|
|
@ -57,11 +57,7 @@ from clusterops import (
|
|
|
|
execute_with_cpu_cores,
|
|
|
|
execute_with_cpu_cores,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
from swarms.agents.ape_agent import auto_generate_prompt
|
|
|
|
from swarms.agents.ape_agent import auto_generate_prompt
|
|
|
|
from dataclasses import asdict
|
|
|
|
import yaml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Utils
|
|
|
|
# Utils
|
|
|
|
# Custom stopping condition
|
|
|
|
# Custom stopping condition
|
|
|
@ -785,8 +781,6 @@ class Agent:
|
|
|
|
or loop_count < self.max_loops
|
|
|
|
or loop_count < self.max_loops
|
|
|
|
):
|
|
|
|
):
|
|
|
|
loop_count += 1
|
|
|
|
loop_count += 1
|
|
|
|
# Log step start
|
|
|
|
|
|
|
|
current_step_id = f"step_{loop_count}_{uuid.uuid4().hex}"
|
|
|
|
|
|
|
|
self.loop_count_print(loop_count, self.max_loops)
|
|
|
|
self.loop_count_print(loop_count, self.max_loops)
|
|
|
|
print("\n")
|
|
|
|
print("\n")
|
|
|
|
|
|
|
|
|
|
|
@ -805,21 +799,29 @@ class Agent:
|
|
|
|
while attempt < self.retry_attempts and not success:
|
|
|
|
while attempt < self.retry_attempts and not success:
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
if self.long_term_memory is not None:
|
|
|
|
if self.long_term_memory is not None:
|
|
|
|
logger.info("Querying long term memory...")
|
|
|
|
logger.info(
|
|
|
|
|
|
|
|
"Querying long term memory..."
|
|
|
|
|
|
|
|
)
|
|
|
|
self.memory_query(task_prompt)
|
|
|
|
self.memory_query(task_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
# Generate response using LLM
|
|
|
|
# Generate response using LLM
|
|
|
|
response_args = (
|
|
|
|
response_args = (
|
|
|
|
(task_prompt, *args) if img is None else (task_prompt, img, *args)
|
|
|
|
(task_prompt, *args)
|
|
|
|
|
|
|
|
if img is None
|
|
|
|
|
|
|
|
else (task_prompt, img, *args)
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
response = self.call_llm(
|
|
|
|
|
|
|
|
*response_args, **kwargs
|
|
|
|
)
|
|
|
|
)
|
|
|
|
response = self.call_llm(*response_args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Log step metadata
|
|
|
|
|
|
|
|
step_meta = self.log_step_metadata(loop_count, task_prompt, response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Check if response is a dictionary and has 'choices' key
|
|
|
|
# Check if response is a dictionary and has 'choices' key
|
|
|
|
if isinstance(response, dict) and 'choices' in response:
|
|
|
|
if (
|
|
|
|
response = response['choices'][0]['message']['content']
|
|
|
|
isinstance(response, dict)
|
|
|
|
|
|
|
|
and "choices" in response
|
|
|
|
|
|
|
|
):
|
|
|
|
|
|
|
|
response = response["choices"][0][
|
|
|
|
|
|
|
|
"message"
|
|
|
|
|
|
|
|
]["content"]
|
|
|
|
elif isinstance(response, str):
|
|
|
|
elif isinstance(response, str):
|
|
|
|
# If response is already a string, use it as is
|
|
|
|
# If response is already a string, use it as is
|
|
|
|
pass
|
|
|
|
pass
|
|
|
@ -827,48 +829,37 @@ class Agent:
|
|
|
|
raise ValueError(
|
|
|
|
raise ValueError(
|
|
|
|
f"Unexpected response format: {type(response)}"
|
|
|
|
f"Unexpected response format: {type(response)}"
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Check and execute tools
|
|
|
|
# Check and execute tools
|
|
|
|
if self.tools is not None:
|
|
|
|
if self.tools is not None:
|
|
|
|
tool_result = self.parse_and_execute_tools(response)
|
|
|
|
print(
|
|
|
|
if tool_result:
|
|
|
|
f"self.tools is not None: {response}"
|
|
|
|
self.update_tool_usage(
|
|
|
|
)
|
|
|
|
step_meta["step_id"],
|
|
|
|
self.parse_and_execute_tools(response)
|
|
|
|
tool_result["tool"],
|
|
|
|
|
|
|
|
tool_result["args"],
|
|
|
|
|
|
|
|
tool_result["response"]
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Update agent output history
|
|
|
|
|
|
|
|
self.agent_output.full_history = self.short_memory.return_history_as_string()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Log the step metadata
|
|
|
|
# Log the step metadata
|
|
|
|
logged = self.log_step_metadata(
|
|
|
|
logged = self.log_step_metadata(
|
|
|
|
loop_count,
|
|
|
|
loop_count, task_prompt, response
|
|
|
|
task_prompt,
|
|
|
|
|
|
|
|
response
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
logger.info(logged)
|
|
|
|
logger.info(logged)
|
|
|
|
|
|
|
|
|
|
|
|
# Convert to a str if the response is not a str
|
|
|
|
# Convert to a str if the response is not a str
|
|
|
|
response = self.llm_output_parser(response)
|
|
|
|
response = self.llm_output_parser(response)
|
|
|
|
|
|
|
|
|
|
|
|
# Print
|
|
|
|
# Print
|
|
|
|
if self.streaming_on is True:
|
|
|
|
if self.streaming_on is True:
|
|
|
|
self.stream_response(response)
|
|
|
|
self.stream_response(response)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
print(response)
|
|
|
|
print(response)
|
|
|
|
|
|
|
|
|
|
|
|
# Add the response to the memory
|
|
|
|
# Add the response to the memory
|
|
|
|
self.short_memory.add(
|
|
|
|
self.short_memory.add(
|
|
|
|
role=self.agent_name,
|
|
|
|
role=self.agent_name, content=response
|
|
|
|
content=response
|
|
|
|
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Add to all responses
|
|
|
|
# Add to all responses
|
|
|
|
all_responses.append(response)
|
|
|
|
all_responses.append(response)
|
|
|
|
|
|
|
|
|
|
|
|
# TODO: Implement reliability check
|
|
|
|
# TODO: Implement reliability check
|
|
|
|
if self.tools is not None:
|
|
|
|
if self.tools is not None:
|
|
|
|
# self.parse_function_call_and_execute(response)
|
|
|
|
# self.parse_function_call_and_execute(response)
|
|
|
@ -997,12 +988,25 @@ class Agent:
|
|
|
|
]
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
# return self.agent_output_type(all_responses)
|
|
|
|
# return self.agent_output_type(all_responses)
|
|
|
|
|
|
|
|
# More flexible output types
|
|
|
|
if self.output_type == "json":
|
|
|
|
if self.output_type == "string":
|
|
|
|
return asdict(self.agent_output)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
return concat_strings(all_responses)
|
|
|
|
return concat_strings(all_responses)
|
|
|
|
|
|
|
|
elif self.output_type == "list":
|
|
|
|
|
|
|
|
return all_responses
|
|
|
|
|
|
|
|
elif self.output_type == "json":
|
|
|
|
|
|
|
|
return self.agent_output.model_dump_json(indent=4)
|
|
|
|
|
|
|
|
elif self.output_type == "csv":
|
|
|
|
|
|
|
|
return self.dict_to_csv(
|
|
|
|
|
|
|
|
self.agent_output.model_dump()
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
elif self.output_type == "dict":
|
|
|
|
|
|
|
|
return self.agent_output.model_dump()
|
|
|
|
|
|
|
|
elif self.output_type == "yaml":
|
|
|
|
|
|
|
|
return yaml.safe_dump(self.agent_output.model_dump(), sort_keys=False)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
raise ValueError(
|
|
|
|
|
|
|
|
f"Invalid output type: {self.output_type}"
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
except Exception as error:
|
|
|
|
except Exception as error:
|
|
|
|
logger.info(
|
|
|
|
logger.info(
|
|
|
@ -1011,20 +1015,79 @@ class Agent:
|
|
|
|
raise error
|
|
|
|
raise error
|
|
|
|
|
|
|
|
|
|
|
|
def __call__(
|
|
|
|
def __call__(
|
|
|
|
self, task: str = None, img: str = None, *args, **kwargs
|
|
|
|
self,
|
|
|
|
):
|
|
|
|
task: Optional[str] = None,
|
|
|
|
|
|
|
|
img: Optional[str] = None,
|
|
|
|
|
|
|
|
is_last: bool = False,
|
|
|
|
|
|
|
|
device: str = "cpu", # gpu
|
|
|
|
|
|
|
|
device_id: int = 0,
|
|
|
|
|
|
|
|
all_cores: bool = True,
|
|
|
|
|
|
|
|
*args,
|
|
|
|
|
|
|
|
**kwargs,
|
|
|
|
|
|
|
|
) -> Any:
|
|
|
|
"""Call the agent
|
|
|
|
"""Call the agent
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
Args:
|
|
|
|
task (str): _description_
|
|
|
|
task (Optional[str]): The task to be performed. Defaults to None.
|
|
|
|
img (str, optional): _description_. Defaults to None.
|
|
|
|
img (Optional[str]): The image to be processed. Defaults to None.
|
|
|
|
|
|
|
|
is_last (bool): Indicates if this is the last task. Defaults to False.
|
|
|
|
|
|
|
|
device (str): The device to use for execution. Defaults to "cpu".
|
|
|
|
|
|
|
|
device_id (int): The ID of the GPU to use if device is set to "gpu". Defaults to 0.
|
|
|
|
|
|
|
|
all_cores (bool): If True, uses all available CPU cores. Defaults to True.
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
return self.run(task, img, *args, **kwargs)
|
|
|
|
if task is not None:
|
|
|
|
|
|
|
|
return self.run(
|
|
|
|
|
|
|
|
task=task,
|
|
|
|
|
|
|
|
is_last=is_last,
|
|
|
|
|
|
|
|
device=device,
|
|
|
|
|
|
|
|
device_id=device_id,
|
|
|
|
|
|
|
|
all_cores=all_cores,
|
|
|
|
|
|
|
|
*args,
|
|
|
|
|
|
|
|
**kwargs,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
elif img is not None:
|
|
|
|
|
|
|
|
return self.run(
|
|
|
|
|
|
|
|
img=img,
|
|
|
|
|
|
|
|
is_last=is_last,
|
|
|
|
|
|
|
|
device=device,
|
|
|
|
|
|
|
|
device_id=device_id,
|
|
|
|
|
|
|
|
all_cores=all_cores,
|
|
|
|
|
|
|
|
*args,
|
|
|
|
|
|
|
|
**kwargs,
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
raise ValueError(
|
|
|
|
|
|
|
|
"Either 'task' or 'img' must be provided."
|
|
|
|
|
|
|
|
)
|
|
|
|
except Exception as error:
|
|
|
|
except Exception as error:
|
|
|
|
logger.error(f"Error calling agent: {error}")
|
|
|
|
logger.error(f"Error calling agent: {error}")
|
|
|
|
raise error
|
|
|
|
raise error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dict_to_csv(self, data: dict) -> str:
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Convert a dictionary to a CSV string.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
data (dict): The dictionary to convert.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
str: The CSV string representation of the dictionary.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
import csv
|
|
|
|
|
|
|
|
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output = io.StringIO()
|
|
|
|
|
|
|
|
writer = csv.writer(output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Write header
|
|
|
|
|
|
|
|
writer.writerow(data.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Write values
|
|
|
|
|
|
|
|
writer.writerow(data.values())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output.getvalue()
|
|
|
|
|
|
|
|
|
|
|
|
def parse_and_execute_tools(self, response: str, *args, **kwargs):
|
|
|
|
def parse_and_execute_tools(self, response: str, *args, **kwargs):
|
|
|
|
# Extract json from markdown
|
|
|
|
# Extract json from markdown
|
|
|
|
# response = extract_code_from_markdown(response)
|
|
|
|
# response = extract_code_from_markdown(response)
|
|
|
@ -1883,42 +1946,36 @@ class Agent:
|
|
|
|
"""Parse the output from the LLM"""
|
|
|
|
"""Parse the output from the LLM"""
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
if isinstance(response, dict):
|
|
|
|
if isinstance(response, dict):
|
|
|
|
if 'choices' in response:
|
|
|
|
if "choices" in response:
|
|
|
|
return response['choices'][0]['message']['content']
|
|
|
|
return response["choices"][0]["message"][
|
|
|
|
|
|
|
|
"content"
|
|
|
|
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
return json.dumps(response) # Convert dict to string
|
|
|
|
return json.dumps(
|
|
|
|
|
|
|
|
response
|
|
|
|
|
|
|
|
) # Convert dict to string
|
|
|
|
elif isinstance(response, str):
|
|
|
|
elif isinstance(response, str):
|
|
|
|
return response
|
|
|
|
return response
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
return str(response) # Convert any other type to string
|
|
|
|
return str(
|
|
|
|
|
|
|
|
response
|
|
|
|
|
|
|
|
) # Convert any other type to string
|
|
|
|
except Exception as e:
|
|
|
|
except Exception as e:
|
|
|
|
logger.error(f"Error parsing LLM output: {e}")
|
|
|
|
logger.error(f"Error parsing LLM output: {e}")
|
|
|
|
return str(response) # Return string representation as fallback
|
|
|
|
return str(
|
|
|
|
|
|
|
|
response
|
|
|
|
|
|
|
|
) # Return string representation as fallback
|
|
|
|
|
|
|
|
|
|
|
|
def log_step_metadata(
|
|
|
|
def log_step_metadata(
|
|
|
|
self, loop: int, task: str, response: str
|
|
|
|
self, loop: int, task: str, response: str
|
|
|
|
) -> Step:
|
|
|
|
) -> Step:
|
|
|
|
"""Log metadata for each step of agent execution."""
|
|
|
|
# # # Step Metadata
|
|
|
|
# Generate unique step ID
|
|
|
|
|
|
|
|
step_id = f"step_{loop}_{uuid.uuid4().hex}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Calculate token usage
|
|
|
|
|
|
|
|
# full_memory = self.short_memory.return_history_as_string()
|
|
|
|
# full_memory = self.short_memory.return_history_as_string()
|
|
|
|
# prompt_tokens = self.tokenizer.count_tokens(full_memory)
|
|
|
|
# prompt_tokens = self.tokenizer.count_tokens(full_memory)
|
|
|
|
# completion_tokens = self.tokenizer.count_tokens(response)
|
|
|
|
# completion_tokens = self.tokenizer.count_tokens(response)
|
|
|
|
# total_tokens = prompt_tokens + completion_tokens
|
|
|
|
# self.tokenizer.count_tokens(prompt_tokens + completion_tokens)
|
|
|
|
total_tokens=self.tokenizer.count_tokens(task) + self.tokenizer.count_tokens(response),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Create memory usage tracking
|
|
|
|
|
|
|
|
memory_usage = {
|
|
|
|
|
|
|
|
"short_term": len(self.short_memory.messages),
|
|
|
|
|
|
|
|
"long_term": self.long_term_memory.count if hasattr(self, 'long_term_memory') else 0
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
step_log = Step(
|
|
|
|
step_log = Step(
|
|
|
|
step_id=step_id,
|
|
|
|
|
|
|
|
time=time.time(),
|
|
|
|
|
|
|
|
tokens = total_tokens,
|
|
|
|
|
|
|
|
response=AgentChatCompletionResponse(
|
|
|
|
response=AgentChatCompletionResponse(
|
|
|
|
id=self.agent_id,
|
|
|
|
id=self.agent_id,
|
|
|
|
agent_name=self.agent_name,
|
|
|
|
agent_name=self.agent_name,
|
|
|
@ -1933,34 +1990,14 @@ class Agent:
|
|
|
|
),
|
|
|
|
),
|
|
|
|
# usage=UsageInfo(
|
|
|
|
# usage=UsageInfo(
|
|
|
|
# prompt_tokens=prompt_tokens,
|
|
|
|
# prompt_tokens=prompt_tokens,
|
|
|
|
# completion_tokens=completion_tokens,
|
|
|
|
|
|
|
|
# total_tokens=total_tokens,
|
|
|
|
# total_tokens=total_tokens,
|
|
|
|
|
|
|
|
# completion_tokens=completion_tokens,
|
|
|
|
# ),
|
|
|
|
# ),
|
|
|
|
tool_calls=[],
|
|
|
|
|
|
|
|
memory_usage=memory_usage
|
|
|
|
|
|
|
|
),
|
|
|
|
),
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Update total tokens if agent_output exists
|
|
|
|
|
|
|
|
if hasattr(self, 'agent_output'):
|
|
|
|
|
|
|
|
self.agent_output.total_tokens += step.response.total_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Add step to agent output tracking
|
|
|
|
|
|
|
|
self.step_pool.append(step_log)
|
|
|
|
self.step_pool.append(step_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def update_tool_usage(self, step_id: str, tool_name: str, tool_args: dict, tool_response: Any):
|
|
|
|
|
|
|
|
"""Update tool usage information for a specific step."""
|
|
|
|
|
|
|
|
for step in self.agent_output.steps:
|
|
|
|
|
|
|
|
if step.step_id == step_id:
|
|
|
|
|
|
|
|
step.response.tool_calls.append({
|
|
|
|
|
|
|
|
"tool": tool_name,
|
|
|
|
|
|
|
|
"arguments": tool_args,
|
|
|
|
|
|
|
|
"response": str(tool_response)
|
|
|
|
|
|
|
|
})
|
|
|
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _serialize_callable(
|
|
|
|
def _serialize_callable(
|
|
|
|
self, attr_value: Callable
|
|
|
|
self, attr_value: Callable
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|
) -> Dict[str, Any]:
|
|
|
|