parent
5c3937339a
commit
a89ec99299
@ -1 +1 @@
|
||||
from swarms.agents.workers.multi_modal_agents.omni_agent import chat_huggingface
|
||||
from swarms.agents.workers.multi_modal_agents.omni_agent.omni_agent import chat_huggingface
|
@ -0,0 +1,53 @@
|
||||
import tiktoken
|
||||
|
||||
encodings = {
|
||||
"gpt-4": tiktoken.get_encoding("cl100k_base"),
|
||||
"gpt-4-32k": tiktoken.get_encoding("cl100k_base"),
|
||||
"gpt-3.5-turbo": tiktoken.get_encoding("cl100k_base"),
|
||||
"gpt-3.5-turbo-0301": tiktoken.get_encoding("cl100k_base"),
|
||||
"text-davinci-003": tiktoken.get_encoding("p50k_base"),
|
||||
"text-davinci-002": tiktoken.get_encoding("p50k_base"),
|
||||
"text-davinci-001": tiktoken.get_encoding("r50k_base"),
|
||||
"text-curie-001": tiktoken.get_encoding("r50k_base"),
|
||||
"text-babbage-001": tiktoken.get_encoding("r50k_base"),
|
||||
"text-ada-001": tiktoken.get_encoding("r50k_base"),
|
||||
"davinci": tiktoken.get_encoding("r50k_base"),
|
||||
"curie": tiktoken.get_encoding("r50k_base"),
|
||||
"babbage": tiktoken.get_encoding("r50k_base"),
|
||||
"ada": tiktoken.get_encoding("r50k_base"),
|
||||
}
|
||||
|
||||
max_length = {
|
||||
"gpt-4": 8192,
|
||||
"gpt-4-32k": 32768,
|
||||
"gpt-3.5-turbo": 4096,
|
||||
"gpt-3.5-turbo-0301": 4096,
|
||||
"text-davinci-003": 4096,
|
||||
"text-davinci-002": 4096,
|
||||
"text-davinci-001": 2049,
|
||||
"text-curie-001": 2049,
|
||||
"text-babbage-001": 2049,
|
||||
"text-ada-001": 2049,
|
||||
"davinci": 2049,
|
||||
"curie": 2049,
|
||||
"babbage": 2049,
|
||||
"ada": 2049
|
||||
}
|
||||
|
||||
def count_tokens(model_name, text):
|
||||
return len(encodings[model_name].encode(text))
|
||||
|
||||
def get_max_context_length(model_name):
|
||||
return max_length[model_name]
|
||||
|
||||
def get_token_ids_for_task_parsing(model_name):
|
||||
text = '''{"task": "text-classification", "token-classification", "text2text-generation", "summarization", "translation", "question-answering", "conversational", "text-generation", "sentence-similarity", "tabular-classification", "object-detection", "image-classification", "image-to-image", "image-to-text", "text-to-image", "visual-question-answering", "document-question-answering", "image-segmentation", "text-to-speech", "text-to-video", "automatic-speech-recognition", "audio-to-audio", "audio-classification", "canny-control", "hed-control", "mlsd-control", "normal-control", "openpose-control", "canny-text-to-image", "depth-text-to-image", "hed-text-to-image", "mlsd-text-to-image", "normal-text-to-image", "openpose-text-to-image", "seg-text-to-image", "args", "text", "path", "dep", "id", "<GENERATED>-"}'''
|
||||
res = encodings[model_name].encode(text)
|
||||
res = list(set(res))
|
||||
return res
|
||||
|
||||
def get_token_ids_for_choose_model(model_name):
|
||||
text = '''{"id": "reason"}'''
|
||||
res = encodings[model_name].encode(text)
|
||||
res = list(set(res))
|
||||
return res
|
@ -0,0 +1,635 @@
|
||||
import argparse
|
||||
import logging
|
||||
import random
|
||||
import uuid
|
||||
import numpy as np
|
||||
from transformers import pipeline
|
||||
from diffusers import DiffusionPipeline, StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
||||
from diffusers.utils import load_image
|
||||
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
||||
from diffusers.utils import export_to_video
|
||||
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5ForSpeechToSpeech
|
||||
from transformers import BlipProcessor, BlipForConditionalGeneration
|
||||
from transformers import TrOCRProcessor, VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
||||
from datasets import load_dataset
|
||||
from PIL import Image
|
||||
import flask
|
||||
from flask import request, jsonify
|
||||
import waitress
|
||||
from flask_cors import CORS
|
||||
import io
|
||||
from torchvision import transforms
|
||||
import torch
|
||||
import torchaudio
|
||||
from speechbrain.pretrained import WaveformEnhancement
|
||||
import joblib
|
||||
from huggingface_hub import hf_hub_url, cached_download
|
||||
from transformers import AutoImageProcessor, TimesformerForVideoClassification
|
||||
from transformers import MaskFormerFeatureExtractor, MaskFormerForInstanceSegmentation, AutoFeatureExtractor
|
||||
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector, CannyDetector, MidasDetector
|
||||
from controlnet_aux.open_pose.body import Body
|
||||
from controlnet_aux.mlsd.models.mbv2_mlsd_large import MobileV2_MLSD_Large
|
||||
from controlnet_aux.hed import Network
|
||||
from transformers import DPTForDepthEstimation, DPTFeatureExtractor
|
||||
import warnings
|
||||
import time
|
||||
from espnet2.bin.tts_inference import Text2Speech
|
||||
import soundfile as sf
|
||||
from asteroid.models import BaseModel
|
||||
import traceback
|
||||
import os
|
||||
import yaml
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--config", type=str, default="configs/config.default.yaml")
|
||||
args = parser.parse_args()
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.setLevel(logging.INFO)
|
||||
handler = logging.StreamHandler()
|
||||
handler.setLevel(logging.INFO)
|
||||
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
handler.setFormatter(formatter)
|
||||
logger.addHandler(handler)
|
||||
|
||||
config = yaml.load(open(args.config, "r"), Loader=yaml.FullLoader)
|
||||
|
||||
# host = config["local_inference_endpoint"]["host"]
|
||||
port = config["local_inference_endpoint"]["port"]
|
||||
|
||||
local_deployment = config["local_deployment"]
|
||||
device = config.get("device", "cuda:0")
|
||||
|
||||
PROXY = None
|
||||
if config["proxy"]:
|
||||
PROXY = {
|
||||
"https": config["proxy"],
|
||||
}
|
||||
|
||||
app = flask.Flask(__name__)
|
||||
CORS(app)
|
||||
|
||||
start = time.time()
|
||||
|
||||
local_fold = "models"
|
||||
# if args.config.endswith(".dev"):
|
||||
# local_fold = "models_dev"
|
||||
|
||||
|
||||
def load_pipes(local_deployment):
|
||||
other_pipes = {}
|
||||
standard_pipes = {}
|
||||
controlnet_sd_pipes = {}
|
||||
if local_deployment in ["full"]:
|
||||
other_pipes = {
|
||||
"nlpconnect/vit-gpt2-image-captioning":{
|
||||
"model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"),
|
||||
"feature_extractor": ViTImageProcessor.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"),
|
||||
"tokenizer": AutoTokenizer.from_pretrained(f"{local_fold}/nlpconnect/vit-gpt2-image-captioning"),
|
||||
"device": device
|
||||
},
|
||||
# "Salesforce/blip-image-captioning-large": {
|
||||
# "model": BlipForConditionalGeneration.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"),
|
||||
# "processor": BlipProcessor.from_pretrained(f"{local_fold}/Salesforce/blip-image-captioning-large"),
|
||||
# "device": device
|
||||
# },
|
||||
"damo-vilab/text-to-video-ms-1.7b": {
|
||||
"model": DiffusionPipeline.from_pretrained(f"{local_fold}/damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"),
|
||||
"device": device
|
||||
},
|
||||
# "facebook/maskformer-swin-large-ade": {
|
||||
# "model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-large-ade"),
|
||||
# "feature_extractor" : AutoFeatureExtractor.from_pretrained("facebook/maskformer-swin-large-ade"),
|
||||
# "device": device
|
||||
# },
|
||||
# "microsoft/trocr-base-printed": {
|
||||
# "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"),
|
||||
# "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-printed"),
|
||||
# "device": device
|
||||
# },
|
||||
# "microsoft/trocr-base-handwritten": {
|
||||
# "processor": TrOCRProcessor.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"),
|
||||
# "model": VisionEncoderDecoderModel.from_pretrained(f"{local_fold}/microsoft/trocr-base-handwritten"),
|
||||
# "device": device
|
||||
# },
|
||||
"JorisCos/DCCRNet_Libri1Mix_enhsingle_16k": {
|
||||
"model": BaseModel.from_pretrained("JorisCos/DCCRNet_Libri1Mix_enhsingle_16k"),
|
||||
"device": device
|
||||
},
|
||||
"espnet/kan-bayashi_ljspeech_vits": {
|
||||
"model": Text2Speech.from_pretrained(f"espnet/kan-bayashi_ljspeech_vits"),
|
||||
"device": device
|
||||
},
|
||||
"lambdalabs/sd-image-variations-diffusers": {
|
||||
"model": DiffusionPipeline.from_pretrained(f"{local_fold}/lambdalabs/sd-image-variations-diffusers"), #torch_dtype=torch.float16
|
||||
"device": device
|
||||
},
|
||||
# "CompVis/stable-diffusion-v1-4": {
|
||||
# "model": DiffusionPipeline.from_pretrained(f"{local_fold}/CompVis/stable-diffusion-v1-4"),
|
||||
# "device": device
|
||||
# },
|
||||
# "stabilityai/stable-diffusion-2-1": {
|
||||
# "model": DiffusionPipeline.from_pretrained(f"{local_fold}/stabilityai/stable-diffusion-2-1"),
|
||||
# "device": device
|
||||
# },
|
||||
"runwayml/stable-diffusion-v1-5": {
|
||||
"model": DiffusionPipeline.from_pretrained(f"{local_fold}/runwayml/stable-diffusion-v1-5"),
|
||||
"device": device
|
||||
},
|
||||
# "microsoft/speecht5_tts":{
|
||||
# "processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"),
|
||||
# "model": SpeechT5ForTextToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_tts"),
|
||||
# "vocoder": SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"),
|
||||
# "embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"),
|
||||
# "device": device
|
||||
# },
|
||||
# "speechbrain/mtl-mimic-voicebank": {
|
||||
# "model": WaveformEnhancement.from_hparams(source="speechbrain/mtl-mimic-voicebank", savedir="models/mtl-mimic-voicebank"),
|
||||
# "device": device
|
||||
# },
|
||||
"microsoft/speecht5_vc":{
|
||||
"processor": SpeechT5Processor.from_pretrained(f"{local_fold}/microsoft/speecht5_vc"),
|
||||
"model": SpeechT5ForSpeechToSpeech.from_pretrained(f"{local_fold}/microsoft/speecht5_vc"),
|
||||
"vocoder": SpeechT5HifiGan.from_pretrained(f"{local_fold}/microsoft/speecht5_hifigan"),
|
||||
"embeddings_dataset": load_dataset(f"{local_fold}/Matthijs/cmu-arctic-xvectors", split="validation"),
|
||||
"device": device
|
||||
},
|
||||
# "julien-c/wine-quality": {
|
||||
# "model": joblib.load(cached_download(hf_hub_url("julien-c/wine-quality", "sklearn_model.joblib")))
|
||||
# },
|
||||
# "facebook/timesformer-base-finetuned-k400": {
|
||||
# "processor": AutoImageProcessor.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"),
|
||||
# "model": TimesformerForVideoClassification.from_pretrained(f"{local_fold}/facebook/timesformer-base-finetuned-k400"),
|
||||
# "device": device
|
||||
# },
|
||||
"facebook/maskformer-swin-base-coco": {
|
||||
"feature_extractor": MaskFormerFeatureExtractor.from_pretrained(f"{local_fold}/facebook/maskformer-swin-base-coco"),
|
||||
"model": MaskFormerForInstanceSegmentation.from_pretrained(f"{local_fold}/facebook/maskformer-swin-base-coco"),
|
||||
"device": device
|
||||
},
|
||||
"Intel/dpt-hybrid-midas": {
|
||||
"model": DPTForDepthEstimation.from_pretrained(f"{local_fold}/Intel/dpt-hybrid-midas", low_cpu_mem_usage=True),
|
||||
"feature_extractor": DPTFeatureExtractor.from_pretrained(f"{local_fold}/Intel/dpt-hybrid-midas"),
|
||||
"device": device
|
||||
}
|
||||
}
|
||||
|
||||
if local_deployment in ["full", "standard"]:
|
||||
standard_pipes = {
|
||||
# "superb/wav2vec2-base-superb-ks": {
|
||||
# "model": pipeline(task="audio-classification", model=f"{local_fold}/superb/wav2vec2-base-superb-ks"),
|
||||
# "device": device
|
||||
# },
|
||||
"openai/whisper-base": {
|
||||
"model": pipeline(task="automatic-speech-recognition", model=f"{local_fold}/openai/whisper-base"),
|
||||
"device": device
|
||||
},
|
||||
"microsoft/speecht5_asr": {
|
||||
"model": pipeline(task="automatic-speech-recognition", model=f"{local_fold}/microsoft/speecht5_asr"),
|
||||
"device": device
|
||||
},
|
||||
"Intel/dpt-large": {
|
||||
"model": pipeline(task="depth-estimation", model=f"{local_fold}/Intel/dpt-large"),
|
||||
"device": device
|
||||
},
|
||||
# "microsoft/beit-base-patch16-224-pt22k-ft22k": {
|
||||
# "model": pipeline(task="image-classification", model=f"{local_fold}/microsoft/beit-base-patch16-224-pt22k-ft22k"),
|
||||
# "device": device
|
||||
# },
|
||||
"facebook/detr-resnet-50-panoptic": {
|
||||
"model": pipeline(task="image-segmentation", model=f"{local_fold}/facebook/detr-resnet-50-panoptic"),
|
||||
"device": device
|
||||
},
|
||||
"facebook/detr-resnet-101": {
|
||||
"model": pipeline(task="object-detection", model=f"{local_fold}/facebook/detr-resnet-101"),
|
||||
"device": device
|
||||
},
|
||||
# "openai/clip-vit-large-patch14": {
|
||||
# "model": pipeline(task="zero-shot-image-classification", model=f"{local_fold}/openai/clip-vit-large-patch14"),
|
||||
# "device": device
|
||||
# },
|
||||
"google/owlvit-base-patch32": {
|
||||
"model": pipeline(task="zero-shot-object-detection", model=f"{local_fold}/google/owlvit-base-patch32"),
|
||||
"device": device
|
||||
},
|
||||
# "microsoft/DialoGPT-medium": {
|
||||
# "model": pipeline(task="conversational", model=f"{local_fold}/microsoft/DialoGPT-medium"),
|
||||
# "device": device
|
||||
# },
|
||||
# "bert-base-uncased": {
|
||||
# "model": pipeline(task="fill-mask", model=f"{local_fold}/bert-base-uncased"),
|
||||
# "device": device
|
||||
# },
|
||||
# "deepset/roberta-base-squad2": {
|
||||
# "model": pipeline(task = "question-answering", model=f"{local_fold}/deepset/roberta-base-squad2"),
|
||||
# "device": device
|
||||
# },
|
||||
# "facebook/bart-large-cnn": {
|
||||
# "model": pipeline(task="summarization", model=f"{local_fold}/facebook/bart-large-cnn"),
|
||||
# "device": device
|
||||
# },
|
||||
# "google/tapas-base-finetuned-wtq": {
|
||||
# "model": pipeline(task="table-question-answering", model=f"{local_fold}/google/tapas-base-finetuned-wtq"),
|
||||
# "device": device
|
||||
# },
|
||||
# "distilbert-base-uncased-finetuned-sst-2-english": {
|
||||
# "model": pipeline(task="text-classification", model=f"{local_fold}/distilbert-base-uncased-finetuned-sst-2-english"),
|
||||
# "device": device
|
||||
# },
|
||||
# "gpt2": {
|
||||
# "model": pipeline(task="text-generation", model="gpt2"),
|
||||
# "device": device
|
||||
# },
|
||||
# "mrm8488/t5-base-finetuned-question-generation-ap": {
|
||||
# "model": pipeline(task="text2text-generation", model=f"{local_fold}/mrm8488/t5-base-finetuned-question-generation-ap"),
|
||||
# "device": device
|
||||
# },
|
||||
# "Jean-Baptiste/camembert-ner": {
|
||||
# "model": pipeline(task="token-classification", model=f"{local_fold}/Jean-Baptiste/camembert-ner", aggregation_strategy="simple"),
|
||||
# "device": device
|
||||
# },
|
||||
# "t5-base": {
|
||||
# "model": pipeline(task="translation", model=f"{local_fold}/t5-base"),
|
||||
# "device": device
|
||||
# },
|
||||
"impira/layoutlm-document-qa": {
|
||||
"model": pipeline(task="document-question-answering", model=f"{local_fold}/impira/layoutlm-document-qa"),
|
||||
"device": device
|
||||
},
|
||||
"ydshieh/vit-gpt2-coco-en": {
|
||||
"model": pipeline(task="image-to-text", model=f"{local_fold}/ydshieh/vit-gpt2-coco-en"),
|
||||
"device": device
|
||||
},
|
||||
"dandelin/vilt-b32-finetuned-vqa": {
|
||||
"model": pipeline(task="visual-question-answering", model=f"{local_fold}/dandelin/vilt-b32-finetuned-vqa"),
|
||||
"device": device
|
||||
}
|
||||
}
|
||||
|
||||
if local_deployment in ["full", "standard", "minimal"]:
|
||||
controlnet = ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
||||
controlnetpipe = StableDiffusionControlNetPipeline.from_pretrained(
|
||||
f"{local_fold}/runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
|
||||
)
|
||||
|
||||
def mlsd_control_network():
|
||||
model = MobileV2_MLSD_Large()
|
||||
model.load_state_dict(torch.load(f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/mlsd_large_512_fp32.pth"), strict=True)
|
||||
return MLSDdetector(model)
|
||||
|
||||
|
||||
hed_network = Network(f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/network-bsds500.pth")
|
||||
|
||||
controlnet_sd_pipes = {
|
||||
"openpose-control": {
|
||||
"model": OpenposeDetector(Body(f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/body_pose_model.pth"))
|
||||
},
|
||||
"mlsd-control": {
|
||||
"model": mlsd_control_network()
|
||||
},
|
||||
"hed-control": {
|
||||
"model": HEDdetector(hed_network)
|
||||
},
|
||||
"scribble-control": {
|
||||
"model": HEDdetector(hed_network)
|
||||
},
|
||||
"midas-control": {
|
||||
"model": MidasDetector(model_path=f"{local_fold}/lllyasviel/ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt")
|
||||
},
|
||||
"canny-control": {
|
||||
"model": CannyDetector()
|
||||
},
|
||||
"lllyasviel/sd-controlnet-canny":{
|
||||
"control": controlnet,
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
},
|
||||
"lllyasviel/sd-controlnet-depth":{
|
||||
"control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-depth", torch_dtype=torch.float16),
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
},
|
||||
"lllyasviel/sd-controlnet-hed":{
|
||||
"control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-hed", torch_dtype=torch.float16),
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
},
|
||||
"lllyasviel/sd-controlnet-mlsd":{
|
||||
"control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-mlsd", torch_dtype=torch.float16),
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
},
|
||||
"lllyasviel/sd-controlnet-openpose":{
|
||||
"control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16),
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
},
|
||||
"lllyasviel/sd-controlnet-scribble":{
|
||||
"control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-scribble", torch_dtype=torch.float16),
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
},
|
||||
"lllyasviel/sd-controlnet-seg":{
|
||||
"control": ControlNetModel.from_pretrained(f"{local_fold}/lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16),
|
||||
"model": controlnetpipe,
|
||||
"device": device
|
||||
}
|
||||
}
|
||||
pipes = {**standard_pipes, **other_pipes, **controlnet_sd_pipes}
|
||||
return pipes
|
||||
|
||||
pipes = load_pipes(local_deployment)
|
||||
|
||||
end = time.time()
|
||||
during = end - start
|
||||
|
||||
print(f"[ ready ] {during}s")
|
||||
|
||||
@app.route('/running', methods=['GET'])
|
||||
def running():
|
||||
return jsonify({"running": True})
|
||||
|
||||
@app.route('/status/<path:model_id>', methods=['GET'])
|
||||
def status(model_id):
|
||||
disabled_models = ["microsoft/trocr-base-printed", "microsoft/trocr-base-handwritten"]
|
||||
if model_id in pipes.keys() and model_id not in disabled_models:
|
||||
print(f"[ check {model_id} ] success")
|
||||
return jsonify({"loaded": True})
|
||||
else:
|
||||
print(f"[ check {model_id} ] failed")
|
||||
return jsonify({"loaded": False})
|
||||
|
||||
@app.route('/models/<path:model_id>', methods=['POST'])
|
||||
def models(model_id):
|
||||
while "using" in pipes[model_id] and pipes[model_id]["using"]:
|
||||
print(f"[ inference {model_id} ] waiting")
|
||||
time.sleep(0.1)
|
||||
pipes[model_id]["using"] = True
|
||||
print(f"[ inference {model_id} ] start")
|
||||
|
||||
start = time.time()
|
||||
|
||||
pipe = pipes[model_id]["model"]
|
||||
|
||||
if "device" in pipes[model_id]:
|
||||
try:
|
||||
pipe.to(pipes[model_id]["device"])
|
||||
except:
|
||||
pipe.device = torch.device(pipes[model_id]["device"])
|
||||
pipe.model.to(pipes[model_id]["device"])
|
||||
|
||||
result = None
|
||||
try:
|
||||
# text to video
|
||||
if model_id == "damo-vilab/text-to-video-ms-1.7b":
|
||||
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
||||
# pipe.enable_model_cpu_offload()
|
||||
prompt = request.get_json()["text"]
|
||||
video_frames = pipe(prompt, num_inference_steps=50, num_frames=40).frames
|
||||
video_path = export_to_video(video_frames)
|
||||
file_name = str(uuid.uuid4())[:4]
|
||||
os.system(f"LD_LIBRARY_PATH=/usr/local/lib /usr/local/bin/ffmpeg -i {video_path} -vcodec libx264 public/videos/{file_name}.mp4")
|
||||
result = {"path": f"/videos/{file_name}.mp4"}
|
||||
|
||||
# controlnet
|
||||
if model_id.startswith("lllyasviel/sd-controlnet-"):
|
||||
pipe.controlnet.to('cpu')
|
||||
pipe.controlnet = pipes[model_id]["control"].to(pipes[model_id]["device"])
|
||||
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
||||
control_image = load_image(request.get_json()["img_url"])
|
||||
# generator = torch.manual_seed(66)
|
||||
out_image: Image = pipe(request.get_json()["text"], num_inference_steps=20, image=control_image).images[0]
|
||||
file_name = str(uuid.uuid4())[:4]
|
||||
out_image.save(f"public/images/{file_name}.png")
|
||||
result = {"path": f"/images/{file_name}.png"}
|
||||
|
||||
if model_id.endswith("-control"):
|
||||
image = load_image(request.get_json()["img_url"])
|
||||
if "scribble" in model_id:
|
||||
control = pipe(image, scribble = True)
|
||||
elif "canny" in model_id:
|
||||
control = pipe(image, low_threshold=100, high_threshold=200)
|
||||
else:
|
||||
control = pipe(image)
|
||||
file_name = str(uuid.uuid4())[:4]
|
||||
control.save(f"public/images/{file_name}.png")
|
||||
result = {"path": f"/images/{file_name}.png"}
|
||||
|
||||
# image to image
|
||||
if model_id == "lambdalabs/sd-image-variations-diffusers":
|
||||
im = load_image(request.get_json()["img_url"])
|
||||
file_name = str(uuid.uuid4())[:4]
|
||||
with open(f"public/images/{file_name}.png", "wb") as f:
|
||||
f.write(request.data)
|
||||
tform = transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Resize(
|
||||
(224, 224),
|
||||
interpolation=transforms.InterpolationMode.BICUBIC,
|
||||
antialias=False,
|
||||
),
|
||||
transforms.Normalize(
|
||||
[0.48145466, 0.4578275, 0.40821073],
|
||||
[0.26862954, 0.26130258, 0.27577711]),
|
||||
])
|
||||
inp = tform(im).to(pipes[model_id]["device"]).unsqueeze(0)
|
||||
out = pipe(inp, guidance_scale=3)
|
||||
out["images"][0].save(f"public/images/{file_name}.jpg")
|
||||
result = {"path": f"/images/{file_name}.jpg"}
|
||||
|
||||
# image to text
|
||||
if model_id == "Salesforce/blip-image-captioning-large":
|
||||
raw_image = load_image(request.get_json()["img_url"]).convert('RGB')
|
||||
text = request.get_json()["text"]
|
||||
inputs = pipes[model_id]["processor"](raw_image, return_tensors="pt").to(pipes[model_id]["device"])
|
||||
out = pipe.generate(**inputs)
|
||||
caption = pipes[model_id]["processor"].decode(out[0], skip_special_tokens=True)
|
||||
result = {"generated text": caption}
|
||||
if model_id == "ydshieh/vit-gpt2-coco-en":
|
||||
img_url = request.get_json()["img_url"]
|
||||
generated_text = pipe(img_url)[0]['generated_text']
|
||||
result = {"generated text": generated_text}
|
||||
if model_id == "nlpconnect/vit-gpt2-image-captioning":
|
||||
image = load_image(request.get_json()["img_url"]).convert("RGB")
|
||||
pixel_values = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").pixel_values
|
||||
pixel_values = pixel_values.to(pipes[model_id]["device"])
|
||||
generated_ids = pipe.generate(pixel_values, **{"max_length": 200, "num_beams": 1})
|
||||
generated_text = pipes[model_id]["tokenizer"].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
result = {"generated text": generated_text}
|
||||
# image to text: OCR
|
||||
if model_id == "microsoft/trocr-base-printed" or model_id == "microsoft/trocr-base-handwritten":
|
||||
image = load_image(request.get_json()["img_url"]).convert("RGB")
|
||||
pixel_values = pipes[model_id]["processor"](image, return_tensors="pt").pixel_values
|
||||
pixel_values = pixel_values.to(pipes[model_id]["device"])
|
||||
generated_ids = pipe.generate(pixel_values)
|
||||
generated_text = pipes[model_id]["processor"].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
result = {"generated text": generated_text}
|
||||
|
||||
# text to image
|
||||
if model_id == "runwayml/stable-diffusion-v1-5":
|
||||
file_name = str(uuid.uuid4())[:4]
|
||||
text = request.get_json()["text"]
|
||||
out = pipe(prompt=text)
|
||||
out["images"][0].save(f"public/images/{file_name}.jpg")
|
||||
result = {"path": f"/images/{file_name}.jpg"}
|
||||
|
||||
# object detection
|
||||
if model_id == "google/owlvit-base-patch32" or model_id == "facebook/detr-resnet-101":
|
||||
img_url = request.get_json()["img_url"]
|
||||
open_types = ["cat", "couch", "person", "car", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird"]
|
||||
result = pipe(img_url, candidate_labels=open_types)
|
||||
|
||||
# VQA
|
||||
if model_id == "dandelin/vilt-b32-finetuned-vqa":
|
||||
question = request.get_json()["text"]
|
||||
img_url = request.get_json()["img_url"]
|
||||
result = pipe(question=question, image=img_url)
|
||||
|
||||
#DQA
|
||||
if model_id == "impira/layoutlm-document-qa":
|
||||
question = request.get_json()["text"]
|
||||
img_url = request.get_json()["img_url"]
|
||||
result = pipe(img_url, question)
|
||||
|
||||
# depth-estimation
|
||||
if model_id == "Intel/dpt-large":
|
||||
output = pipe(request.get_json()["img_url"])
|
||||
image = output['depth']
|
||||
name = str(uuid.uuid4())[:4]
|
||||
image.save(f"public/images/{name}.jpg")
|
||||
result = {"path": f"/images/{name}.jpg"}
|
||||
|
||||
if model_id == "Intel/dpt-hybrid-midas" and model_id == "Intel/dpt-large":
|
||||
image = load_image(request.get_json()["img_url"])
|
||||
inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt")
|
||||
with torch.no_grad():
|
||||
outputs = pipe(**inputs)
|
||||
predicted_depth = outputs.predicted_depth
|
||||
prediction = torch.nn.functional.interpolate(
|
||||
predicted_depth.unsqueeze(1),
|
||||
size=image.size[::-1],
|
||||
mode="bicubic",
|
||||
align_corners=False,
|
||||
)
|
||||
output = prediction.squeeze().cpu().numpy()
|
||||
formatted = (output * 255 / np.max(output)).astype("uint8")
|
||||
image = Image.fromarray(formatted)
|
||||
name = str(uuid.uuid4())[:4]
|
||||
image.save(f"public/images/{name}.jpg")
|
||||
result = {"path": f"/images/{name}.jpg"}
|
||||
|
||||
# TTS
|
||||
if model_id == "espnet/kan-bayashi_ljspeech_vits":
|
||||
text = request.get_json()["text"]
|
||||
wav = pipe(text)["wav"]
|
||||
name = str(uuid.uuid4())[:4]
|
||||
sf.write(f"public/audios/{name}.wav", wav.cpu().numpy(), pipe.fs, "PCM_16")
|
||||
result = {"path": f"/audios/{name}.wav"}
|
||||
|
||||
if model_id == "microsoft/speecht5_tts":
|
||||
text = request.get_json()["text"]
|
||||
inputs = pipes[model_id]["processor"](text=text, return_tensors="pt")
|
||||
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
|
||||
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0).to(pipes[model_id]["device"])
|
||||
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
|
||||
speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
|
||||
name = str(uuid.uuid4())[:4]
|
||||
sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
|
||||
result = {"path": f"/audios/{name}.wav"}
|
||||
|
||||
# ASR
|
||||
if model_id == "openai/whisper-base" or model_id == "microsoft/speecht5_asr":
|
||||
audio_url = request.get_json()["audio_url"]
|
||||
result = { "text": pipe(audio_url)["text"]}
|
||||
|
||||
# audio to audio
|
||||
if model_id == "JorisCos/DCCRNet_Libri1Mix_enhsingle_16k":
|
||||
audio_url = request.get_json()["audio_url"]
|
||||
wav, sr = torchaudio.load(audio_url)
|
||||
with torch.no_grad():
|
||||
result_wav = pipe(wav.to(pipes[model_id]["device"]))
|
||||
name = str(uuid.uuid4())[:4]
|
||||
sf.write(f"public/audios/{name}.wav", result_wav.cpu().squeeze().numpy(), sr)
|
||||
result = {"path": f"/audios/{name}.wav"}
|
||||
|
||||
if model_id == "microsoft/speecht5_vc":
|
||||
audio_url = request.get_json()["audio_url"]
|
||||
wav, sr = torchaudio.load(audio_url)
|
||||
inputs = pipes[model_id]["processor"](audio=wav, sampling_rate=sr, return_tensors="pt")
|
||||
embeddings_dataset = pipes[model_id]["embeddings_dataset"]
|
||||
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
||||
pipes[model_id]["vocoder"].to(pipes[model_id]["device"])
|
||||
speech = pipe.generate_speech(inputs["input_ids"].to(pipes[model_id]["device"]), speaker_embeddings, vocoder=pipes[model_id]["vocoder"])
|
||||
name = str(uuid.uuid4())[:4]
|
||||
sf.write(f"public/audios/{name}.wav", speech.cpu().numpy(), samplerate=16000)
|
||||
result = {"path": f"/audios/{name}.wav"}
|
||||
|
||||
# segmentation
|
||||
if model_id == "facebook/detr-resnet-50-panoptic":
|
||||
result = []
|
||||
segments = pipe(request.get_json()["img_url"])
|
||||
image = load_image(request.get_json()["img_url"])
|
||||
|
||||
colors = []
|
||||
for i in range(len(segments)):
|
||||
colors.append((random.randint(100, 255), random.randint(100, 255), random.randint(100, 255), 50))
|
||||
|
||||
for segment in segments:
|
||||
mask = segment["mask"]
|
||||
mask = mask.convert('L')
|
||||
layer = Image.new('RGBA', mask.size, colors[i])
|
||||
image.paste(layer, (0, 0), mask)
|
||||
name = str(uuid.uuid4())[:4]
|
||||
image.save(f"public/images/{name}.jpg")
|
||||
result = {"path": f"/images/{name}.jpg"}
|
||||
|
||||
if model_id == "facebook/maskformer-swin-base-coco" or model_id == "facebook/maskformer-swin-large-ade":
|
||||
image = load_image(request.get_json()["img_url"])
|
||||
inputs = pipes[model_id]["feature_extractor"](images=image, return_tensors="pt").to(pipes[model_id]["device"])
|
||||
outputs = pipe(**inputs)
|
||||
result = pipes[model_id]["feature_extractor"].post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
||||
predicted_panoptic_map = result["segmentation"].cpu().numpy()
|
||||
predicted_panoptic_map = Image.fromarray(predicted_panoptic_map.astype(np.uint8))
|
||||
name = str(uuid.uuid4())[:4]
|
||||
predicted_panoptic_map.save(f"public/images/{name}.jpg")
|
||||
result = {"path": f"/images/{name}.jpg"}
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
traceback.print_exc()
|
||||
result = {"error": {"message": "Error when running the model inference."}}
|
||||
|
||||
if "device" in pipes[model_id]:
|
||||
try:
|
||||
pipe.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
except:
|
||||
pipe.device = torch.device("cpu")
|
||||
pipe.model.to("cpu")
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
pipes[model_id]["using"] = False
|
||||
|
||||
if result is None:
|
||||
result = {"error": {"message": "model not found"}}
|
||||
|
||||
end = time.time()
|
||||
during = end - start
|
||||
print(f"[ complete {model_id} ] {during}s")
|
||||
print(f"[ result {model_id} ] {result}")
|
||||
|
||||
return jsonify(result)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# temp folders
|
||||
if not os.path.exists("public/audios"):
|
||||
os.makedirs("public/audios")
|
||||
if not os.path.exists("public/images"):
|
||||
os.makedirs("public/images")
|
||||
if not os.path.exists("public/videos"):
|
||||
os.makedirs("public/videos")
|
||||
|
||||
waitress.serve(app, host="0.0.0.0", port=port)
|
Loading…
Reference in new issue