worker node error logging + optional modularity

Former-commit-id: 86a178e4d8
workerULTRANODE
Kye 2 years ago
parent 448d439a99
commit a59d6499d1

@ -13,21 +13,23 @@ import logging
from pydantic import BaseModel, Extra from pydantic import BaseModel, Extra
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class WorkerNode: class WorkerNode:
"""Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on""" """Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"""
def __init__(self, llm, tools, vectorstore): def __init__(self, llm, tools, vectorstore):
if not llm or not tools or not vectorstore: if not llm or not tools or not vectorstore:
raise ValueError("llm, tools, and vectorstore cannot be None") logging.error("llm, tools, and vectorstore cannot be None.")
raise ValueError("llm, tools, and vectorstore cannot be None.")
self.llm = llm self.llm = llm
self.tools = tools self.tools = tools
self.vectorstore = vectorstore self.vectorstore = vectorstore
self.agent = None self.agent = None
def create_agent(self, ai_name, ai_role, human_in_the_loop, search_kwargs): def create_agent(self, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
logging.info("Creating agent in WorkerNode") logging.info("Creating agent in WorkerNode")
try: try:
self.agent = AutoGPT.from_llm_and_tools( self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name, ai_name=ai_name,
ai_role=ai_role, ai_role=ai_role,
@ -37,27 +39,29 @@ class WorkerNode:
human_in_the_loop=human_in_the_loop, human_in_the_loop=human_in_the_loop,
chat_history_memory=FileChatMessageHistory("chat_history.txt"), chat_history_memory=FileChatMessageHistory("chat_history.txt"),
) )
self.agent.chain.verbose = True self.agent.chain.verbose = verbose
except Exception as e: except Exception as e:
logging.error(f"Error while creating agent: {str(e)}") logging.error(f"Error while creating agent: {str(e)}")
raise e raise e
def add_tool(self, tool: Tool): def add_tool(self, tool: Tool):
if not isinstance(tool, Tool): if not isinstance(tool, Tool):
raise TypeError("Tool must be an instance of Tool") logging.error("Tool must be an instance of Tool.")
raise TypeError("Tool must be an instance of Tool.")
self.tools.append(tool) self.tools.append(tool)
def run(self, prompt: str) -> str: def run(self, prompt: str) -> str:
if not isinstance(prompt, str): if not isinstance(prompt, str):
raise TypeError("Prompt must be a string") logging.error("Prompt must be a string.")
raise TypeError("Prompt must be a string.")
if not prompt: if not prompt:
raise ValueError("Prompt is empty") logging.error("Prompt is empty.")
raise ValueError("Prompt is empty.")
try: try:
self.agent.run([f"{prompt}"]) self.agent.run([f"{prompt}"])
return "Task completed by WorkerNode" return "Task completed by WorkerNode"
except Exception as e: except Exception as e:
@ -66,59 +70,88 @@ class WorkerNode:
# worker_tool = Tool(
# name="WorkerNode AI Agent",
# func=WorkerNode.run,
# description="Useful for when you need to spawn an autonomous agent instance as a worker to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"
# )
class WorkerNodeInitializer: class WorkerNodeInitializer:
def __init__(self, openai_api_key): def __init__(self, openai_api_key):
if not openai_api_key: if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("openai_api_key cannot be None") raise ValueError("openai_api_key cannot be None")
self.openai_api_key = openai_api_key self.openai_api_key = openai_api_key
def initialize_llm(self, llm_class, temperature=0.5): def initialize_llm(self, llm_class, temperature=0.5):
if not llm_class: if not llm_class:
logging.error("llm_class cannot be none")
raise ValueError("llm_class cannot be None") raise ValueError("llm_class cannot be None")
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
try:
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
raise
def initialize_tools(self, llm_class): def initialize_tools(self, llm_class):
if not llm_class: if not llm_class:
logging.error("llm_class not cannot be none")
raise ValueError("llm_class cannot be none") raise ValueError("llm_class cannot be none")
logging.info('Creating WorkerNode') try:
llm = self.initialize_llm(llm_class)
web_search = DuckDuckGoSearchRun() logging.info('Creating WorkerNode')
tools = [ llm = self.initialize_llm(llm_class)
web_search, web_search = DuckDuckGoSearchRun()
WriteFileTool(root_dir=ROOT_DIR),
ReadFileTool(root_dir=ROOT_DIR), tools = [
process_csv, web_search,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)), WriteFileTool(root_dir=ROOT_DIR),
] ReadFileTool(root_dir=ROOT_DIR),
return tools process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
]
if not tools:
logging.error("Tools are not initialized")
raise ValueError("Tools are not initialized")
return tools
except Exception as e:
logging.error(f"Failed to initialize tools: {e}")
def initialize_vectorstore(self): def initialize_vectorstore(self):
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) try:
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
def create_worker_node(self, llm_class=ChatOpenAI): embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
raise
def create_worker_node(self, llm_class=ChatOpenAI, ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
if not llm_class: if not llm_class:
raise ValueError("llm_class cannot be None") logging.error("llm_class cannot be None.")
worker_tools = self.initialize_tools(llm_class) raise ValueError("llm_class cannot be None.")
vectorstore = self.initialize_vectorstore() try:
worker_node = WorkerNode(llm=self.initialize_llm(llm_class), tools=worker_tools, vectorstore=vectorstore) worker_tools = self.initialize_tools(llm_class)
worker_node.create_agent(ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}) vectorstore = self.initialize_vectorstore()
return worker_node worker_node = WorkerNode(llm=self.initialize_llm(llm_class), tools=worker_tools, vectorstore=vectorstore)
worker_node.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose)
return worker_node
except Exception as e:
logging.error(f"Failed to create worker node: {e}")
raise
def worker_node(openai_api_key): def worker_node(openai_api_key):
if not openai_api_key: if not openai_api_key:
raise ValueError("openai_api_key cannot be none") logging.error("OpenAI API key is not provided")
initializer = WorkerNodeInitializer(openai_api_key) raise ValueError("OpenAI API key is required")
worker_node = initializer.create_worker_node()
return worker_node try:
initializer = WorkerNodeInitializer(openai_api_key)
worker_node = initializer.create_worker_node()
return worker_node
except Exception as e:
logging.error(f"An error occured in worker_node: {e}")
raise

@ -9,7 +9,6 @@ logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %
class Swarms: class Swarms:
def __init__(self, openai_api_key=""): def __init__(self, openai_api_key=""):
#openai_api_key: the openai key. Default is empty #openai_api_key: the openai key. Default is empty
if not openai_api_key: if not openai_api_key:
logging.error("OpenAI key is not provided") logging.error("OpenAI key is not provided")
raise ValueError("OpenAI API key is required") raise ValueError("OpenAI API key is required")
@ -25,7 +24,6 @@ class Swarms:
temperature (float): The Temperature for the language model. Default is 0.5 temperature (float): The Temperature for the language model. Default is 0.5
""" """
try: try:
# Initialize language model # Initialize language model
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
except Exception as e: except Exception as e:
@ -49,10 +47,11 @@ class Swarms:
process_csv, process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)), WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
] ]
assert tools is not None, "tools is not initialized" assert tools is not None, "tools is not initialized"
return tools return tools
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize tools: {e}") logging.error(f"Failed to initialize tools: {e}")
raise raise
@ -67,6 +66,7 @@ class Swarms:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 1536 embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size) index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize vector store: {e}") logging.error(f"Failed to initialize vector store: {e}")

Loading…
Cancel
Save