strengths as an LLM to solve tasks efficiently, adhering strictly to the commands and resources provided.
### GOALS:
1. {userprovided}
2. Execute tasks with precision and efficiency.
3. Ensure outputs are actionable and aligned with the user's objectives.
4. Continuously optimize task strategies for maximum effectiveness.
5. Maintain reliability and consistency in all responses.
### CONSTRAINTS:
1. Memory limit: ~4000 words for short-term memory. Save essential information to files immediately to avoid loss.
2. Independent decision-making: Do not rely on user assistance.
3. Exclusively use commands in double quotes (e.g., "command name").
4. Use subprocesses for commands that may take longer than a few minutes.
5. Ensure all outputs strictly adhere to the specified JSON response format.
### COMMANDS:
1. Fluid API: "fluid_api", args: "method": "<GET/POST/...>", "url": "<url>", "headers": "<headers>", "body": "<payload>"
18. Send Tweet: "send_tweet", args: "text": "<text>"
19. Do Nothing: "do_nothing", args:
20. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
### RESOURCES:
1. Internet access for real-time information and data gathering.
2. Long-term memory management for storing critical information.
3. Access to GPT-3.5-powered Agents for delegating tasks.
4. File handling capabilities for output storage and retrieval.
### PERFORMANCE EVALUATION:
1. Continuously analyze and reflect on actions to ensure optimal task completion.
2. Self-critique decisions and strategies constructively to identify areas for improvement.
3. Ensure every command serves a clear purpose and minimizes resource usage.
4. Complete tasks in the least number of steps, balancing speed and accuracy.
### RESPONSE FORMAT:
Always respond in a strict JSON format as described below. Ensure your responses can be parsed with Python's `json.loads`:
"""
# Initialize the OpenAIFunctionCaller
model = OpenAIFunctionCaller(
system_prompt=SYSTEM_PROMPT,
max_tokens=4000,
temperature=0.9,
base_model=AgentResponse, # Pass the Pydantic schema as the base model
parallel_tool_calls=False,
openai_api_key=os.getenv("OPENAI_API_KEY")
)
# Example usage
user_input = (
"Analyze the provided Python code for inefficiencies, generate suggestions for improvements, "
"and provide optimized code."
)
response = model.run(user_input)
response = parse_and_execute_command(response)
print(response)

File diff suppressed because it is too large Load Diff

@ -1,5 +1,5 @@
import os import os
from typing import List, Dict, Any, Optional, Callable from typing import List, Dict, Any, Optional, Callable, get_type_hints
from dataclasses import dataclass, field from dataclasses import dataclass, field
import json import json
from datetime import datetime from datetime import datetime
@ -111,6 +111,9 @@ class ExecutionContext:
history: List[Dict[str, Any]] = field(default_factory=list) history: List[Dict[str, Any]] = field(default_factory=list)
hints = get_type_hints(func)
class ToolAgent: class ToolAgent:
def __init__( def __init__(
self, self,

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "6.3.7" version = "6.4.7"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]
@ -61,7 +61,7 @@ torch = ">=2.1.1,<3.0"
transformers = ">= 4.39.0, <5.0.0" transformers = ">= 4.39.0, <5.0.0"
asyncio = ">=3.4.3,<4.0" asyncio = ">=3.4.3,<4.0"
toml = "*" toml = "*"
pypdf = "4.3.1" pypdf = "5.1.0"
loguru = "*" loguru = "*"
pydantic = "2.8.2" pydantic = "2.8.2"
tenacity = "*" tenacity = "*"
@ -86,7 +86,7 @@ swarms = "swarms.cli.main:main"
[tool.poetry.group.lint.dependencies] [tool.poetry.group.lint.dependencies]
black = ">=23.1,<25.0" black = ">=23.1,<25.0"
ruff = ">=0.5.1,<0.7.4" ruff = ">=0.5.1,<0.8.2"
types-toml = "^0.10.8.1" types-toml = "^0.10.8.1"
types-pytz = ">=2023.3,<2025.0" types-pytz = ">=2023.3,<2025.0"
types-chardet = "^5.0.4.6" types-chardet = "^5.0.4.6"

@ -5,7 +5,7 @@ asyncio>=3.4.3,<4.0
toml toml
pypdf==4.3.1 pypdf==4.3.1
ratelimit==2.2.1 ratelimit==2.2.1
loguru==0.7.2 loguru
pydantic==2.8.2 pydantic==2.8.2
tenacity tenacity
rich rich

@ -0,0 +1,7 @@
from swarms import Agent
Agent(
agent_name="Stock-Analysis-Agent",
model_name="gpt-4o-mini",
max_loops=1,
).run("What are 5 hft algorithms")

@ -0,0 +1,253 @@
import re
from dotenv import load_dotenv
from tenacity import retry, stop_after_attempt, wait_exponential
from swarms import Agent
from swarms.agents.create_agents_from_yaml import (
create_agents_from_yaml,
)
from swarms.utils.formatter import formatter
from swarms.utils.litellm import LiteLLM
load_dotenv()
def prepare_yaml_for_parsing(raw_yaml: str) -> str:
"""
Prepares raw YAML content by fixing spacing and formatting issues.
Args:
raw_yaml (str): The raw YAML content extracted from Markdown.
Returns:
str: The cleaned YAML content ready for parsing.
"""
# Fix sequence items that are improperly placed on the same line as their key
fixed_yaml = re.sub(
r"(\b\w+\b):\s*-\s*", r"\1:\n - ", raw_yaml
) # Fix "key: - value" to "key:\n - value"
# Ensure proper spacing after colons
fixed_yaml = re.sub(
r"(\S):(\S)", r"\1: \2", fixed_yaml
) # Ensure space after colons
# Remove trailing spaces before newlines
fixed_yaml = re.sub(r"\s+\n", "\n", fixed_yaml)
# Replace non-breaking spaces (if any) with regular spaces
fixed_yaml = fixed_yaml.replace("\xa0", " ")
return fixed_yaml.strip()
def parse_yaml_from_swarm_markdown(markdown_text: str) -> dict:
"""
Extracts and prepares YAML content from a Markdown-style 'Auto-Swarm-Builder' block and parses it.
Args:
markdown_text (str): The Markdown text containing the YAML inside 'Auto-Swarm-Builder' block.
Returns:
dict: A parsed Python dictionary of the YAML content.
"""
# Match the 'Auto-Swarm-Builder' block with YAML inside triple backticks
pattern = r"```yaml\s*\n(.*?)```"
match = re.search(pattern, markdown_text, re.DOTALL)
if not match:
raise ValueError(
"No YAML content found in the 'Auto-Swarm-Builder' block."
)
raw_yaml = match.group(1).strip()
# Preprocess and normalize the YAML content
normalized_yaml = prepare_yaml_for_parsing(raw_yaml)
return normalized_yaml
AUTO_GEN_PROMPT = """
You are a specialized agent responsible for creating YAML configuration files for multi-agent swarms. Your role is to generate well-structured YAML that defines both individual agents and swarm architectures based on user requirements.
Output only the yaml nothing else. You will be penalized for making mistakes
GUIDELINES:
1. Each YAML file must contain an `agents` section with at least one agent configuration
2. Each agent configuration requires the following mandatory fields:
- agent_name (string)
- system_prompt (string)
3. Optional agent fields include:
- max_loops (integer)
- autosave (boolean)
- dashboard (boolean)
- verbose (boolean)
- dynamic_temperature_enabled (boolean)
- saved_state_path (string)
- user_name (string)
- retry_attempts (integer)
- context_length (integer)
- return_step_meta (boolean)
- output_type (string)
- task (string)
4. When a swarm is needed, include a `swarm_architecture` section with:
Mandatory fields:
- name (string)
- swarm_type (string: "ConcurrentWorkflow" or "SequentialWorkflow") [AgentRearrange, MixtureOfAgents, SpreadSheetSwarm, SequentialWorkflow, ConcurrentWorkflow]
Optional fields:
- description (string)
- max_loops (integer)
- task (string)
TEMPLATE STRUCTURE:
```yaml
agents:
- agent_name: "Agent-1-Name"
system_prompt: "Detailed system prompt here"
max_loops: 1
# [additional optional fields]
- agent_name: "Agent-2-Name"
system_prompt: "Detailed system prompt here"
# [additional optional fields]
swarm_architecture:
name: "Swarm-Name"
description: "Swarm purpose and goals"
swarm_type: "ConcurrentWorkflow"
max_loops: 5
task: "Main swarm task description"
```
VALIDATION RULES:
1. All agent names must be unique
2. System prompts must be clear and specific to the agent's role
3. Integer values must be positive
4. Boolean values must be true or false (lowercase)
5. File paths should use forward slashes
6. Tasks should be specific and aligned with the agent/swarm purpose
When generating a YAML configuration:
1. Ask for specific requirements about the agents and swarm needed
2. Determine if a swarm architecture is necessary based on the task complexity
3. Generate appropriate system prompts for each agent based on their roles
4. Include relevant optional fields based on the use case
5. Validate the configuration against all rules before returning
Example valid YAML configurations are provided below. Use these as references for structure and formatting:
```yaml
agents:
- agent_name: "Data-Analysis-Agent"
system_prompt: "You are a specialized data analysis agent focused on processing and interpreting financial data. Provide clear, actionable insights based on the data provided."
max_loops: 3
autosave: true
verbose: true
context_length: 100000
output_type: "json"
task: "Analyze quarterly financial reports and identify trends"
# Multi-Agent Swarm Example
agents:
- agent_name: "Research-Agent"
system_prompt: "You are a research agent specialized in gathering and summarizing scientific publications. Focus on peer-reviewed sources and provide comprehensive summaries."
max_loops: 2
context_length: 150000
output_type: "str"
- agent_name: "Analysis-Agent"
system_prompt: "You are an analysis agent that processes research summaries and identifies key patterns and insights. Provide detailed analytical reports."
max_loops: 3
context_length: 200000
output_type: "json"
swarm_architecture:
name: "Research-Analysis-Swarm"
description: "A swarm for comprehensive research analysis and insight generation"
swarm_type: "SequentialWorkflow"
max_loops: 5
task: "Research and analyze recent developments in quantum computing"
```
"""
def generate_swarm_config(
task: str,
file_name: str = "swarm_config_output.yaml",
model_name: str = "gpt-4o",
*args,
**kwargs,
):
"""
Generates a swarm configuration based on the provided task and model name.
This function attempts to generate a swarm configuration by running an agent with the specified task and model name.
It then parses the output into YAML format and creates agents based on the parsed YAML content.
Args:
task (str): The task to be performed by the swarm.
file_name (str, optional): The file name for the output YAML configuration. Defaults to "swarm_config_output.yaml".
model_name (str, optional): The name of the model to use for the agent. Defaults to "gpt-4o".
*args: Additional positional arguments to be passed to the agent's run method.
**kwargs: Additional keyword arguments to be passed to the agent's run method.
Returns:
Any: The output of the swarm configuration generation process. This can be a SwarmRouter instance or an error message.
"""
formatter.print_panel(
"Auto Generating Swarm...", "Auto Swarm Builder"
)
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(min=4, max=10),
)
def attempt_generate_swarm_config():
try:
model = LiteLLM(model_name=model_name)
# Initialize the agent
agent = Agent(
agent_name="Auto-Swarm-Builder",
system_prompt=AUTO_GEN_PROMPT,
llm=model,
max_loops=1,
dynamic_temperature_enabled=True,
saved_state_path="swarm_builder.json",
user_name="swarms_corp",
output_type="str",
)
# Generate output from the agent
raw_output = agent.run(task, *args, **kwargs)
yaml_content = parse_yaml_from_swarm_markdown(raw_output)
print(yaml_content)
# Create agents from the YAML file
output = create_agents_from_yaml(
yaml_string=yaml_content,
return_type="run_swarm",
)
formatter.print_panel(
"Swarm configuration generated successfully.",
"Success",
)
return output
except Exception as e:
formatter.print_panel(
f"Error generating swarm configuration: {str(e)}",
"Error",
)
raise
return attempt_generate_swarm_config()

@ -1,22 +1,168 @@
import os import os
from typing import Any, Callable, Dict, List, Tuple, Union from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import yaml import yaml
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
from pydantic import (
BaseModel,
Field,
field_validator,
)
from swarms.utils.loguru_logger import initialize_logger from swarms.utils.loguru_logger import initialize_logger
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.swarm_router import SwarmRouter from swarms.structs.swarm_router import SwarmRouter
from swarms.utils.litellm import LiteLLM
logger = initialize_logger(log_folder="create_agents_from_yaml") logger = initialize_logger(log_folder="create_agents_from_yaml")
class AgentConfig(BaseModel):
agent_name: str
system_prompt: str
model_name: Optional[str] = None
max_loops: int = Field(default=1, ge=1)
autosave: bool = True
dashboard: bool = False
verbose: bool = False
dynamic_temperature_enabled: bool = False
saved_state_path: Optional[str] = None
user_name: str = "default_user"
retry_attempts: int = Field(default=3, ge=1)
context_length: int = Field(default=100000, ge=1000)
return_step_meta: bool = False
output_type: str = "str"
auto_generate_prompt: bool = False
artifacts_on: bool = False
artifacts_file_extension: str = ".md"
artifacts_output_path: str = ""
@field_validator("system_prompt")
@classmethod
def validate_system_prompt(cls, v):
if not v or not isinstance(v, str) or len(v.strip()) == 0:
raise ValueError(
"System prompt must be a non-empty string"
)
return v
class SwarmConfig(BaseModel):
name: str
description: str
max_loops: int = Field(default=1, ge=1)
swarm_type: str
task: Optional[str] = None
flow: Optional[Dict] = None
autosave: bool = True
return_json: bool = False
rules: str = ""
@field_validator("swarm_type")
@classmethod
def validate_swarm_type(cls, v):
valid_types = {
"SequentialWorkflow",
"ConcurrentWorkflow",
"AgentRearrange",
"MixtureOfAgents",
"auto",
}
if v not in valid_types:
raise ValueError(
f"Swarm type must be one of: {valid_types}"
)
return v
class YAMLConfig(BaseModel):
agents: List[AgentConfig] = Field(..., min_length=1)
swarm_architecture: Optional[SwarmConfig] = None
model_config = {
"extra": "forbid" # Prevent additional fields not in the model
}
def load_yaml_safely(
yaml_file: str = None, yaml_string: str = None
) -> Dict:
"""Safely load and validate YAML configuration using Pydantic."""
try:
if yaml_string:
config_dict = yaml.safe_load(yaml_string)
elif yaml_file:
if not os.path.exists(yaml_file):
raise FileNotFoundError(
f"YAML file {yaml_file} not found."
)
with open(yaml_file, "r") as file:
config_dict = yaml.safe_load(file)
else:
raise ValueError(
"Either yaml_file or yaml_string must be provided"
)
# Validate using Pydantic
YAMLConfig(**config_dict)
return config_dict
except yaml.YAMLError as e:
raise ValueError(f"Error parsing YAML: {str(e)}")
except Exception as e:
raise ValueError(f"Error validating configuration: {str(e)}")
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type((ConnectionError, TimeoutError)),
before_sleep=lambda retry_state: logger.info(
f"Retrying after error: {retry_state.outcome.exception()}"
),
)
def create_agent_with_retry(
agent_config: Dict, model: LiteLLM
) -> Agent:
"""Create an agent with retry logic for handling transient failures."""
try:
validated_config = AgentConfig(**agent_config)
agent = Agent(
agent_name=validated_config.agent_name,
system_prompt=validated_config.system_prompt,
llm=model,
max_loops=validated_config.max_loops,
autosave=validated_config.autosave,
dashboard=validated_config.dashboard,
verbose=validated_config.verbose,
dynamic_temperature_enabled=validated_config.dynamic_temperature_enabled,
saved_state_path=validated_config.saved_state_path,
user_name=validated_config.user_name,
retry_attempts=validated_config.retry_attempts,
context_length=validated_config.context_length,
return_step_meta=validated_config.return_step_meta,
output_type=validated_config.output_type,
auto_generate_prompt=validated_config.auto_generate_prompt,
artifacts_on=validated_config.artifacts_on,
artifacts_file_extension=validated_config.artifacts_file_extension,
artifacts_output_path=validated_config.artifacts_output_path,
)
return agent
except Exception as e:
logger.error(
f"Error creating agent {agent_config.get('agent_name', 'unknown')}: {str(e)}"
)
raise
def create_agents_from_yaml( def create_agents_from_yaml(
model: Callable = None, model: Callable = None,
yaml_file: str = "agents.yaml", yaml_file: str = "agents.yaml",
yaml_string: str = None,
return_type: str = "auto", return_type: str = "auto",
*args,
**kwargs,
) -> Union[ ) -> Union[
SwarmRouter, SwarmRouter,
Agent, Agent,
@ -25,171 +171,99 @@ def create_agents_from_yaml(
List[Dict[str, Any]], List[Dict[str, Any]],
]: ]:
""" """
Create agents and/or SwarmRouter based on configurations defined in a YAML file. Create agents and/or SwarmRouter based on configurations defined in a YAML file or string.
This function dynamically creates agents and a SwarmRouter (if specified) based on the
configuration in the YAML file. It adapts its behavior based on the presence of a
swarm architecture and the number of agents defined.
Args:
model (Callable): The language model to be used by the agents.
yaml_file (str): Path to the YAML file containing agent and swarm configurations.
return_type (str): Determines the return value. Options are:
"auto" (default): Automatically determine the most appropriate return type.
"swarm": Return SwarmRouter if present, otherwise a single agent or list of agents.
"agents": Return a list of agents (or a single agent if only one is defined).
"both": Return both SwarmRouter (or single agent) and list of agents.
"tasks": Return task results if any tasks were executed.
"run_swarm": Run the swarm and return its output.
*args: Additional positional arguments for agent or SwarmRouter customization.
**kwargs: Additional keyword arguments for agent or SwarmRouter customization.
Returns:
Union[SwarmRouter, Agent, List[Agent], Tuple[Union[SwarmRouter, Agent], List[Agent]], List[Dict[str, Any]]]:
The return type depends on the 'return_type' argument and the configuration in the YAML file.
Raises:
FileNotFoundError: If the specified YAML file is not found.
ValueError: If the YAML configuration is invalid or if an invalid return_type is specified.
""" """
try:
logger.info(
f"Checking if the YAML file {yaml_file} exists..."
)
if not os.path.exists(yaml_file):
logger.error(f"YAML file {yaml_file} not found.")
raise FileNotFoundError(
f"YAML file {yaml_file} not found."
)
logger.info(f"Loading YAML file {yaml_file}")
with open(yaml_file, "r") as file:
config = yaml.safe_load(file)
if "agents" not in config:
logger.error(
"The YAML configuration does not contain 'agents'."
)
raise ValueError(
"The YAML configuration does not contain 'agents'."
)
agents = [] agents = []
task_results = [] task_results = []
swarm_router = None
# Create agents try:
# Load and validate configuration
config = load_yaml_safely(yaml_file, yaml_string)
# Create agents with retry logic
for agent_config in config["agents"]: for agent_config in config["agents"]:
logger.info( logger.info(
f"Creating agent: {agent_config['agent_name']}" f"Creating agent: {agent_config['agent_name']}"
) )
if "system_prompt" not in agent_config: if "model_name" in agent_config:
logger.error( model_instance = LiteLLM(
f"System prompt is missing for agent: {agent_config['agent_name']}" model_name=agent_config["model_name"]
)
raise ValueError(
f"System prompt is missing for agent: {agent_config['agent_name']}"
) )
else:
model_name = "gpt-4o"
model_instance = LiteLLM(model_name=model_name)
agent = Agent( agent = create_agent_with_retry(
agent_name=agent_config["agent_name"], agent_config, model_instance
system_prompt=agent_config["system_prompt"],
llm=model,
max_loops=agent_config.get("max_loops", 1),
autosave=agent_config.get("autosave", True),
dashboard=agent_config.get("dashboard", False),
verbose=agent_config.get("verbose", False),
dynamic_temperature_enabled=agent_config.get(
"dynamic_temperature_enabled", False
),
saved_state_path=agent_config.get("saved_state_path"),
user_name=agent_config.get(
"user_name", "default_user"
),
retry_attempts=agent_config.get("retry_attempts", 1),
context_length=agent_config.get(
"context_length", 100000
),
return_step_meta=agent_config.get(
"return_step_meta", False
),
output_type=agent_config.get("output_type", "str"),
auto_generate_prompt=agent_config.get(
"auto_generate_prompt", "False"
),
artifacts_on=agent_config.get(
"artifacts_on", "False"
),
artifacts_file_extension=agent_config.get(
"artifacts_file_extension", ".md"
),
artifacts_output_path=agent_config.get(
"artifacts_output_path", ""
),
*args,
**kwargs,
) )
logger.info( logger.info(
f"Agent {agent_config['agent_name']} created successfully." f"Agent {agent_config['agent_name']} created successfully."
) )
agents.append(agent) agents.append(agent)
# Create SwarmRouter if swarm_architecture is present # Create SwarmRouter if specified
swarm_router = None
if "swarm_architecture" in config: if "swarm_architecture" in config:
swarm_config = config["swarm_architecture"] try:
swarm_config = SwarmConfig(
**config["swarm_architecture"]
)
swarm_router = SwarmRouter( swarm_router = SwarmRouter(
name=swarm_config["name"], name=swarm_config.name,
description=swarm_config["description"], description=swarm_config.description,
max_loops=swarm_config["max_loops"], max_loops=swarm_config.max_loops,
agents=agents, agents=agents,
swarm_type=swarm_config["swarm_type"], swarm_type=swarm_config.swarm_type,
task=swarm_config.get("task"), task=swarm_config.task,
flow=swarm_config.get("flow"), flow=swarm_config.flow,
autosave=swarm_config.get("autosave"), autosave=swarm_config.autosave,
return_json=swarm_config.get("return_json"), return_json=swarm_config.return_json,
rules=swarm_config.get("rules", "") * args, rules=swarm_config.rules,
**kwargs,
) )
logger.info( logger.info(
f"SwarmRouter '{swarm_config['name']}' created successfully." f"SwarmRouter '{swarm_config.name}' created successfully."
)
except Exception as e:
logger.error(f"Error creating SwarmRouter: {str(e)}")
raise ValueError(
f"Failed to create SwarmRouter: {str(e)}"
) )
# Define function to run SwarmRouter # Handle return types with improved error checking
def run_swarm_router( valid_return_types = {
task: str = ( "auto",
swarm_config.get("task") "swarm",
if "swarm_architecture" in config "agents",
else None "both",
), "tasks",
): "run_swarm",
if swarm_router: }
if return_type not in valid_return_types:
raise ValueError(
f"Invalid return_type. Must be one of: {valid_return_types}"
)
if return_type == "run_swarm" or "swarm":
if not swarm_router:
raise ValueError(
"Cannot run swarm: SwarmRouter not created."
)
try: try:
output = swarm_router.run(task) return swarm_router.run(
print(output) config["swarm_architecture"]["task"]
logger.info(
f"Output for SwarmRouter '{swarm_config['name']}': {output}"
) )
return output
except Exception as e: except Exception as e:
logger.error( logger.error(f"Error running SwarmRouter: {str(e)}")
f"Error running task for SwarmRouter '{swarm_config['name']}': {e}" raise
)
raise e
else:
logger.error("SwarmRouter not created.")
raise ValueError("SwarmRouter not created.")
# Handle return types # Return appropriate type based on configuration
if return_type == "auto": if return_type == "auto":
if swarm_router: return (
return swarm_router swarm_router
elif len(agents) == 1: if swarm_router
return agents[0] else (agents[0] if len(agents) == 1 else agents)
else: )
return agents
elif return_type == "swarm": elif return_type == "swarm":
return ( return (
swarm_router swarm_router
@ -205,24 +279,10 @@ def create_agents_from_yaml(
else agents[0] if len(agents) == 1 else agents else agents[0] if len(agents) == 1 else agents
), agents ), agents
elif return_type == "tasks": elif return_type == "tasks":
if not task_results:
logger.warning(
"No tasks were executed. Returning empty list."
)
return task_results return task_results
elif return_type == "run_swarm":
if swarm_router: except Exception as e:
return run_swarm_router()
else:
logger.error( logger.error(
"Cannot run swarm: SwarmRouter not created." f"Critical error in create_agents_from_yaml: {str(e)}"
)
raise ValueError(
"Cannot run swarm: SwarmRouter not created."
) )
else: raise
logger.error(f"Invalid return_type: {return_type}")
raise ValueError(f"Invalid return_type: {return_type}")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise e

@ -0,0 +1,264 @@
from typing import Optional, List, Dict, Any, Callable
import time
from openai import OpenAI
from swarms.structs.agent import Agent
import json
class OpenAIAssistant(Agent):
"""
OpenAI Assistant wrapper for the swarms framework.
Integrates OpenAI's Assistants API with the swarms architecture.
Example:
>>> assistant = OpenAIAssistant(
... name="Math Tutor",
... instructions="You are a personal math tutor.",
... model="gpt-4o",
... tools=[{"type": "code_interpreter"}]
... )
>>> response = assistant.run("Solve 3x + 11 = 14")
"""
def __init__(
self,
name: str,
instructions: Optional[str] = None,
model: str = "gpt-4o",
tools: Optional[List[Dict[str, Any]]] = None,
file_ids: Optional[List[str]] = None,
metadata: Optional[Dict[str, Any]] = None,
functions: Optional[List[Dict[str, Any]]] = None,
*args,
**kwargs
):
"""Initialize the OpenAI Assistant.
Args:
name: Name of the assistant
instructions: System instructions for the assistant
model: Model to use (default: gpt-4-turbo-preview)
tools: List of tools to enable (code_interpreter, retrieval)
file_ids: List of file IDs to attach
metadata: Additional metadata
functions: List of custom functions to make available
"""
super().__init__(*args, **kwargs)
# Initialize tools list with any provided functions
self.tools = tools or []
if functions:
for func in functions:
self.tools.append({
"type": "function",
"function": func
})
# Create the OpenAI Assistant
self.client = OpenAI()
self.assistant = self.client.beta.assistants.create(
name=name,
instructions=instructions,
model=model,
tools=self.tools,
file_ids=file_ids or [],
metadata=metadata or {}
)
# Store available functions
self.available_functions: Dict[str, Callable] = {}
def add_function(self, func: Callable, description: str, parameters: Dict[str, Any]) -> None:
"""Add a function that the assistant can call.
Args:
func: The function to make available to the assistant
description: Description of what the function does
parameters: JSON schema describing the function parameters
"""
func_dict = {
"name": func.__name__,
"description": description,
"parameters": parameters
}
# Add to tools list
self.tools.append({
"type": "function",
"function": func_dict
})
# Store function reference
self.available_functions[func.__name__] = func
# Update assistant with new tools
self.assistant = self.client.beta.assistants.update(
assistant_id=self.assistant.id,
tools=self.tools
)
def _handle_tool_calls(self, run, thread_id: str) -> None:
"""Handle any required tool calls during a run.
This method processes any tool calls required by the assistant during execution.
It extracts function calls, executes them with provided arguments, and submits
the results back to the assistant.
Args:
run: The current run object from the OpenAI API
thread_id: ID of the current conversation thread
Returns:
Updated run object after processing tool calls
Raises:
Exception: If there are errors executing the tool calls
"""
while run.status == "requires_action":
tool_calls = run.required_action.submit_tool_outputs.tool_calls
tool_outputs = []
for tool_call in tool_calls:
if tool_call.type == "function":
# Get function details
function_name = tool_call.function.name
function_args = json.loads(tool_call.function.arguments)
# Call function if available
if function_name in self.available_functions:
function_response = self.available_functions[function_name](**function_args)
tool_outputs.append({
"tool_call_id": tool_call.id,
"output": str(function_response)
})
# Submit outputs back to the run
run = self.client.beta.threads.runs.submit_tool_outputs(
thread_id=thread_id,
run_id=run.id,
tool_outputs=tool_outputs
)
# Wait for processing
run = self._wait_for_run(run)
return run
def _wait_for_run(self, run) -> Any:
"""Wait for a run to complete and handle any required actions.
This method polls the OpenAI API to check the status of a run until it completes
or fails. It handles intermediate states like required actions and implements
exponential backoff.
Args:
run: The run object to monitor
Returns:
The completed run object
Raises:
Exception: If the run fails or expires
"""
while True:
run = self.client.beta.threads.runs.retrieve(
thread_id=run.thread_id,
run_id=run.id
)
if run.status == "completed":
break
elif run.status == "requires_action":
run = self._handle_tool_calls(run, run.thread_id)
if run.status == "completed":
break
elif run.status in ["failed", "expired"]:
raise Exception(f"Run failed with status: {run.status}")
time.sleep(3) # Wait 3 seconds before checking again
return run
def _ensure_thread(self):
"""Ensure a thread exists for the conversation.
This method checks if there is an active thread for the current conversation.
If no thread exists, it creates a new one. This maintains conversation context
across multiple interactions.
Side Effects:
Sets self.thread if it doesn't exist
"""
if not self.thread:
self.thread = self.client.beta.threads.create()
def add_message(self, content: str, file_ids: Optional[List[str]] = None) -> None:
"""Add a message to the thread.
This method adds a new user message to the conversation thread. It ensures
a thread exists before adding the message and handles file attachments.
Args:
content: The text content of the message to add
file_ids: Optional list of file IDs to attach to the message. These must be
files that have been previously uploaded to OpenAI.
Side Effects:
Creates a new thread if none exists
Adds the message to the thread in OpenAI's system
"""
self._ensure_thread()
self.client.beta.threads.messages.create(
thread_id=self.thread.id,
role="user",
content=content,
file_ids=file_ids or []
)
def _get_response(self) -> str:
"""Get the latest assistant response from the thread."""
messages = self.client.beta.threads.messages.list(
thread_id=self.thread.id,
order="desc",
limit=1
)
if not messages.data:
return ""
message = messages.data[0]
if message.role == "assistant":
return message.content[0].text.value
return ""
def run(self, task: str, *args, **kwargs) -> str:
"""Run a task using the OpenAI Assistant.
Args:
task: The task or prompt to send to the assistant
Returns:
The assistant's response as a string
"""
self._ensure_thread()
# Add the user message
self.add_message(task)
# Create and run the assistant
run = self.client.beta.threads.runs.create(
thread_id=self.thread.id,
assistant_id=self.assistant.id,
instructions=self.instructions
)
# Wait for completion
run = self._wait_for_run(run)
# Only get and return the response if run completed successfully
if run.status == "completed":
return self._get_response()
return ""
def call(self, task: str, *args, **kwargs) -> str:
"""Alias for run() to maintain compatibility with different agent interfaces."""
return self.run(task, *args, **kwargs)

@ -1,9 +1,5 @@
from swarms.artifacts.base_artifact import BaseArtifact
from swarms.artifacts.text_artifact import TextArtifact
from swarms.artifacts.main_artifact import Artifact from swarms.artifacts.main_artifact import Artifact
__all__ = [ __all__ = [
"BaseArtifact",
"TextArtifact",
"Artifact", "Artifact",
] ]

@ -1,77 +0,0 @@
from __future__ import annotations
import json
import uuid
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Any
@dataclass
class BaseArtifact(ABC):
"""
Base class for artifacts.
"""
id: str
name: str
value: Any
def __post_init__(self):
if self.id is None:
self.id = uuid.uuid4().hex
if self.name is None:
self.name = self.id
@classmethod
def value_to_bytes(cls, value: Any) -> bytes:
"""
Convert the value to bytes.
"""
if isinstance(value, bytes):
return value
else:
return str(value).encode()
@classmethod
def value_to_dict(cls, value: Any) -> dict:
"""
Convert the value to a dictionary.
"""
if isinstance(value, dict):
dict_value = value
else:
dict_value = json.loads(value)
return {k: v for k, v in dict_value.items()}
def to_text(self) -> str:
"""
Convert the value to text.
"""
return str(self.value)
def __str__(self) -> str:
"""
Return a string representation of the artifact.
"""
return self.to_text()
def __bool__(self) -> bool:
"""
Return the boolean value of the artifact.
"""
return bool(self.value)
def __len__(self) -> int:
"""
Return the length of the artifact.
"""
return len(self.value)
@abstractmethod
def __add__(self, other: BaseArtifact) -> BaseArtifact:
"""
Add two artifacts together.
"""
...

@ -1,58 +0,0 @@
from __future__ import annotations
from dataclasses import dataclass, field
from typing import Callable
from swarms.artifacts.base_artifact import BaseArtifact
@dataclass
class TextArtifact(BaseArtifact):
"""
Represents a text artifact.
Attributes:
value (str): The text value of the artifact.
encoding (str, optional): The encoding of the text (default is "utf-8").
encoding_error_handler (str, optional): The error handler for encoding errors (default is "strict").
_embedding (list[float]): The embedding of the text artifact (default is an empty list).
Properties:
embedding (Optional[list[float]]): The embedding of the text artifact.
Methods:
__add__(self, other: BaseArtifact) -> TextArtifact: Concatenates the text value of the artifact with another artifact.
__bool__(self) -> bool: Checks if the text value of the artifact is non-empty.
generate_embedding(self, driver: BaseEmbeddingModel) -> Optional[list[float]]: Generates the embedding of the text artifact using a given embedding model.
token_count(self, tokenizer: BaseTokenizer) -> int: Counts the number of tokens in the text artifact using a given tokenizer.
to_bytes(self) -> bytes: Converts the text value of the artifact to bytes using the specified encoding and error handler.
"""
value: str
encoding: str = "utf-8"
encoding_error_handler: str = "strict"
tokenizer: Callable = None
_embedding: list[float] = field(default_factory=list)
@property
def embedding(self) -> list[float] | None:
return None if len(self._embedding) == 0 else self._embedding
def __add__(self, other: BaseArtifact) -> TextArtifact:
return TextArtifact(self.value + other.value)
def __bool__(self) -> bool:
return bool(self.value.strip())
def generate_embedding(self, model) -> list[float] | None:
self._embedding.clear()
self._embedding.extend(model.embed_string(str(self.value)))
return self.embedding
def token_count(self) -> int:
return self.tokenizer.count_tokens(str(self.value))
def to_bytes(self) -> bytes:
return self.value.encode(
encoding=self.encoding, errors=self.encoding_error_handler
)

@ -1,163 +1,279 @@
import argparse import argparse
import os import os
import subprocess
import time import time
import webbrowser
from rich.console import Console from rich.console import Console
from rich.panel import Panel
from rich.progress import Progress, SpinnerColumn, TextColumn
from rich.table import Table
from rich.text import Text from rich.text import Text
from swarms.cli.onboarding_process import OnboardingProcess
from swarms.agents.auto_generate_swarm_config import (
generate_swarm_config,
)
from swarms.agents.create_agents_from_yaml import ( from swarms.agents.create_agents_from_yaml import (
create_agents_from_yaml, create_agents_from_yaml,
) )
import subprocess from swarms.cli.onboarding_process import OnboardingProcess
from swarms.utils.formatter import formatter
# Initialize console with custom styling
console = Console() console = Console()
ASCII_ART = """ class SwarmCLIError(Exception):
_________ """Custom exception for Swarm CLI errors"""
/ _____/_ _ _______ _______ _____ ______
\_____ \\ \/ \/ /\__ \\_ __ \/ \ / ___/ pass
/ \\ / / __ \| | \/ Y Y \\___ \
/_______ / \/\_/ (____ /__| |__|_| /____ >
\/ \/ \/ \/
# Color scheme
COLORS = {
"primary": "red",
"secondary": "#FF6B6B",
"accent": "#4A90E2",
"success": "#2ECC71",
"warning": "#F1C40F",
"error": "#E74C3C",
"text": "#FFFFFF",
}
ASCII_ART = """
""" """
# Function to display the ASCII art in red def create_spinner(text: str) -> Progress:
"""Create a custom spinner with the given text."""
return Progress(
SpinnerColumn(style=COLORS["primary"]),
TextColumn("[{task.description}]", style=COLORS["text"]),
console=console,
)
def show_ascii_art(): def show_ascii_art():
text = Text(ASCII_ART, style="bold cyan") """Display the ASCII art with a glowing effect."""
console.print(text) panel = Panel(
Text(ASCII_ART, style=f"bold {COLORS['primary']}"),
border_style=COLORS["secondary"],
title="[bold]Welcome to Swarms[/bold]",
subtitle="[dim]Power to the Swarms[/dim]",
)
console.print(panel)
def create_command_table() -> Table:
"""Create a beautifully formatted table of commands."""
table = Table(
show_header=True,
header_style=f"bold {COLORS['primary']}",
border_style=COLORS["secondary"],
title="Available Commands",
padding=(0, 2),
)
table.add_column("Command", style="bold white")
table.add_column("Description", style="dim white")
commands = [
("onboarding", "Start the interactive onboarding process"),
("help", "Display this help message"),
("get-api-key", "Retrieve your API key from the platform"),
("check-login", "Verify login status and initialize cache"),
("run-agents", "Execute agents from your YAML configuration"),
("auto-upgrade", "Update Swarms to the latest version"),
("book-call", "Schedule a strategy session with our team"),
("autoswarm", "Generate and execute an autonomous swarm"),
]
for cmd, desc in commands:
table.add_row(cmd, desc)
return table
# Help command
def show_help(): def show_help():
"""Display a beautifully formatted help message."""
console.print( console.print(
""" "\n[bold]Swarms CLI - Command Reference[/bold]\n",
[bold cyan]Swarms CLI - Help[/bold cyan] style=COLORS["primary"],
)
[bold magenta]Commands:[/bold magenta] console.print(create_command_table())
[bold white]onboarding[/bold white] : Starts the onboarding process console.print(
[bold white]help[/bold white] : Shows this help message "\n[dim]For detailed documentation, visit: https://docs.swarms.world[/dim]"
[bold white]get-api-key[/bold white] : Retrieves your API key from the platform )
[bold white]check-login[/bold white] : Checks if you're logged in and starts the cache
[bold white]read-docs[/bold white] : Redirects you to swarms cloud documentation!
[bold white]run-agents[/bold white] : Run your Agents from your specified yaml file. Specify the yaml file with path the `--yaml-file` arg. Example: `--yaml-file agents.yaml` def show_error(message: str, help_text: str = None):
[bold white]generate-prompt[/bold white] : Generate a prompt through automated prompt engineering. Requires an OPENAI Key in your `.env` Example: --prompt "Generate a prompt for an agent to analyze legal docs" """Display error message in a formatted panel"""
[bold white]auto-upgrade[/bold white] : Automatically upgrades Swarms to the latest version error_panel = Panel(
[bold white]book-call[/bold white] : Book a strategy session with our team to discuss your use case and get personalized guidance f"[bold red]{message}[/bold red]",
title="Error",
For more details, visit: https://docs.swarms.world border_style="red",
"""
) )
console.print(error_panel)
if help_text:
console.print(f"\n[yellow] {help_text}[/yellow]")
# [bold white]add-agent[/bold white] : Add an agent to the marketplace under your name. Must have a Dockerfile + your agent.yaml to publish. Learn more Here: https://docs.swarms.world/en/latest/swarms_cloud/vision/ def execute_with_spinner(action: callable, text: str) -> None:
"""Execute an action with a spinner animation."""
with create_spinner(text) as progress:
task = progress.add_task(text, total=None)
result = action()
progress.remove_task(task)
return result
# Fetch API key from platform
def get_api_key(): def get_api_key():
"""Retrieve API key with visual feedback."""
with create_spinner("Opening API key portal...") as progress:
task = progress.add_task("Opening browser...")
webbrowser.open("https://swarms.world/platform/api-keys")
time.sleep(1)
progress.remove_task(task)
console.print( console.print(
"[bold yellow]Opening the API key retrieval page...[/bold yellow]" f"\n[{COLORS['success']}]✓ API key page opened in your browser[/{COLORS['success']}]"
) )
# Simulating API key retrieval process by opening the website
import webbrowser
webbrowser.open("https://swarms.world/platform/api-keys")
time.sleep(2) def check_login():
"""Verify login status with enhanced visual feedback."""
cache_file = "cache.txt"
if os.path.exists(cache_file):
with open(cache_file, "r") as f:
if f.read() == "logged_in":
console.print( console.print(
"[bold green]Your API key is available on the dashboard.[/bold green]" f"[{COLORS['success']}]✓ Authentication verified[/{COLORS['success']}]"
) )
return True
with create_spinner("Authenticating...") as progress:
task = progress.add_task("Initializing session...")
time.sleep(1)
with open(cache_file, "w") as f:
f.write("logged_in")
progress.remove_task(task)
# Redirect to docs
def redirect_to_docs():
console.print( console.print(
"[bold yellow]Opening the Docs page...[/bold yellow]" f"[{COLORS['success']}]✓ Login successful![/{COLORS['success']}]"
) )
# Simulating API key retrieval process by opening the website return True
import webbrowser
webbrowser.open("https://docs.swarms.world")
time.sleep(2)
def run_autoswarm(task: str, model: str):
# Redirect to docs """Run autoswarm with enhanced error handling"""
def redirect_to_call(): try:
console.print( console.print(
"[bold yellow]Opening the Call page...[/bold yellow]" "[yellow]Initializing autoswarm configuration...[/yellow]"
) )
# Simulating API key retrieval process by opening the website
import webbrowser
webbrowser.open("https://cal.com/swarms/swarms-strategy-session") # Set LiteLLM verbose mode for debugging
time.sleep(2) import litellm
litellm.set_verbose = True
# Check and start cache (login system simulation) # Validate inputs
def check_login(): if not task or task.strip() == "":
cache_file = "cache.txt" raise SwarmCLIError("Task cannot be empty")
if os.path.exists(cache_file): if not model or model.strip() == "":
with open(cache_file, "r") as f: raise SwarmCLIError("Model name cannot be empty")
cache_content = f.read()
if cache_content == "logged_in": # Attempt to generate swarm configuration
console.print( console.print(
"[bold green]You are already logged in.[/bold green]" f"[yellow]Generating swarm for task: {task}[/yellow]"
) )
else: result = generate_swarm_config(task=task, model=model)
if result:
console.print( console.print(
"[bold red]You are not logged in.[/bold red]" "[green]✓ Swarm configuration generated successfully![/green]"
) )
else: else:
console.print("[bold yellow]Logging in...[/bold yellow]") raise SwarmCLIError(
time.sleep(2) "Failed to generate swarm configuration"
with open(cache_file, "w") as f: )
f.write("logged_in")
console.print("[bold green]Login successful![/bold green]") except Exception as e:
if "No YAML content found" in str(e):
show_error(
"Failed to generate YAML configuration",
"This might be due to an API key issue or invalid model configuration.\n"
+ "1. Check if your OpenAI API key is set correctly\n"
+ "2. Verify the model name is valid\n"
+ "3. Try running with --model gpt-4",
)
else:
show_error(
f"Error during autoswarm execution: {str(e)}",
"For debugging, try:\n"
+ "1. Check your API keys are set correctly\n"
+ "2. Verify your network connection\n"
+ "3. Try a different model",
)
def check_and_upgrade_version(): def check_and_upgrade_version():
console.print( """Check for updates with visual progress."""
"[bold yellow]Checking for Swarms updates...[/bold yellow]"
) def check_update():
try:
# Check for updates using pip
result = subprocess.run( result = subprocess.run(
["pip", "list", "--outdated", "--format=freeze"], ["pip", "list", "--outdated", "--format=freeze"],
capture_output=True, capture_output=True,
text=True, text=True,
) )
outdated_packages = result.stdout.splitlines() return result.stdout.splitlines()
# Check if Swarms is outdated outdated = execute_with_spinner(
for package in outdated_packages: check_update, "Checking for updates..."
)
for package in outdated:
if package.startswith("swarms=="): if package.startswith("swarms=="):
console.print( console.print(
"[bold magenta]New version available! Upgrading...[/bold magenta]" f"[{COLORS['warning']}]↑ Update available![/{COLORS['warning']}]"
)
with create_spinner("Upgrading Swarms...") as progress:
task = progress.add_task(
"Installing latest version..."
) )
subprocess.run( subprocess.run(
["pip", "install", "--upgrade", "swarms"], ["pip", "install", "--upgrade", "swarms"],
check=True, check=True,
) )
progress.remove_task(task)
console.print( console.print(
"[bold green]Swarms upgraded successfully![/bold green]" f"[{COLORS['success']}]✓ Swarms upgraded successfully![/{COLORS['success']}]"
) )
return return
console.print( console.print(
"[bold green]Swarms is up-to-date.[/bold green]" f"[{COLORS['success']}]✓ Swarms is up to date![/{COLORS['success']}]"
)
except Exception as e:
console.print(
f"[bold red]Error checking for updates: {e}[/bold red]"
) )
# Main CLI handler
def main(): def main():
parser = argparse.ArgumentParser(description="Swarms Cloud CLI") try:
show_ascii_art()
# Adding arguments for different commands parser = argparse.ArgumentParser(
description="Swarms Cloud CLI"
)
parser.add_argument( parser.add_argument(
"command", "command",
choices=[ choices=[
@ -166,45 +282,31 @@ def main():
"get-api-key", "get-api-key",
"check-login", "check-login",
"run-agents", "run-agents",
"generate-prompt", # Added new command for generating prompts "auto-upgrade",
"auto-upgrade", # Added new command for auto-upgrade,
"book-call", "book-call",
"autoswarm",
], ],
help="Command to run", help="Command to execute",
) )
parser.add_argument( parser.add_argument(
"--yaml-file", "--yaml-file",
type=str, type=str,
default="agents.yaml", default="agents.yaml",
help="Specify the YAML file for running agents", help="YAML configuration file path",
)
parser.add_argument(
"--prompt",
type=str,
help="Specify the task for generating a prompt",
)
parser.add_argument(
"--num-loops",
type=int,
default=1,
help="Specify the number of loops for generating a prompt",
) )
parser.add_argument( parser.add_argument(
"--autosave", "--task", type=str, help="Task for autoswarm"
action="store_true",
help="Enable autosave for the prompt generator",
) )
parser.add_argument( parser.add_argument(
"--save-to-yaml", "--model",
action="store_true", type=str,
help="Save the generated prompt to a YAML file", default="gpt-4",
help="Model for autoswarm",
) )
args = parser.parse_args() args = parser.parse_args()
show_ascii_art() try:
# Determine which command to run
if args.command == "onboarding": if args.command == "onboarding":
OnboardingProcess().run() OnboardingProcess().run()
elif args.command == "help": elif args.command == "help":
@ -217,28 +319,30 @@ def main():
create_agents_from_yaml( create_agents_from_yaml(
yaml_file=args.yaml_file, return_type="tasks" yaml_file=args.yaml_file, return_type="tasks"
) )
# elif args.command == "generate-prompt":
# if (
# args.prompt
# ): # Corrected from args.prompt_task to args.prompt
# generate_prompt(
# num_loops=args.num_loops,
# autosave=args.autosave,
# save_to_yaml=args.save_to_yaml,
# prompt=args.prompt, # Corrected from args.prompt_task to args.prompt
# )
# else:
# console.print(
# "[bold red]Please specify a task for generating a prompt using '--prompt'.[/bold red]"
# )
elif args.command == "auto-upgrade": elif args.command == "auto-upgrade":
check_and_upgrade_version() check_and_upgrade_version()
elif args.command == "book-call": elif args.command == "book-call":
redirect_to_call() webbrowser.open(
else: "https://cal.com/swarms/swarms-strategy-session"
)
elif args.command == "autoswarm":
if not args.task:
show_error(
"Missing required argument: --task",
"Example usage: python cli.py autoswarm --task 'analyze this data' --model gpt-4",
)
exit(1)
run_autoswarm(args.task, args.model)
except Exception as e:
console.print( console.print(
"[bold red]Unknown command! Type 'help' for usage.[/bold red]" f"[{COLORS['error']}]Error: {str(e)}[/{COLORS['error']}]"
)
return
except Exception as error:
formatter.print_panel(
f"Error detected: {error} check your args"
) )
raise error
if __name__ == "__main__": if __name__ == "__main__":

@ -87,19 +87,6 @@ class OnboardingProcess:
try: try:
combined_data = {**self.user_data, **self.system_data} combined_data = {**self.user_data, **self.system_data}
log_agent_data(combined_data) log_agent_data(combined_data)
# threading.Thread(target=log_agent_data(combined_data)).start()
# with open(self.auto_save_path, "w") as f:
# json.dump(combined_data, f, indent=4)
# # logger.info(
# # "User and system data successfully saved to {}",
# # self.auto_save_path,
# # )
# with open(self.cache_save_path, "w") as f:
# json.dump(combined_data, f, indent=4)
# logger.info(
# "User and system data successfully cached in {}",
# self.cache_save_path,
# )
return # Exit the function if saving was successful return # Exit the function if saving was successful
except Exception as e: except Exception as e:
logger.error( logger.error(

@ -75,9 +75,27 @@ from swarms.structs.utils import (
find_token_in_text, find_token_in_text,
parse_tasks, parse_tasks,
) )
from swarms.structs.swarm_router import (
SwarmRouter,
SwarmType,
swarm_router,
)
from swarms.structs.swarm_arange import SwarmRearrange
from swarms.structs.multi_agent_exec import (
run_agents_concurrently,
run_agents_concurrently_async,
run_single_agent,
run_agents_concurrently_multiprocess,
run_agents_sequentially,
run_agents_with_different_tasks,
run_agent_with_timeout,
run_agents_with_resource_monitoring,
)
from swarms.structs.async_workflow import AsyncWorkflow
__all__ = [ __all__ = [
"Agent", "Agent",
"AsyncWorkflow",
"AutoSwarm", "AutoSwarm",
"AutoSwarmRouter", "AutoSwarmRouter",
"BaseStructure", "BaseStructure",
@ -142,6 +160,7 @@ __all__ = [
"run_agent_with_timeout", "run_agent_with_timeout",
"run_agents_with_resource_monitoring", "run_agents_with_resource_monitoring",
"swarm_router", "swarm_router",
"AsyncWorkflow",
"run_agents_with_tasks_concurrently", "run_agents_with_tasks_concurrently",
"showcase_available_agents", "showcase_available_agents",
"GroupChatState", "GroupChatState",

@ -338,6 +338,8 @@ class Agent:
scheduled_run_date: Optional[datetime] = None, scheduled_run_date: Optional[datetime] = None,
do_not_use_cluster_ops: bool = True, do_not_use_cluster_ops: bool = True,
all_gpus: bool = False, all_gpus: bool = False,
model_name: str = None,
llm_args: dict = None,
*args, *args,
**kwargs, **kwargs,
): ):
@ -453,6 +455,8 @@ class Agent:
self.scheduled_run_date = scheduled_run_date self.scheduled_run_date = scheduled_run_date
self.do_not_use_cluster_ops = do_not_use_cluster_ops self.do_not_use_cluster_ops = do_not_use_cluster_ops
self.all_gpus = all_gpus self.all_gpus = all_gpus
self.model_name = model_name
self.llm_args = llm_args
# Initialize the short term memory # Initialize the short term memory
self.short_memory = Conversation( self.short_memory = Conversation(
@ -589,6 +593,21 @@ class Agent:
# Telemetry Processor to log agent data # Telemetry Processor to log agent data
threading.Thread(target=self.log_agent_data).start() threading.Thread(target=self.log_agent_data).start()
threading.Thread(target=self.llm_handling())
def llm_handling(self):
if self.llm is None:
from swarms.utils.litellm import LiteLLM
if self.llm_args is not None:
self.llm = LiteLLM(
model_name=self.model_name, **self.llm_args
)
else:
self.llm = LiteLLM(model_name=self.model_name)
def check_if_no_prompt_then_autogenerate(self, task: str = None): def check_if_no_prompt_then_autogenerate(self, task: str = None):
""" """
Checks if auto_generate_prompt is enabled and generates a prompt by combining agent name, description and system prompt if available. Checks if auto_generate_prompt is enabled and generates a prompt by combining agent name, description and system prompt if available.
@ -752,8 +771,11 @@ class Agent:
self, self,
task: Optional[str] = None, task: Optional[str] = None,
img: Optional[str] = None, img: Optional[str] = None,
speech: Optional[str] = None,
video: Optional[str] = None,
is_last: Optional[bool] = False, is_last: Optional[bool] = False,
print_task: Optional[bool] = False, print_task: Optional[bool] = False,
generate_speech: Optional[bool] = False,
*args, *args,
**kwargs, **kwargs,
) -> Any: ) -> Any:
@ -951,7 +973,7 @@ class Agent:
if self.interactive: if self.interactive:
logger.info("Interactive mode enabled.") logger.info("Interactive mode enabled.")
user_input = formatter.print_panel(input("You: ")) user_input = input("You: ")
# User-defined exit command # User-defined exit command
if ( if (
@ -1015,6 +1037,11 @@ class Agent:
self.artifacts_file_extension, self.artifacts_file_extension,
) )
try:
self.log_agent_data()
except Exception:
pass
# More flexible output types # More flexible output types
if ( if (
self.output_type == "string" self.output_type == "string"
@ -1050,8 +1077,16 @@ class Agent:
) )
except Exception as error: except Exception as error:
self.log_agent_data()
logger.info(
f"Error running agent: {error} optimize your input parameters"
)
raise error
except KeyboardInterrupt as error:
self.log_agent_data()
logger.info( logger.info(
f"Error running agent: {error} optimize your input parameter" f"Error running agent: {error} optimize your input parameters"
) )
raise error raise error
@ -1586,11 +1621,16 @@ class Agent:
files = os.listdir(self.docs_folder) files = os.listdir(self.docs_folder)
# Extract the text from the files # Extract the text from the files
# Process each file and combine their contents
all_text = ""
for file in files: for file in files:
text = data_to_text(file) file_path = os.path.join(self.docs_folder, file)
text = data_to_text(file_path)
all_text += f"\nContent from {file}:\n{text}\n"
# Add the combined content to memory
return self.short_memory.add( return self.short_memory.add(
role=self.user_name, content=text role=self.user_name, content=all_text
) )
except Exception as error: except Exception as error:
logger.error( logger.error(
@ -2262,12 +2302,13 @@ class Agent:
self, self,
task: Optional[str] = None, task: Optional[str] = None,
img: Optional[str] = None, img: Optional[str] = None,
device: str = "cpu", # gpu device: Optional[str] = "cpu", # gpu
device_id: int = 0, device_id: Optional[int] = 0,
all_cores: bool = True, all_cores: Optional[bool] = True,
scheduled_run_date: Optional[datetime] = None, scheduled_run_date: Optional[datetime] = None,
do_not_use_cluster_ops: bool = False, do_not_use_cluster_ops: Optional[bool] = False,
all_gpus: bool = False, all_gpus: Optional[bool] = False,
generate_speech: Optional[bool] = False,
*args, *args,
**kwargs, **kwargs,
) -> Any: ) -> Any:
@ -2314,7 +2355,12 @@ class Agent:
# If cluster ops disabled, run directly # If cluster ops disabled, run directly
if do_not_use_cluster_ops is True: if do_not_use_cluster_ops is True:
logger.info("Running without cluster operations") logger.info("Running without cluster operations")
return self._run(task=task, img=img, *args, **kwargs) return self._run(
task=task,
img=img,
generate_speech=generate_speech * args,
**kwargs,
)
else: else:
return exec_callable_with_clusterops( return exec_callable_with_clusterops(
@ -2325,6 +2371,7 @@ class Agent:
func=self._run, func=self._run,
task=task, task=task,
img=img, img=img,
generate_speech=generate_speech,
*args, *args,
**kwargs, **kwargs,
) )

@ -0,0 +1,62 @@
import asyncio
from typing import Any, Callable, List, Optional
from swarms.structs.base_workflow import BaseWorkflow
from swarms.structs.agent import Agent
from swarms.utils.loguru_logger import logger
class AsyncWorkflow(BaseWorkflow):
def __init__(
self,
name: str = "AsyncWorkflow",
agents: List[Agent] = None,
max_workers: int = 5,
dashboard: bool = False,
autosave: bool = False,
verbose: bool = False,
**kwargs
):
super().__init__(agents=agents, **kwargs)
self.name = name
self.agents = agents or []
self.max_workers = max_workers
self.dashboard = dashboard
self.autosave = autosave
self.verbose = verbose
self.task_pool = []
self.results = []
self.loop = None
async def _execute_agent_task(self, agent: Agent, task: str) -> Any:
"""Execute a single agent task asynchronously"""
try:
if self.verbose:
logger.info(f"Agent {agent.agent_name} processing task: {task}")
result = await agent.arun(task)
if self.verbose:
logger.info(f"Agent {agent.agent_name} completed task")
return result
except Exception as e:
logger.error(f"Error in agent {agent.agent_name}: {str(e)}")
return str(e)
async def run(self, task: str) -> List[Any]:
"""Run the workflow with all agents processing the task concurrently"""
if not self.agents:
raise ValueError("No agents provided to the workflow")
try:
# Create tasks for all agents
tasks = [self._execute_agent_task(agent, task) for agent in self.agents]
# Execute all tasks concurrently
self.results = await asyncio.gather(*tasks, return_exceptions=True)
if self.autosave:
# TODO: Implement autosave logic here
pass
return self.results
except Exception as e:
logger.error(f"Error in workflow execution: {str(e)}")
raise

@ -1,5 +1,3 @@
from loguru import logger
import os import os
from typing import List from typing import List

@ -0,0 +1,665 @@
"""
GraphSwarm: A production-grade framework for orchestrating swarms of agents
Author: Claude
License: MIT
Version: 2.0.0
"""
import asyncio
import json
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple, Union
import chromadb
import networkx as nx
from loguru import logger
from pydantic import BaseModel, Field
from swarms import Agent
# Configure logging
logger.add(
"graphswarm.log",
rotation="500 MB",
retention="10 days",
level="INFO",
format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
)
class AgentOutput(BaseModel):
"""Structured output from an agent."""
agent_name: str
timestamp: float = Field(default_factory=time.time)
output: Any
execution_time: float
error: Optional[str] = None
metadata: Dict = Field(default_factory=dict)
class SwarmOutput(BaseModel):
"""Structured output from the entire swarm."""
timestamp: float = Field(default_factory=time.time)
outputs: Dict[str, AgentOutput]
execution_time: float
success: bool
error: Optional[str] = None
metadata: Dict = Field(default_factory=dict)
class SwarmMemory:
"""Vector-based memory system for GraphSwarm using ChromaDB."""
def __init__(self, collection_name: str = "swarm_memories"):
"""Initialize SwarmMemory with ChromaDB."""
self.client = chromadb.Client()
# Get or create collection
self.collection = self.client.get_or_create_collection(
name=collection_name,
metadata={"description": "GraphSwarm execution memories"},
)
def store_execution(self, task: str, result: SwarmOutput):
"""Store execution results in vector memory."""
try:
# Create metadata
metadata = {
"timestamp": datetime.now().isoformat(),
"success": result.success,
"execution_time": result.execution_time,
"agent_sequence": json.dumps(
[name for name in result.outputs.keys()]
),
"error": result.error if result.error else "",
}
# Create document from outputs
document = {
"task": task,
"outputs": json.dumps(
{
name: {
"output": str(output.output),
"execution_time": output.execution_time,
"error": output.error,
}
for name, output in result.outputs.items()
}
),
}
# Store in ChromaDB
self.collection.add(
documents=[json.dumps(document)],
metadatas=[metadata],
ids=[f"exec_{datetime.now().timestamp()}"],
)
print("added to database")
logger.info(f"Stored execution in memory: {task}")
except Exception as e:
logger.error(
f"Failed to store execution in memory: {str(e)}"
)
def get_similar_executions(self, task: str, limit: int = 5):
"""Retrieve similar past executions."""
try:
# Query ChromaDB for similar executions
results = self.collection.query(
query_texts=[task],
n_results=limit,
include=["documents", "metadatas"],
)
print(results)
if not results["documents"]:
return []
# Process results
executions = []
for doc, metadata in zip(
results["documents"][0], results["metadatas"][0]
):
doc_dict = json.loads(doc)
executions.append(
{
"task": doc_dict["task"],
"outputs": json.loads(doc_dict["outputs"]),
"success": metadata["success"],
"execution_time": metadata["execution_time"],
"agent_sequence": json.loads(
metadata["agent_sequence"]
),
"timestamp": metadata["timestamp"],
}
)
return executions
except Exception as e:
logger.error(
f"Failed to retrieve similar executions: {str(e)}"
)
return []
def get_optimal_sequence(self, task: str) -> Optional[List[str]]:
"""Get the most successful agent sequence for similar tasks."""
similar_executions = self.get_similar_executions(task)
print(f"similar_executions {similar_executions}")
if not similar_executions:
return None
# Sort by success and execution time
successful_execs = [
ex for ex in similar_executions if ex["success"]
]
if not successful_execs:
return None
# Return sequence from most successful execution
return successful_execs[0]["agent_sequence"]
def clear_memory(self):
"""Clear all memories."""
self.client.delete_collection(self.collection.name)
self.collection = self.client.get_or_create_collection(
name=self.collection.name
)
class GraphSwarm:
"""
Enhanced framework for creating and managing swarms of collaborative agents.
"""
def __init__(
self,
agents: Union[
List[Agent], List[Tuple[Agent, List[str]]], None
] = None,
max_workers: Optional[int] = None,
swarm_name: str = "Collaborative Agent Swarm",
memory_collection: str = "swarm_memory",
):
"""Initialize GraphSwarm."""
self.graph = nx.DiGraph()
self.agents: Dict[str, Agent] = {}
self.dependencies: Dict[str, List[str]] = {}
self.executor = ThreadPoolExecutor(max_workers=max_workers)
self.swarm_name = swarm_name
self.memory_collection = memory_collection
self.memory = SwarmMemory(collection_name=memory_collection)
if agents:
self.initialize_agents(agents)
logger.info(f"Initialized GraphSwarm: {swarm_name}")
def initialize_agents(
self,
agents: Union[List[Agent], List[Tuple[Agent, List[str]]]],
):
"""Initialize agents and their dependencies."""
try:
# Handle list of Agents or (Agent, dependencies) tuples
for item in agents:
if isinstance(item, tuple):
agent, dependencies = item
else:
agent, dependencies = item, []
if not isinstance(agent, Agent):
raise ValueError(
f"Expected Agent object, got {type(agent)}"
)
self.agents[agent.agent_name] = agent
self.dependencies[agent.agent_name] = dependencies
self.graph.add_node(agent.agent_name, agent=agent)
# Add dependencies
for dep in dependencies:
if dep not in self.agents:
raise ValueError(
f"Dependency {dep} not found for agent {agent.agent_name}"
)
self.graph.add_edge(dep, agent.agent_name)
self._validate_graph()
except Exception as e:
logger.error(f"Failed to initialize agents: {str(e)}")
raise
def _validate_graph(self):
"""Validate the agent dependency graph."""
if not self.graph.nodes():
raise ValueError("No agents added to swarm")
if not nx.is_directed_acyclic_graph(self.graph):
cycles = list(nx.simple_cycles(self.graph))
raise ValueError(
f"Agent dependency graph contains cycles: {cycles}"
)
def _get_agent_role_description(self, agent_name: str) -> str:
"""Generate a description of the agent's role in the swarm."""
predecessors = list(self.graph.predecessors(agent_name))
successors = list(self.graph.successors(agent_name))
position = (
"initial"
if not predecessors
else ("final" if not successors else "intermediate")
)
role = f"""You are {agent_name}, a specialized agent in the {self.swarm_name}.
Position: {position} agent in the workflow
Your relationships:"""
if predecessors:
role += (
f"\nYou receive input from: {', '.join(predecessors)}"
)
if successors:
role += f"\nYour output will be used by: {', '.join(successors)}"
return role
def _generate_workflow_context(self) -> str:
"""Generate a description of the entire workflow."""
execution_order = list(nx.topological_sort(self.graph))
workflow = f"""Workflow Overview of {self.swarm_name}:
Processing Order:
{' -> '.join(execution_order)}
Agent Roles:
"""
for agent_name in execution_order:
predecessors = list(self.graph.predecessors(agent_name))
successors = list(self.graph.successors(agent_name))
workflow += f"\n\n{agent_name}:"
if predecessors:
workflow += (
f"\n- Receives from: {', '.join(predecessors)}"
)
if successors:
workflow += f"\n- Sends to: {', '.join(successors)}"
if not predecessors and not successors:
workflow += "\n- Independent agent"
return workflow
def _build_agent_prompt(
self, agent_name: str, task: str, context: Dict = None
) -> str:
"""Build a comprehensive prompt for the agent including role and context."""
prompt_parts = [
self._get_agent_role_description(agent_name),
"\nWorkflow Context:",
self._generate_workflow_context(),
"\nYour Task:",
task,
]
if context:
prompt_parts.extend(
["\nContext from Previous Agents:", str(context)]
)
prompt_parts.extend(
[
"\nInstructions:",
"1. Process the task according to your role",
"2. Consider the input from previous agents when available",
"3. Provide clear, structured output",
"4. Remember that your output will be used by subsequent agents",
"\nResponse Guidelines:",
"- Provide clear, well-organized output",
"- Include relevant details and insights",
"- Highlight key findings",
"- Flag any uncertainties or issues",
]
)
return "\n".join(prompt_parts)
async def _execute_agent(
self, agent_name: str, task: str, context: Dict = None
) -> AgentOutput:
"""Execute a single agent."""
start_time = time.time()
agent = self.agents[agent_name]
try:
# Build comprehensive prompt
full_prompt = self._build_agent_prompt(
agent_name, task, context
)
logger.debug(f"Prompt for {agent_name}:\n{full_prompt}")
# Execute agent
output = await asyncio.to_thread(agent.run, full_prompt)
return AgentOutput(
agent_name=agent_name,
output=output,
execution_time=time.time() - start_time,
metadata={
"task": task,
"context": context,
"position_in_workflow": list(
nx.topological_sort(self.graph)
).index(agent_name),
},
)
except Exception as e:
logger.error(
f"Error executing agent {agent_name}: {str(e)}"
)
return AgentOutput(
agent_name=agent_name,
output=None,
execution_time=time.time() - start_time,
error=str(e),
metadata={"task": task},
)
async def execute(self, task: str) -> SwarmOutput:
"""
Execute the entire swarm of agents with memory integration.
Args:
task: Initial task to execute
Returns:
SwarmOutput: Structured output from all agents
"""
start_time = time.time()
outputs = {}
success = True
error = None
try:
# Get similar past executions
similar_executions = self.memory.get_similar_executions(
task, limit=3
)
optimal_sequence = self.memory.get_optimal_sequence(task)
# Get base execution order
base_execution_order = list(
nx.topological_sort(self.graph)
)
# Determine final execution order
if optimal_sequence and all(
agent in base_execution_order
for agent in optimal_sequence
):
logger.info(
f"Using optimal sequence from memory: {optimal_sequence}"
)
execution_order = optimal_sequence
else:
execution_order = base_execution_order
# Get historical context if available
historical_context = {}
if similar_executions:
best_execution = similar_executions[0]
if best_execution["success"]:
historical_context = {
"similar_task": best_execution["task"],
"previous_outputs": best_execution["outputs"],
"execution_time": best_execution[
"execution_time"
],
"success_patterns": self._extract_success_patterns(
similar_executions
),
}
# Execute agents in order
for agent_name in execution_order:
try:
# Get context from dependencies and history
agent_context = {
"dependencies": {
dep: outputs[dep].output
for dep in self.graph.predecessors(
agent_name
)
if dep in outputs
},
"historical": historical_context,
"position": execution_order.index(agent_name),
"total_agents": len(execution_order),
}
# Execute agent with enhanced context
output = await self._execute_agent(
agent_name, task, agent_context
)
outputs[agent_name] = output
# Update historical context with current execution
if output.output:
historical_context.update(
{
f"current_{agent_name}_output": output.output
}
)
# Check for errors
if output.error:
success = False
error = f"Agent {agent_name} failed: {output.error}"
# Try to recover using memory
if similar_executions:
recovery_output = self._attempt_recovery(
agent_name, task, similar_executions
)
if recovery_output:
outputs[agent_name] = recovery_output
success = True
error = None
continue
break
except Exception as agent_error:
logger.error(
f"Error executing agent {agent_name}: {str(agent_error)}"
)
success = False
error = f"Agent {agent_name} failed: {str(agent_error)}"
break
# Create result
result = SwarmOutput(
outputs=outputs,
execution_time=time.time() - start_time,
success=success,
error=error,
metadata={
"task": task,
"used_optimal_sequence": optimal_sequence
is not None,
"similar_executions_found": len(
similar_executions
),
"execution_order": execution_order,
"historical_context_used": bool(
historical_context
),
},
)
# Store execution in memory
await self._store_execution_async(task, result)
return result
except Exception as e:
logger.error(f"Swarm execution failed: {str(e)}")
return SwarmOutput(
outputs=outputs,
execution_time=time.time() - start_time,
success=False,
error=str(e),
metadata={"task": task},
)
def run(self, task: str) -> SwarmOutput:
"""Synchronous interface to execute the swarm."""
return asyncio.run(self.execute(task))
def _extract_success_patterns(
self, similar_executions: List[Dict]
) -> Dict:
"""Extract success patterns from similar executions."""
patterns = {}
successful_execs = [
ex for ex in similar_executions if ex["success"]
]
if successful_execs:
patterns = {
"common_sequences": self._find_common_sequences(
successful_execs
),
"avg_execution_time": sum(
ex["execution_time"] for ex in successful_execs
)
/ len(successful_execs),
"successful_strategies": self._extract_strategies(
successful_execs
),
}
return patterns
def _attempt_recovery(
self,
failed_agent: str,
task: str,
similar_executions: List[Dict],
) -> Optional[AgentOutput]:
"""Attempt to recover from failure using memory."""
for execution in similar_executions:
if (
execution["success"]
and failed_agent in execution["outputs"]
):
historical_output = execution["outputs"][failed_agent]
return AgentOutput(
agent_name=failed_agent,
output=historical_output["output"],
execution_time=historical_output[
"execution_time"
],
metadata={
"recovered_from_memory": True,
"original_task": execution["task"],
},
)
return None
async def _store_execution_async(
self, task: str, result: SwarmOutput
):
"""Asynchronously store execution in memory."""
try:
await asyncio.to_thread(
self.memory.store_execution, task, result
)
except Exception as e:
logger.error(
f"Failed to store execution in memory: {str(e)}"
)
def add_agent(self, agent: Agent, dependencies: List[str] = None):
"""Add a new agent to the swarm."""
dependencies = dependencies or []
self.agents[agent.agent_name] = agent
self.dependencies[agent.agent_name] = dependencies
self.graph.add_node(agent.agent_name, agent=agent)
for dep in dependencies:
if dep not in self.agents:
raise ValueError(f"Dependency {dep} not found")
self.graph.add_edge(dep, agent.agent_name)
self._validate_graph()
if __name__ == "__main__":
try:
# Create agents
data_collector = Agent(
agent_name="Market-Data-Collector",
model_name="gpt-4o-mini",
max_loops=1,
streaming_on=True,
)
trend_analyzer = Agent(
agent_name="Market-Trend-Analyzer",
model_name="gpt-4o-mini",
max_loops=1,
streaming_on=True,
)
report_generator = Agent(
agent_name="Investment-Report-Generator",
model_name="gpt-4o-mini",
max_loops=1,
streaming_on=True,
)
# Create swarm
swarm = GraphSwarm(
agents=[
(data_collector, []),
(trend_analyzer, ["Market-Data-Collector"]),
(report_generator, ["Market-Trend-Analyzer"]),
],
swarm_name="Market Analysis Intelligence Network",
)
# Run the swarm
result = swarm.run(
"Analyze current market trends for tech stocks and provide investment recommendations"
)
# Print results
print(f"Execution success: {result.success}")
print(f"Total time: {result.execution_time:.2f} seconds")
for agent_name, output in result.outputs.items():
print(f"\nAgent: {agent_name}")
print(f"Output: {output.output}")
if output.error:
print(f"Error: {output.error}")
except Exception as error:
logger.error(error)
raise error

@ -0,0 +1,276 @@
import asyncio
import pulsar
from pulsar import ConsumerType
from loguru import logger
from swarms import Agent
from typing import List, Dict, Any
import json
class ScalableAsyncAgentSwarm:
"""
A scalable, asynchronous swarm of agents leveraging Apache Pulsar for inter-agent communication.
Provides load balancing, health monitoring, dead letter queues, and centralized logging.
"""
def __init__(
self,
pulsar_url: str,
topic: str,
dlq_topic: str,
agents_config: List[Dict[str, Any]],
):
"""
Initializes the async swarm with agents.
Args:
pulsar_url (str): The URL of the Apache Pulsar broker.
topic (str): The main topic for task distribution.
dlq_topic (str): The Dead Letter Queue topic for failed messages.
agents_config (List[Dict[str, Any]]): List of agent configurations with `name`, `description`, and `model_name`.
"""
self.pulsar_url = pulsar_url
self.topic = topic
self.dlq_topic = dlq_topic
self.agents_config = agents_config
self.client = pulsar.Client(pulsar_url)
self.consumer = self.client.subscribe(
topic,
subscription_name="swarm-task-sub",
consumer_type=ConsumerType.Shared,
)
self.dlq_producer = self.client.create_producer(dlq_topic)
self.response_logger = []
self.agents = [
self.create_agent(config) for config in agents_config
]
self.agent_index = 0
logger.info(
"Swarm initialized with agents: {}",
[agent["name"] for agent in agents_config],
)
def create_agent(
self, agent_config: Dict[str, Any]
) -> Dict[str, Any]:
"""
Creates a new agent configuration with asynchronous capabilities.
Args:
agent_config (Dict[str, Any]): Configuration dictionary with agent details.
Returns:
Dict[str, Any]: A dictionary containing agent metadata and functionality.
"""
agent_name = agent_config["name"]
description = agent_config["description"]
model_name = agent_config.get("model_name", "gpt-4o-mini")
class AsyncAgent:
"""
An asynchronous agent that processes tasks and communicates via Apache Pulsar.
"""
def __init__(
self, name: str, description: str, model_name: str
):
self.name = name
self.description = description
self.agent = Agent(
agent_name=name,
model_name=model_name,
max_loops="auto",
interactive=True,
streaming_on=True,
)
logger.info(
f"Initialized agent '{name}' - {description}"
)
async def process_task(
self, message: str
) -> Dict[str, Any]:
"""
Processes a single task using the agent.
Args:
message (str): The task message.
Returns:
Dict[str, Any]: JSON-formatted response.
"""
try:
logger.info(
f"Agent {self.name} processing task: {message}"
)
response = await asyncio.to_thread(
self.agent.run, message
)
logger.info(f"Agent {self.name} completed task.")
return {
"agent_name": self.name,
"response": response,
}
except Exception as e:
logger.error(
f"Agent {self.name} encountered an error: {e}"
)
return {"agent_name": self.name, "error": str(e)}
return {
"name": agent_name,
"instance": AsyncAgent(
agent_name, description, model_name
),
}
async def distribute_task(self, message: str):
"""
Distributes a task to the next available agent using round-robin.
Args:
message (str): The task message.
"""
agent = self.agents[self.agent_index]
self.agent_index = (self.agent_index + 1) % len(self.agents)
try:
response = await agent["instance"].process_task(message)
self.log_response(response)
except Exception as e:
logger.error(
f"Error processing task by agent {agent['name']}: {e}"
)
self.send_to_dlq(message)
async def monitor_health(self):
"""
Periodically monitors the health of agents.
"""
while True:
logger.info("Performing health check for all agents.")
for agent in self.agents:
logger.info(f"Agent {agent['name']} is online.")
await asyncio.sleep(10)
def send_to_dlq(self, message: str):
"""
Sends a failed message to the Dead Letter Queue (DLQ).
Args:
message (str): The message to send to the DLQ.
"""
try:
self.dlq_producer.send(message.encode("utf-8"))
logger.info("Message sent to Dead Letter Queue.")
except Exception as e:
logger.error(f"Failed to send message to DLQ: {e}")
def log_response(self, response: Dict[str, Any]):
"""
Logs the response to a centralized list for later analysis.
Args:
response (Dict[str, Any]): The agent's response.
"""
self.response_logger.append(response)
logger.info(f"Response logged: {response}")
async def listen_and_distribute(self):
"""
Listens to the main Pulsar topic and distributes tasks to agents.
"""
while True:
msg = self.consumer.receive()
try:
message = msg.data().decode("utf-8")
logger.info(f"Received task: {message}")
await self.distribute_task(message)
self.consumer.acknowledge(msg)
except Exception as e:
logger.error(f"Error processing message: {e}")
self.send_to_dlq(msg.data().decode("utf-8"))
self.consumer.negative_acknowledge(msg)
async def run(self):
"""
Runs the swarm asynchronously with health monitoring and task distribution.
"""
logger.info("Starting the async swarm...")
task_listener = asyncio.create_task(
self.listen_and_distribute()
)
health_monitor = asyncio.create_task(self.monitor_health())
await asyncio.gather(task_listener, health_monitor)
def shutdown(self):
"""
Safely shuts down the swarm and logs all responses.
"""
logger.info("Shutting down the swarm...")
self.client.close()
with open("responses.json", "w") as f:
json.dump(self.response_logger, f, indent=4)
logger.info("Responses saved to 'responses.json'.")
# from scalable_agent_swarm import ScalableAsyncAgentSwarm # Assuming your swarm class is saved here
if __name__ == "__main__":
# Example Configuration
PULSAR_URL = "pulsar://localhost:6650"
TOPIC = "stock-analysis"
DLQ_TOPIC = "stock-analysis-dlq"
# Agents configuration
AGENTS_CONFIG = [
{
"name": "Stock-Analysis-Agent-1",
"description": "Analyzes stock trends.",
"model_name": "gpt-4o-mini",
},
{
"name": "Stock-News-Agent",
"description": "Summarizes stock news.",
"model_name": "gpt-4o-mini",
},
{
"name": "Tech-Trends-Agent",
"description": "Tracks tech sector trends.",
"model_name": "gpt-4o-mini",
},
]
# Tasks to send
TASKS = [
"Analyze the trend for tech stocks in Q4 2024",
"Summarize the latest news on the S&P 500",
"Identify the top-performing sectors in the stock market",
"Provide a forecast for AI-related stocks for 2025",
]
# Initialize and run the swarm
swarm = ScalableAsyncAgentSwarm(
PULSAR_URL, TOPIC, DLQ_TOPIC, AGENTS_CONFIG
)
try:
# Run the swarm in the background
swarm_task = asyncio.create_task(swarm.run())
# Send tasks to the topic
client = pulsar.Client(PULSAR_URL)
producer = client.create_producer(TOPIC)
for task in TASKS:
producer.send(task.encode("utf-8"))
print(f"Sent task: {task}")
producer.close()
client.close()
# Keep the swarm running
asyncio.run(swarm_task)
except KeyboardInterrupt:
swarm.shutdown()

@ -63,40 +63,40 @@ def any_to_str(data: Union[str, Dict, List, Tuple, Any]) -> str:
return f"Error converting data: {str(e)}" return f"Error converting data: {str(e)}"
def main(): # def main():
# Example 1: Dictionary # # Example 1: Dictionary
print("Dictionary:") # print("Dictionary:")
print( # print(
any_to_str( # any_to_str(
{ # {
"name": "John", # "name": "John",
"age": 30, # "age": 30,
"hobbies": ["reading", "hiking"], # "hobbies": ["reading", "hiking"],
} # }
) # )
) # )
print("\nNested Dictionary:") # print("\nNested Dictionary:")
print( # print(
any_to_str( # any_to_str(
{ # {
"user": { # "user": {
"id": 123, # "id": 123,
"details": {"city": "New York", "active": True}, # "details": {"city": "New York", "active": True},
}, # },
"data": [1, 2, 3], # "data": [1, 2, 3],
} # }
) # )
) # )
print("\nList and Tuple:") # print("\nList and Tuple:")
print(any_to_str([1, "text", None, (1, 2)])) # print(any_to_str([1, "text", None, (1, 2)]))
print(any_to_str((True, False, None))) # print(any_to_str((True, False, None)))
print("\nEmpty Collections:") # print("\nEmpty Collections:")
print(any_to_str([])) # print(any_to_str([]))
print(any_to_str({})) # print(any_to_str({}))
if __name__ == "__main__": # if __name__ == "__main__":
main() # main()

@ -4,7 +4,6 @@ from functools import wraps
from typing import Any, Callable from typing import Any, Callable
import psutil import psutil
from loguru import logger
from pydantic import BaseModel from pydantic import BaseModel
from swarms.utils.loguru_logger import initialize_logger from swarms.utils.loguru_logger import initialize_logger

@ -1,203 +0,0 @@
from typing import Any
import inspect
from functools import partial
import logging
class NameResolver:
"""Utility class for resolving names of various objects"""
@staticmethod
def get_name(obj: Any, default: str = "unnamed_callable") -> str:
"""
Get the name of any object with multiple fallback strategies.
Args:
obj: The object to get the name from
default: Default name if all strategies fail
Returns:
str: The resolved name
"""
strategies = [
# Try getting __name__ attribute
lambda x: getattr(x, "__name__", None),
# Try getting class name
lambda x: (
x.__class__.__name__
if hasattr(x, "__class__")
else None
),
# Try getting function name if it's a partial
lambda x: (
x.func.__name__ if isinstance(x, partial) else None
),
# Try getting the name from the class's type
lambda x: type(x).__name__,
# Try getting qualname
lambda x: getattr(x, "__qualname__", None),
# Try getting the module and class name
lambda x: (
f"{x.__module__}.{x.__class__.__name__}"
if hasattr(x, "__module__")
else None
),
# For async functions
lambda x: (
x.__name__ if inspect.iscoroutinefunction(x) else None
),
# For classes with custom __str__
lambda x: (
str(x)
if hasattr(x, "__str__")
and x.__str__ != object.__str__
else None
),
# For wrapped functions
lambda x: (
getattr(x, "__wrapped__", None).__name__
if hasattr(x, "__wrapped__")
else None
),
]
# Try each strategy
for strategy in strategies:
try:
name = strategy(obj)
if name and isinstance(name, str):
return name.replace(" ", "_").replace("-", "_")
except Exception:
continue
# Return default if all strategies fail
return default
@staticmethod
def get_callable_details(obj: Any) -> dict:
"""
Get detailed information about a callable object.
Returns:
dict: Dictionary containing:
- name: The resolved name
- type: The type of callable
- signature: The signature if available
- module: The module name if available
- doc: The docstring if available
"""
details = {
"name": NameResolver.get_name(obj),
"type": "unknown",
"signature": None,
"module": getattr(obj, "__module__", "unknown"),
"doc": inspect.getdoc(obj)
or "No documentation available",
}
# Determine the type
if inspect.isclass(obj):
details["type"] = "class"
elif inspect.iscoroutinefunction(obj):
details["type"] = "async_function"
elif inspect.isfunction(obj):
details["type"] = "function"
elif isinstance(obj, partial):
details["type"] = "partial"
elif callable(obj):
details["type"] = "callable"
# Try to get signature
try:
details["signature"] = str(inspect.signature(obj))
except (ValueError, TypeError):
details["signature"] = "Unknown signature"
return details
@classmethod
def get_safe_name(cls, obj: Any, max_retries: int = 3) -> str:
"""
Safely get a name with retries and validation.
Args:
obj: Object to get name from
max_retries: Maximum number of retry attempts
Returns:
str: A valid name string
"""
retries = 0
last_error = None
while retries < max_retries:
try:
name = cls.get_name(obj)
# Validate and clean the name
if name:
# Remove invalid characters
clean_name = "".join(
c
for c in name
if c.isalnum() or c in ["_", "."]
)
# Ensure it starts with a letter or underscore
if (
not clean_name[0].isalpha()
and clean_name[0] != "_"
):
clean_name = f"_{clean_name}"
return clean_name
except Exception as e:
last_error = e
retries += 1
# If all retries failed, generate a unique fallback name
import uuid
fallback = f"callable_{uuid.uuid4().hex[:8]}"
logging.warning(
f"Failed to get name after {max_retries} retries. Using fallback: {fallback}. "
f"Last error: {str(last_error)}"
)
return fallback
# # Example usage
# if __name__ == "__main__":
# def test_resolver():
# # Test cases
# class TestClass:
# def method(self):
# pass
# async def async_func():
# pass
# test_cases = [
# TestClass, # Class
# TestClass(), # Instance
# async_func, # Async function
# lambda x: x, # Lambda
# partial(print, end=""), # Partial
# TestClass.method, # Method
# print, # Built-in function
# str, # Built-in class
# ]
# resolver = NameResolver()
# print("\nName Resolution Results:")
# print("-" * 50)
# for obj in test_cases:
# details = resolver.get_callable_details(obj)
# safe_name = resolver.get_safe_name(obj)
# print(f"\nObject: {obj}")
# print(f"Safe Name: {safe_name}")
# print(f"Details: {details}")
# test_resolver()

@ -0,0 +1,105 @@
try:
from litellm import completion
except ImportError:
import subprocess
subprocess.check_call(["pip", "install", "litellm"])
import litellm
from litellm import completion
litellm.set_verbose = True
class LiteLLM:
"""
This class represents a LiteLLM.
It is used to interact with the LLM model for various tasks.
"""
def __init__(
self,
model_name: str = "gpt-4o",
system_prompt: str = None,
stream: bool = False,
temperature: float = 0.5,
max_tokens: int = 4000,
):
"""
Initialize the LiteLLM with the given parameters.
Args:
model_name (str, optional): The name of the model to use. Defaults to "gpt-4o".
system_prompt (str, optional): The system prompt to use. Defaults to None.
stream (bool, optional): Whether to stream the output. Defaults to False.
temperature (float, optional): The temperature for the model. Defaults to 0.5.
max_tokens (int, optional): The maximum number of tokens to generate. Defaults to 4000.
"""
self.model_name = model_name
self.system_prompt = system_prompt
self.stream = stream
self.temperature = temperature
self.max_tokens = max_tokens
def _prepare_messages(self, task: str) -> list:
"""
Prepare the messages for the given task.
Args:
task (str): The task to prepare messages for.
Returns:
list: A list of messages prepared for the task.
"""
messages = []
if self.system_prompt: # Check if system_prompt is not None
messages.append(
{"role": "system", "content": self.system_prompt}
)
messages.append({"role": "user", "content": task})
return messages
def run(self, task: str, *args, **kwargs):
"""
Run the LLM model for the given task.
Args:
task (str): The task to run the model for.
*args: Additional positional arguments to pass to the model.
**kwargs: Additional keyword arguments to pass to the model.
Returns:
str: The content of the response from the model.
"""
messages = self._prepare_messages(task)
response = completion(
model=self.model_name,
messages=messages,
stream=self.stream,
temperature=self.temperature,
# max_completion_tokens=self.max_tokens,
max_tokens=self.max_tokens,
*args,
**kwargs,
)
content = response.choices[
0
].message.content # Accessing the content
return content
def __call__(self, task: str, *args, **kwargs):
"""
Call the LLM model for the given task.
Args:
task (str): The task to run the model for.
*args: Additional positional arguments to pass to the model.
**kwargs: Additional keyword arguments to pass to the model.
Returns:
str: The content of the response from the model.
"""
return self.run(task, *args, **kwargs)

@ -0,0 +1,73 @@
import os
from loguru import logger
import pygame
import requests
import tempfile
from openai import OpenAI
class OpenAITTS:
"""
A class to interact with OpenAI API and play the generated audio with improved streaming capabilities.
"""
def __init__(self, *args, **kwargs):
self.client = OpenAI(
api_key=os.getenv("OPENAI_API_KEY"), *args, **kwargs
)
pygame.init()
def run(
self, task: str, play_sound: bool = True, *args, **kwargs
):
"""
Run a task with the OpenAI API and optionally play the generated audio with improved streaming.
Args:
task (str): The task to be executed.
play_sound (bool): If True, play the generated audio.
Returns:
None
"""
try:
response = self.client.audio.speech.create(
model="tts-1",
voice="nova",
input=task,
*args,
**kwargs,
)
audio_url = response["url"]
logger.info("Task completed successfully.")
if play_sound:
with tempfile.NamedTemporaryFile(
delete=False, suffix=".mp3"
) as tmp_file:
with requests.get(audio_url, stream=True) as r:
r.raise_for_status()
for chunk in r.iter_content(chunk_size=8192):
tmp_file.write(chunk)
pygame.mixer.music.load(tmp_file.name)
pygame.mixer.music.play()
while pygame.mixer.music.get_busy():
pygame.time.Clock().tick(10)
except Exception as e:
logger.error(f"Error during task execution: {str(e)}")
# client = OpenAITTS(api_key=os.getenv("OPENAI_API_KEY"))
# client.run("Hello world! This is a streaming test.", play_sound=True)
def text_to_speech(
task: str, play_sound: bool = True, *args, **kwargs
):
out = OpenAITTS().run(
task, play_sound=play_sound, *args, **kwargs
)
return out
# print(text_to_speech(task="hello"))

@ -1,50 +1,64 @@
import re import re
def extract_code_from_markdown(markdown_content: str) -> str: def extract_code_blocks_with_language(markdown_text: str):
""" """
Extracts code blocks from a Markdown string and returns them as a single string. Extracts all code blocks from Markdown text along with their languages.
Args: Args:
- markdown_content (str): The Markdown content as a string. markdown_text (str): The input Markdown text.
Returns: Returns:
- str: A single string containing all the code blocks separated by newlines. list[dict]: A list of dictionaries, each containing:
- 'language': The detected language (or 'plaintext' if none specified).
- 'content': The content of the code block.
""" """
# Regular expression for fenced code blocks with optional language specifier # Regex pattern to match code blocks and optional language specifiers
pattern = r"```(?:\w+\n)?(.*?)```" pattern = r"```(\w+)?\n(.*?)```"
# Check if markdown_content is a string # Find all matches (language and content)
if not isinstance(markdown_content, str): matches = re.findall(pattern, markdown_text, re.DOTALL)
raise TypeError("markdown_content must be a string")
# Find all matches of the pattern # Parse results
matches = re.finditer(pattern, markdown_content, re.DOTALL)
# Extract the content inside the backticks
code_blocks = [] code_blocks = []
for match in matches: for language, content in matches:
code_block = match.group(1).strip() language = (
# Remove any leading or trailing whitespace from the code block language.strip() if language else "plaintext"
code_block = code_block.strip() ) # Default to 'plaintext'
# Remove any empty lines from the code block code_blocks.append(
code_block = "\n".join( {"language": language, "content": content.strip()}
[line for line in code_block.split("\n") if line.strip()]
) )
code_blocks.append(code_block)
# Concatenate all code blocks separated by newlines return code_blocks
if code_blocks:
return "\n\n".join(code_blocks)
else: def extract_code_from_markdown(
return "" markdown_text: str, language: str = None
):
"""
Extracts content of code blocks for a specific language or all blocks if no language specified.
Args:
markdown_text (str): The input Markdown text.
language (str, optional): The language to filter by (e.g., 'yaml', 'python').
# example = """ Returns:
# hello im an agent str: The concatenated content of matched code blocks or an empty string if none found.
# ```bash """
# pip install swarms # Get all code blocks with detected languages
# ``` code_blocks = extract_code_blocks_with_language(markdown_text)
# """
# Filter by language if specified
if language:
code_blocks = [
block["content"]
for block in code_blocks
if block["language"] == language
]
else:
code_blocks = [
block["content"] for block in code_blocks
] # Include all blocks
# print(extract_code_from_markdown(example)) # Output: { "type": "function", "function": { "name": "fetch_financial_news", "parameters": { "query": "Nvidia news", "num_articles": 5 } } } # Return concatenated content
return "\n\n".join(code_blocks) if code_blocks else ""

@ -1,14 +1,12 @@
import sys
from swarms.utils.try_except_wrapper import try_except_wrapper from swarms.utils.try_except_wrapper import try_except_wrapper
try: try:
import pypdf import pypdf
except ImportError: except ImportError:
print( import subprocess
"pypdf not installed. Please install it using: pip install"
" pypdf" subprocess.check_call(["python", "-m", "pip", "install", "pypdf"])
) import pypdf
sys.exit(1)
@try_except_wrapper @try_except_wrapper

@ -1,51 +0,0 @@
import json
import yaml
def remove_whitespace_from_json(json_string: str) -> str:
"""
Removes unnecessary whitespace from a JSON string.
This function parses the JSON string into a Python object and then
serializes it back into a JSON string without unnecessary whitespace.
Args:
json_string (str): The JSON string.
Returns:
str: The JSON string with whitespace removed.
"""
parsed = json.loads(json_string)
return json.dumps(parsed, separators=(",", ":"))
# # Example usage for JSON
# json_string = '{"field1": 123, "field2": "example text"}'
# print(remove_whitespace_from_json(json_string))
def remove_whitespace_from_yaml(yaml_string: str) -> str:
"""
Removes unnecessary whitespace from a YAML string.
This function parses the YAML string into a Python object and then
serializes it back into a YAML string with minimized whitespace.
Note: This might change the representation style of YAML data.
Args:
yaml_string (str): The YAML string.
Returns:
str: The YAML string with whitespace reduced.
"""
parsed = yaml.safe_load(yaml_string)
return yaml.dump(parsed, default_flow_style=True)
# # Example usage for YAML
# yaml_string = """
# field1: 123
# field2: example text
# """
# print(remove_whitespace_from_yaml(yaml_string))

@ -1,292 +0,0 @@
import torch
import torch.nn as nn
import torch.distributed as dist
from dataclasses import dataclass
from typing import Optional, Tuple, Union
from loguru import logger
import math
@dataclass
class StarAttentionConfig:
"""Configuration for StarAttention module.
Attributes:
hidden_size: Dimension of the model's hidden states
num_attention_heads: Number of attention heads
num_hosts: Number of hosts in the distributed system
block_size: Size of each context block
anchor_size: Size of the anchor block
dropout_prob: Dropout probability (default: 0.1)
layer_norm_eps: Layer normalization epsilon (default: 1e-12)
"""
hidden_size: int
num_attention_heads: int
num_hosts: int
block_size: int
anchor_size: int
dropout_prob: float = 0.1
layer_norm_eps: float = 1e-12
class StarAttention(nn.Module):
"""
Implementation of Star Attention mechanism for distributed inference.
The module implements a two-phase attention mechanism:
1. Local Context Encoding with Anchor Blocks
2. Query Encoding and Output Generation with Global Attention
"""
def __init__(self, config: StarAttentionConfig):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"Hidden size {config.hidden_size} not divisible by number of attention "
f"heads {config.num_attention_heads}"
)
self.config = config
self.head_dim = (
config.hidden_size // config.num_attention_heads
)
# Initialize components
self.query = nn.Linear(config.hidden_size, config.hidden_size)
self.key = nn.Linear(config.hidden_size, config.hidden_size)
self.value = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_prob)
self.layer_norm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
# KV cache for storing computed key/value pairs
self.kv_cache = {}
logger.info(
f"Initialized StarAttention with config: {config}"
)
def _split_heads(
self, tensor: torch.Tensor, num_heads: int
) -> torch.Tensor:
"""Split the last dimension into (num_heads, head_dim)."""
batch_size, seq_len, _ = tensor.size()
tensor = tensor.view(
batch_size, seq_len, num_heads, self.head_dim
)
# Transpose to (batch_size, num_heads, seq_len, head_dim)
return tensor.transpose(1, 2)
def _merge_heads(self, tensor: torch.Tensor) -> torch.Tensor:
"""Merge the head dimension back into hidden_size."""
batch_size, _, seq_len, _ = tensor.size()
tensor = tensor.transpose(1, 2)
return tensor.reshape(
batch_size, seq_len, self.config.hidden_size
)
def _compute_attention_scores(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute attention scores and weighted values."""
# Scale dot-product attention
scores = torch.matmul(
query, key.transpose(-2, -1)
) / math.sqrt(self.head_dim)
if mask is not None:
scores = scores.masked_fill(mask == 0, float("-inf"))
# Online softmax computation
attention_probs = torch.nn.functional.softmax(scores, dim=-1)
attention_probs = self.dropout(attention_probs)
context = torch.matmul(attention_probs, value)
return context, attention_probs
def phase1_local_context_encoding(
self,
input_ids: torch.Tensor,
host_id: int,
device: Union[str, torch.device] = "cuda",
) -> None:
"""
Phase 1: Local Context Encoding with Anchor Blocks
Args:
input_ids: Input tensor of shape (batch_size, seq_len)
host_id: ID of the current host
device: Device to run computations on
"""
logger.debug(f"Starting Phase 1 on host {host_id}")
# Calculate block assignments
block_start = host_id * self.config.block_size
block_end = block_start + self.config.block_size
# Get local block
local_block = input_ids[:, block_start:block_end].to(device)
# Get anchor block (first block)
anchor_block = input_ids[:, : self.config.anchor_size].to(
device
)
# Compute KV pairs for local block
local_hidden = self.layer_norm(local_block)
local_key = self._split_heads(
self.key(local_hidden), self.config.num_attention_heads
)
local_value = self._split_heads(
self.value(local_hidden), self.config.num_attention_heads
)
# Store in KV cache
self.kv_cache[host_id] = {
"key": local_key,
"value": local_value,
"anchor_key": (
None
if host_id == 0
else self._split_heads(
self.key(self.layer_norm(anchor_block)),
self.config.num_attention_heads,
)
),
}
logger.debug(
f"Phase 1 complete on host {host_id}. KV cache shapes - "
f"key: {local_key.shape}, value: {local_value.shape}"
)
def phase2_query_encoding(
self,
query_input: torch.Tensor,
host_id: int,
is_query_host: bool,
device: Union[str, torch.device] = "cuda",
) -> Optional[torch.Tensor]:
"""
Phase 2: Query Encoding and Output Generation
Args:
query_input: Query tensor of shape (batch_size, seq_len, hidden_size)
host_id: ID of the current host
is_query_host: Whether this host is the query host
device: Device to run computations on
Returns:
Output tensor if this is the query host, None otherwise
"""
logger.debug(f"Starting Phase 2 on host {host_id}")
# Transform query
query_hidden = self.layer_norm(query_input)
query = self._split_heads(
self.query(query_hidden), self.config.num_attention_heads
)
# Compute local attention scores
local_context, local_probs = self._compute_attention_scores(
query,
self.kv_cache[host_id]["key"],
self.kv_cache[host_id]["value"],
)
if not is_query_host:
# Non-query hosts send their local attention statistics
dist.send(local_probs, dst=self.config.num_hosts - 1)
return None
# Query host aggregates attention from all hosts
all_attention_probs = [local_probs]
for src_rank in range(self.config.num_hosts - 1):
probs = torch.empty_like(local_probs)
dist.recv(probs, src=src_rank)
all_attention_probs.append(probs)
# Compute global attention
torch.mean(torch.stack(all_attention_probs), dim=0)
# Final output computation
output = self._merge_heads(local_context)
output = self.dropout(output)
logger.debug(
f"Phase 2 complete on host {host_id}. Output shape: {output.shape}"
)
return output
def forward(
self,
input_ids: torch.Tensor,
query_input: torch.Tensor,
host_id: int,
is_query_host: bool,
device: Union[str, torch.device] = "cuda",
) -> Optional[torch.Tensor]:
"""
Forward pass of the StarAttention module.
Args:
input_ids: Input tensor of shape (batch_size, seq_len)
query_input: Query tensor of shape (batch_size, seq_len, hidden_size)
host_id: ID of the current host
is_query_host: Whether this host is the query host
device: Device to run computations on
Returns:
Output tensor if this is the query host, None otherwise
"""
# Phase 1: Local Context Encoding
self.phase1_local_context_encoding(input_ids, host_id, device)
# Phase 2: Query Encoding and Output Generation
return self.phase2_query_encoding(
query_input, host_id, is_query_host, device
)
# Example forward pass
config = StarAttentionConfig(
hidden_size=768,
num_attention_heads=12,
num_hosts=3,
block_size=512,
anchor_size=128,
)
# Initialize model
model = StarAttention(config)
# Example input tensors
batch_size = 4
seq_len = 512
input_ids = torch.randint(
0, 1000, (batch_size, seq_len)
) # Random input IDs
query_input = torch.randn(
batch_size, seq_len, config.hidden_size
) # Random query input
# Example forward pass for query host (host_id = 2)
output = model(
input_ids=input_ids,
query_input=query_input,
host_id=2,
is_query_host=True,
device="cpu",
)
print(output)
Loading…
Cancel
Save