clean up with agent

Former-commit-id: d865e403b6
WorkerULTRANODE
Kye 2 years ago
parent f96891df4d
commit a789c276ef

@ -32,7 +32,7 @@ from swarms.prompts.prompts import EVAL_TOOL_RESPONSE
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class ConversationalChatAgent: class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools.""" """An agent designed to hold a conversation in addition to using tools."""
output_parser: BaseOutputParser output_parser: BaseOutputParser
@ -40,7 +40,11 @@ class ConversationalChatAgent:
@property @property
def _agent_type(self) -> str: def _agent_type(self) -> str:
raise NotImplementedError raise NotImplementedError
def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser:
"""Get default output parser for this class."""
@property @property
def observation_prefix(self) -> str: def observation_prefix(self) -> str:
"""Prefix to append the observation with.""" """Prefix to append the observation with."""
@ -53,7 +57,7 @@ class ConversationalChatAgent:
@classmethod @classmethod
def create_prompt( def create_prompt(
Agent, cls,
tools: Sequence[BaseTool], tools: Sequence[BaseTool],
system_message: str, system_message: str,
human_message: str, human_message: str,
@ -114,7 +118,7 @@ class ConversationalChatAgent:
@classmethod @classmethod
def from_llm_and_tools( def from_llm_and_tools(
Agent, cls,
llm: BaseLanguageModel, llm: BaseLanguageModel,
tools: Sequence[BaseTool], tools: Sequence[BaseTool],
system_message: str, system_message: str,
@ -125,8 +129,8 @@ class ConversationalChatAgent:
**kwargs: Any, **kwargs: Any,
) -> Agent: ) -> Agent:
"""Construct an agent from an LLM and tools.""" """Construct an agent from an LLM and tools."""
Agent._validate_tools(tools) cls._validate_tools(tools)
prompt = Agent.create_prompt( prompt = cls.create_prompt(
tools, tools,
system_message=system_message, system_message=system_message,
human_message=human_message, human_message=human_message,
@ -140,7 +144,7 @@ class ConversationalChatAgent:
) )
tool_names = [tool.name for tool in tools] tool_names = [tool.name for tool in tools]
try: try:
return Agent( return cls(
llm_chain=llm_chain, llm_chain=llm_chain,
allowed_tools=tool_names, allowed_tools=tool_names,
output_parser=output_parser, output_parser=output_parser,
@ -149,13 +153,4 @@ class ConversationalChatAgent:
except Exception as e: except Exception as e:
logging.error(f"Error while creating agent from LLM and tools: {str(e)}") logging.error(f"Error while creating agent from LLM and tools: {str(e)}")
raise e raise e
# class OutputParser(AgentOutputParser):
# def parse(self, full_output: str) -> AgentAction:
# return AgentAction(action="chat", details={'message': full_output})
# class ChatAgent(ConversationalChatAgent):
# def _get_default_output_parser(self):
# """Get default output parser for this class."""
# return OutputParser()
Loading…
Cancel
Save