parent
fefc884477
commit
a86f5979af
@ -0,0 +1,59 @@
|
|||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
from swarms import ToolAgent
|
||||||
|
from swarms.utils.json_utils import base_model_to_json
|
||||||
|
|
||||||
|
# Model name
|
||||||
|
model_name = "CohereForAI/c4ai-command-r-v01-4bit"
|
||||||
|
|
||||||
|
# Load the pre-trained model and tokenizer
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
device_map="auto",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load the pre-trained model and tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
# Initialize the schema for the person's information
|
||||||
|
class APIExampleRequestSchema(BaseModel):
|
||||||
|
endpoint: str = Field(
|
||||||
|
..., description="The API endpoint for the example request"
|
||||||
|
)
|
||||||
|
method: str = Field(
|
||||||
|
..., description="The HTTP method for the example request"
|
||||||
|
)
|
||||||
|
headers: dict = Field(
|
||||||
|
..., description="The headers for the example request"
|
||||||
|
)
|
||||||
|
body: dict = Field(
|
||||||
|
..., description="The body of the example request"
|
||||||
|
)
|
||||||
|
response: dict = Field(
|
||||||
|
..., description="The expected response of the example request"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Convert the schema to a JSON string
|
||||||
|
api_example_schema = base_model_to_json(APIExampleRequestSchema)
|
||||||
|
# Convert the schema to a JSON string
|
||||||
|
|
||||||
|
# Define the task to generate a person's information
|
||||||
|
task = (
|
||||||
|
"Generate an example API request using this code:\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create an instance of the ToolAgent class
|
||||||
|
agent = ToolAgent(
|
||||||
|
name="Command R Tool Agent",
|
||||||
|
description="An agent that generates an API request using the Command R model.",
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
json_schema=api_example_schema,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the agent to generate the person's information
|
||||||
|
generated_data = agent.run(task)
|
||||||
|
|
||||||
|
# Print the generated data
|
||||||
|
print(f"Generated data: {generated_data}")
|
@ -0,0 +1,59 @@
|
|||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||||
|
|
||||||
|
from swarms import ToolAgent
|
||||||
|
from swarms.utils.json_utils import base_model_to_json
|
||||||
|
|
||||||
|
# Model name
|
||||||
|
model_name = "ai21labs/Jamba-v0.1"
|
||||||
|
|
||||||
|
# Load the pre-trained model and tokenizer
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_name,
|
||||||
|
device_map="auto",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load the pre-trained model and tokenizer
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||||
|
|
||||||
|
# Initialize the schema for the person's information
|
||||||
|
class APIExampleRequestSchema(BaseModel):
|
||||||
|
endpoint: str = Field(
|
||||||
|
..., description="The API endpoint for the example request"
|
||||||
|
)
|
||||||
|
method: str = Field(
|
||||||
|
..., description="The HTTP method for the example request"
|
||||||
|
)
|
||||||
|
headers: dict = Field(
|
||||||
|
..., description="The headers for the example request"
|
||||||
|
)
|
||||||
|
body: dict = Field(
|
||||||
|
..., description="The body of the example request"
|
||||||
|
)
|
||||||
|
response: dict = Field(
|
||||||
|
..., description="The expected response of the example request"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Convert the schema to a JSON string
|
||||||
|
api_example_schema = base_model_to_json(APIExampleRequestSchema)
|
||||||
|
# Convert the schema to a JSON string
|
||||||
|
|
||||||
|
# Define the task to generate a person's information
|
||||||
|
task = (
|
||||||
|
"Generate an example API request using this code:\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create an instance of the ToolAgent class
|
||||||
|
agent = ToolAgent(
|
||||||
|
name="Command R Tool Agent",
|
||||||
|
description="An agent that generates an API request using the Command R model.",
|
||||||
|
model=model,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
json_schema=api_example_schema,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run the agent to generate the person's information
|
||||||
|
generated_data = agent(task)
|
||||||
|
|
||||||
|
# Print the generated data
|
||||||
|
print(f"Generated data: {generated_data}")
|
Loading…
Reference in new issue